/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkWuffsCodec.h" #include "../private/SkMalloc.h" #include "SkFrameHolder.h" #include "SkSampler.h" #include "SkSwizzler.h" #include "SkUtils.h" // Wuffs ships as a "single file C library" or "header file library" as per // https://github.com/nothings/stb/blob/master/docs/stb_howto.txt // // As we have not #define'd WUFFS_IMPLEMENTATION, the #include here is // including a header file, even though that file name ends in ".c". #include "wuffs-v0.2.c" #if WUFFS_VERSION_BUILD_METADATA_COMMIT_COUNT < 1556 #error "Wuffs version is too old. Upgrade to the latest version." #endif #define SK_WUFFS_CODEC_BUFFER_SIZE 4096 static bool fill_buffer(wuffs_base__io_buffer* b, SkStream* s) { b->compact(); size_t num_read = s->read(b->data.ptr + b->meta.wi, b->data.len - b->meta.wi); b->meta.wi += num_read; b->meta.closed = s->isAtEnd(); return num_read > 0; } static bool seek_buffer(wuffs_base__io_buffer* b, SkStream* s, uint64_t pos) { // Try to re-position the io_buffer's meta.ri read-index first, which is // cheaper than seeking in the backing SkStream. if ((pos >= b->meta.pos) && (pos - b->meta.pos <= b->meta.wi)) { b->meta.ri = pos - b->meta.pos; return true; } // Seek in the backing SkStream. if ((pos > SIZE_MAX) || (!s->seek(pos))) { return false; } b->meta.wi = 0; b->meta.ri = 0; b->meta.pos = pos; b->meta.closed = false; return true; } static SkEncodedInfo::Alpha wuffs_blend_to_skia_alpha(wuffs_base__animation_blend w) { return (w == WUFFS_BASE__ANIMATION_BLEND__OPAQUE) ? SkEncodedInfo::kOpaque_Alpha : SkEncodedInfo::kUnpremul_Alpha; } static SkCodecAnimation::Blend wuffs_blend_to_skia_blend(wuffs_base__animation_blend w) { return (w == WUFFS_BASE__ANIMATION_BLEND__SRC) ? SkCodecAnimation::Blend::kBG : SkCodecAnimation::Blend::kPriorFrame; } static SkCodecAnimation::DisposalMethod wuffs_disposal_to_skia_disposal( wuffs_base__animation_disposal w) { switch (w) { case WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_BACKGROUND: return SkCodecAnimation::DisposalMethod::kRestoreBGColor; case WUFFS_BASE__ANIMATION_DISPOSAL__RESTORE_PREVIOUS: return SkCodecAnimation::DisposalMethod::kRestorePrevious; default: return SkCodecAnimation::DisposalMethod::kKeep; } } // -------------------------------- Class definitions class SkWuffsCodec; class SkWuffsFrame final : public SkFrame { public: SkWuffsFrame(wuffs_base__frame_config* fc); SkCodec::FrameInfo frameInfo(bool fullyReceived) const; uint64_t ioPosition() const; // SkFrame overrides. SkEncodedInfo::Alpha onReportedAlpha() const override; private: uint64_t fIOPosition; SkEncodedInfo::Alpha fReportedAlpha; typedef SkFrame INHERITED; }; // SkWuffsFrameHolder is a trivial indirector that forwards its calls onto a // SkWuffsCodec. It is a separate class as SkWuffsCodec would otherwise // inherit from both SkCodec and SkFrameHolder, and Skia style discourages // multiple inheritance (e.g. with its "typedef Foo INHERITED" convention). class SkWuffsFrameHolder final : public SkFrameHolder { public: SkWuffsFrameHolder() : INHERITED() {} void init(SkWuffsCodec* codec, int width, int height); // SkFrameHolder overrides. const SkFrame* onGetFrame(int i) const override; private: const SkWuffsCodec* fCodec; typedef SkFrameHolder INHERITED; }; // SkWuffsSpySampler is a placeholder SkSampler implementation. The Skia API // expects to manipulate the codec's sampler (i.e. call setSampleX and // setSampleY) in between the startIncrementalDecode (SID) and // incrementalDecode (ID) calls. But creating the SkSwizzler (the real sampler) // requires knowing the destination buffer's dimensions, i.e. the animation // frame's width and height. That width and height are decoded in ID, not SID. // // To break that circle, the SkWuffsSpySampler always exists, so its methods // can be called between SID and ID. It doesn't actually do any sampling, it // merely records the arguments given to setSampleX (explicitly) and setSampleY // (implicitly, via the superclass' implementation). Inside ID, those recorded // arguments are forwarded on to the SkSwizzler (the real sampler) when that // SkSwizzler is created, after the frame width and height are known. // // Roughly speaking, the SkWuffsSpySampler is an eager proxy for the lazily // constructed real sampler. But that laziness is out of necessity. // // The "Spy" name is because it records its arguments. See // https://martinfowler.com/articles/mocksArentStubs.html#TheDifferenceBetweenMocksAndStubs class SkWuffsSpySampler final : public SkSampler { public: SkWuffsSpySampler(int imageWidth) : INHERITED(), fFillWidth(0), fImageWidth(imageWidth), fSampleX(1) {} void reset(); int sampleX() const; int fFillWidth; private: // SkSampler overrides. int fillWidth() const override; int onSetSampleX(int sampleX) override; const int fImageWidth; int fSampleX; typedef SkSampler INHERITED; }; class SkWuffsCodec final : public SkCodec { public: SkWuffsCodec(SkEncodedInfo&& encodedInfo, std::unique_ptr stream, std::unique_ptr dec, std::unique_ptr pixbuf_ptr, std::unique_ptr workbuf_ptr, size_t workbuf_len, wuffs_base__image_config imgcfg, wuffs_base__pixel_buffer pixbuf, wuffs_base__io_buffer iobuf); const SkWuffsFrame* frame(int i) const; private: // SkCodec overrides. SkEncodedImageFormat onGetEncodedFormat() const override; Result onGetPixels(const SkImageInfo&, void*, size_t, const Options&, int*) override; const SkFrameHolder* getFrameHolder() const override; Result onStartIncrementalDecode(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, const SkCodec::Options& options) override; Result onIncrementalDecode(int* rowsDecoded) override; int onGetFrameCount() override; bool onGetFrameInfo(int, FrameInfo*) const override; int onGetRepetitionCount() override; SkSampler* getSampler(bool createIfNecessary) override; bool conversionSupported(const SkImageInfo& dst, bool, bool) override; void readFrames(); Result seekFrame(int frameIndex); Result resetDecoder(); const char* decodeFrameConfig(); const char* decodeFrame(); void updateNumFullyReceivedFrames(); SkWuffsSpySampler fSpySampler; SkWuffsFrameHolder fFrameHolder; std::unique_ptr fStream; std::unique_ptr fDecoder; std::unique_ptr fPixbufPtr; std::unique_ptr fWorkbufPtr; size_t fWorkbufLen; const uint64_t fFirstFrameIOPosition; wuffs_base__frame_config fFrameConfig; wuffs_base__pixel_buffer fPixelBuffer; wuffs_base__io_buffer fIOBuffer; // Incremental decoding state. uint8_t* fIncrDecDst; size_t fIncrDecRowBytes; std::unique_ptr fSwizzler; SkPMColor fColorTable[256]; bool fColorTableFilled; uint64_t fNumFullyReceivedFrames; std::vector fFrames; bool fFramesComplete; // If calling an fDecoder method returns an incomplete status, then // fDecoder is suspended in a coroutine (i.e. waiting on I/O or halted on a // non-recoverable error). To keep its internal proof-of-safety invariants // consistent, there's only two things you can safely do with a suspended // Wuffs object: resume the coroutine, or reset all state (memset to zero // and start again). // // If fDecoderIsSuspended, and we aren't sure that we're going to resume // the coroutine, then we will need to call this->resetDecoder before // calling other fDecoder methods. bool fDecoderIsSuspended; uint8_t fBuffer[SK_WUFFS_CODEC_BUFFER_SIZE]; typedef SkCodec INHERITED; }; // -------------------------------- SkWuffsFrame implementation SkWuffsFrame::SkWuffsFrame(wuffs_base__frame_config* fc) : INHERITED(fc->index()), fIOPosition(fc->io_position()), fReportedAlpha(wuffs_blend_to_skia_alpha(fc->blend())) { wuffs_base__rect_ie_u32 r = fc->bounds(); this->setXYWH(r.min_incl_x, r.min_incl_y, r.width(), r.height()); this->setDisposalMethod(wuffs_disposal_to_skia_disposal(fc->disposal())); this->setDuration(fc->duration() / WUFFS_BASE__FLICKS_PER_MILLISECOND); this->setBlend(wuffs_blend_to_skia_blend(fc->blend())); } SkCodec::FrameInfo SkWuffsFrame::frameInfo(bool fullyReceived) const { return ((SkCodec::FrameInfo){ .fRequiredFrame = getRequiredFrame(), .fDuration = getDuration(), .fFullyReceived = fullyReceived, .fAlphaType = hasAlpha() ? kUnpremul_SkAlphaType : kOpaque_SkAlphaType, .fDisposalMethod = getDisposalMethod(), }); } uint64_t SkWuffsFrame::ioPosition() const { return fIOPosition; } SkEncodedInfo::Alpha SkWuffsFrame::onReportedAlpha() const { return fReportedAlpha; } // -------------------------------- SkWuffsFrameHolder implementation void SkWuffsFrameHolder::init(SkWuffsCodec* codec, int width, int height) { fCodec = codec; // Initialize SkFrameHolder's (the superclass) fields. fScreenWidth = width; fScreenHeight = height; } const SkFrame* SkWuffsFrameHolder::onGetFrame(int i) const { return fCodec->frame(i); }; // -------------------------------- SkWuffsSpySampler implementation void SkWuffsSpySampler::reset() { fFillWidth = 0; fSampleX = 1; this->setSampleY(1); } int SkWuffsSpySampler::sampleX() const { return fSampleX; } int SkWuffsSpySampler::fillWidth() const { return fFillWidth; } int SkWuffsSpySampler::onSetSampleX(int sampleX) { fSampleX = sampleX; return get_scaled_dimension(fImageWidth, sampleX); } // -------------------------------- SkWuffsCodec implementation SkWuffsCodec::SkWuffsCodec(SkEncodedInfo&& encodedInfo, std::unique_ptr stream, std::unique_ptr dec, std::unique_ptr pixbuf_ptr, std::unique_ptr workbuf_ptr, size_t workbuf_len, wuffs_base__image_config imgcfg, wuffs_base__pixel_buffer pixbuf, wuffs_base__io_buffer iobuf) : INHERITED(std::move(encodedInfo), skcms_PixelFormat_RGBA_8888, // Pass a nullptr SkStream to the SkCodec constructor. We // manage the stream ourselves, as the default SkCodec behavior // is too trigger-happy on rewinding the stream. nullptr), fSpySampler(imgcfg.pixcfg.width()), fFrameHolder(), fStream(std::move(stream)), fDecoder(std::move(dec)), fPixbufPtr(std::move(pixbuf_ptr)), fWorkbufPtr(std::move(workbuf_ptr)), fWorkbufLen(workbuf_len), fFirstFrameIOPosition(imgcfg.first_frame_io_position()), fFrameConfig((wuffs_base__frame_config){}), fPixelBuffer(pixbuf), fIOBuffer((wuffs_base__io_buffer){}), fIncrDecDst(nullptr), fIncrDecRowBytes(0), fSwizzler(nullptr), fColorTableFilled(false), fNumFullyReceivedFrames(0), fFramesComplete(false), fDecoderIsSuspended(false) { fFrameHolder.init(this, imgcfg.pixcfg.width(), imgcfg.pixcfg.height()); sk_memset32(fColorTable, 0, SK_ARRAY_COUNT(fColorTable)); // Initialize fIOBuffer's fields, copying any outstanding data from iobuf to // fIOBuffer, as iobuf's backing array may not be valid for the lifetime of // this SkWuffsCodec object, but fIOBuffer's backing array (fBuffer) is. SkASSERT(iobuf.data.len == SK_WUFFS_CODEC_BUFFER_SIZE); memmove(fBuffer, iobuf.data.ptr, iobuf.meta.wi); fIOBuffer = ((wuffs_base__io_buffer){ .data = ((wuffs_base__slice_u8){ .ptr = fBuffer, .len = SK_WUFFS_CODEC_BUFFER_SIZE, }), .meta = iobuf.meta, }); } const SkWuffsFrame* SkWuffsCodec::frame(int i) const { if ((0 <= i) && (static_cast(i) < fFrames.size())) { return &fFrames[i]; } return nullptr; } SkEncodedImageFormat SkWuffsCodec::onGetEncodedFormat() const { return SkEncodedImageFormat::kGIF; } SkCodec::Result SkWuffsCodec::onGetPixels(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, const Options& options, int* rowsDecoded) { SkCodec::Result result = this->onStartIncrementalDecode(dstInfo, dst, rowBytes, options); if (result != kSuccess) { return result; } return this->onIncrementalDecode(rowsDecoded); } const SkFrameHolder* SkWuffsCodec::getFrameHolder() const { return &fFrameHolder; } SkCodec::Result SkWuffsCodec::onStartIncrementalDecode(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, const SkCodec::Options& options) { if (options.fSubset) { return SkCodec::kUnimplemented; } SkCodec::Result result = this->seekFrame(options.fFrameIndex); if (result != SkCodec::kSuccess) { return result; } fSpySampler.reset(); fSwizzler = nullptr; fColorTableFilled = false; const char* status = this->decodeFrameConfig(); if (status == nullptr) { fIncrDecDst = static_cast(dst); fIncrDecRowBytes = rowBytes; return SkCodec::kSuccess; } else if (status == wuffs_base__suspension__short_read) { return SkCodec::kIncompleteInput; } else { SkCodecPrintf("decodeFrameConfig: %s", status); return SkCodec::kErrorInInput; } } static bool independent_frame(SkCodec* codec, int frameIndex) { if (frameIndex == 0) { return true; } SkCodec::FrameInfo frameInfo; SkAssertResult(codec->getFrameInfo(frameIndex, &frameInfo)); return frameInfo.fRequiredFrame == SkCodec::kNoFrame; } static void blend(uint32_t* dst, const uint32_t* src, int width) { while (width --> 0) { if (*src != 0) { *dst = *src; } src++; dst++; } } SkCodec::Result SkWuffsCodec::onIncrementalDecode(int* rowsDecoded) { if (!fIncrDecDst) { return SkCodec::kInternalError; } // In Wuffs, a paletted image is always 1 byte per pixel. static constexpr size_t src_bpp = 1; wuffs_base__table_u8 pixels = fPixelBuffer.plane(0); int scaledHeight = dstInfo().height(); const bool independent = independent_frame(this, options().fFrameIndex); wuffs_base__rect_ie_u32 frame_rect = fFrameConfig.bounds(); if (!fSwizzler) { auto bounds = SkIRect::MakeLTRB(frame_rect.min_incl_x, frame_rect.min_incl_y, frame_rect.max_excl_x, frame_rect.max_excl_y); fSwizzler = SkSwizzler::Make(this->getEncodedInfo(), fColorTable, dstInfo(), this->options(), &bounds); fSwizzler->setSampleX(fSpySampler.sampleX()); fSwizzler->setSampleY(fSpySampler.sampleY()); scaledHeight = get_scaled_dimension(dstInfo().height(), fSpySampler.sampleY()); // Zero-initialize wuffs' buffer covering the frame rect. This will later be used to // determine how we write to the output, even if the image was incomplete. This ensures // that we do not swizzle uninitialized memory. for (uint32_t y = frame_rect.min_incl_y; y < frame_rect.max_excl_y; y++) { uint8_t* s = pixels.ptr + (y * pixels.stride) + (frame_rect.min_incl_x * src_bpp); sk_bzero(s, frame_rect.width() * src_bpp); } // If the frame rect does not fill the output, ensure that those pixels are not // left uninitialized either. if (independent && bounds != this->bounds()) { auto fillInfo = dstInfo().makeWH(fSwizzler->fillWidth(), scaledHeight); SkSampler::Fill(fillInfo, fIncrDecDst, fIncrDecRowBytes, options().fZeroInitialized); } } // The semantics of *rowsDecoded is: say you have a 10 pixel high image // (both the frame and the image). If you only decoded the first 3 rows, // set this to 3, and then SkCodec (or the caller of incrementalDecode) // would zero-initialize the remaining 7 (unless the memory was already // zero-initialized). // // Now let's say that the image is still 10 pixels high, but the frame is // from row 5 to 9. If you only decoded 3 rows, but you initialized the // first 5, you could return 8, and the caller would zero-initialize the // final 2. For GIF (where a frame can be smaller than the image and can be // interlaced), we just zero-initialize all 10 rows ahead of time and // return the height of the image, so the caller knows it doesn't need to // do anything. // // Similarly, if the output is scaled, we zero-initialized all // |scaledHeight| rows (the scaled image height), so we inform the caller // that it doesn't need to do anything. if (rowsDecoded) { *rowsDecoded = scaledHeight; } SkCodec::Result result = SkCodec::kSuccess; const char* status = this->decodeFrame(); if (status != nullptr) { if (status == wuffs_base__suspension__short_read) { result = SkCodec::kIncompleteInput; } else { SkCodecPrintf("decodeFrame: %s", status); result = SkCodec::kErrorInInput; } if (!independent) { // For a dependent frame, we cannot blend the partial result, since // that will overwrite the contribution from prior frames with all // zeroes that were written to |pixels| above. return result; } } // If the frame's dirty rect is empty, no need to swizzle. wuffs_base__rect_ie_u32 dirty_rect = fDecoder->frame_dirty_rect(); if (!dirty_rect.is_empty()) { if (!fColorTableFilled) { fColorTableFilled = true; wuffs_base__slice_u8 palette = fPixelBuffer.palette(); SkASSERT(palette.len == 4 * 256); auto proc = choose_pack_color_proc(false, dstInfo().colorType()); for (int i = 0; i < 256; i++) { uint8_t* p = palette.ptr + 4 * i; fColorTable[i] = proc(p[3], p[2], p[1], p[0]); } } std::unique_ptr tmpBuffer; if (!independent) { tmpBuffer.reset(new uint8_t[dstInfo().minRowBytes()]); } const int sampleY = fSwizzler->sampleY(); for (uint32_t y = dirty_rect.min_incl_y; y < dirty_rect.max_excl_y; y++) { int dstY = y; if (sampleY != 1) { if (!fSwizzler->rowNeeded(y)) { continue; } dstY /= sampleY; if (dstY >= scaledHeight) { break; } } // We don't adjust d by (frame_rect.min_incl_x * dst_bpp) as we // have already accounted for that in swizzleRect, above. uint8_t* d = fIncrDecDst + (dstY * fIncrDecRowBytes); // The Wuffs model is that the dst buffer is the image, not the frame. // The expectation is that you allocate the buffer once, but re-use it // for the N frames, regardless of each frame's top-left co-ordinate. // // To get from the start (in the X-direction) of the image to the start // of the frame, we adjust s by (frame_rect.min_incl_x * src_bpp). // // We adjust (in the X-direction) by the frame rect, not the dirty // rect, because the swizzler (which operates on rows) was // configured with the frame rect's X range. uint8_t* s = pixels.ptr + (y * pixels.stride) + (frame_rect.min_incl_x * src_bpp); if (independent) { fSwizzler->swizzle(d, s); } else { SkASSERT(tmpBuffer.get()); fSwizzler->swizzle(tmpBuffer.get(), s); d = SkTAddOffset(d, fSwizzler->swizzleOffsetBytes()); const auto* swizzled = SkTAddOffset(tmpBuffer.get(), fSwizzler->swizzleOffsetBytes()); blend(reinterpret_cast(d), swizzled, fSwizzler->swizzleWidth()); } } } if (result == SkCodec::kSuccess) { fSpySampler.reset(); fIncrDecDst = nullptr; fIncrDecRowBytes = 0; fSwizzler = nullptr; fColorTableFilled = false; } else { // Make fSpySampler return whatever fSwizzler would have for fillWidth. fSpySampler.fFillWidth = fSwizzler->fillWidth(); } return result; } int SkWuffsCodec::onGetFrameCount() { if (!fFramesComplete) { this->readFrames(); this->updateNumFullyReceivedFrames(); } return fFrames.size(); } bool SkWuffsCodec::onGetFrameInfo(int i, SkCodec::FrameInfo* frameInfo) const { const SkWuffsFrame* f = this->frame(i); if (!f) { return false; } if (frameInfo) { *frameInfo = f->frameInfo(static_cast(i) < this->fNumFullyReceivedFrames); } return true; } int SkWuffsCodec::onGetRepetitionCount() { // Convert from Wuffs's loop count to Skia's repeat count. Wuffs' uint32_t // number is how many times to play the loop. Skia's int number is how many // times to play the loop *after the first play*. Wuffs and Skia use 0 and // kRepetitionCountInfinite respectively to mean loop forever. uint32_t n = fDecoder->num_animation_loops(); if (n == 0) { return SkCodec::kRepetitionCountInfinite; } n--; return n < INT_MAX ? n : INT_MAX; } SkSampler* SkWuffsCodec::getSampler(bool createIfNecessary) { // fIncrDst being non-nullptr means that we are between an // onStartIncrementalDecode call and the matching final (successful) // onIncrementalDecode call. if (createIfNecessary || fIncrDecDst) { return &fSpySampler; } return nullptr; } bool SkWuffsCodec::conversionSupported(const SkImageInfo& dst, bool srcIsOpaque, bool needsColorXform) { if (!this->INHERITED::conversionSupported(dst, srcIsOpaque, needsColorXform)) { return false; } switch (dst.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: return true; default: // FIXME: Add skcms to support F16 // FIXME: Add support for 565 on the first frame return false; } } void SkWuffsCodec::readFrames() { size_t n = fFrames.size(); int i = n ? n - 1 : 0; if (this->seekFrame(i) != SkCodec::kSuccess) { return; } // Iterate through the frames, converting from Wuffs' // wuffs_base__frame_config type to Skia's SkWuffsFrame type. for (; i < INT_MAX; i++) { const char* status = this->decodeFrameConfig(); if (status == nullptr) { // No-op. } else if (status == wuffs_base__warning__end_of_data) { break; } else { return; } if (static_cast(i) < fFrames.size()) { continue; } fFrames.emplace_back(&fFrameConfig); SkWuffsFrame* f = &fFrames[fFrames.size() - 1]; fFrameHolder.setAlphaAndRequiredFrame(f); } fFramesComplete = true; } SkCodec::Result SkWuffsCodec::seekFrame(int frameIndex) { if (fDecoderIsSuspended) { SkCodec::Result res = this->resetDecoder(); if (res != SkCodec::kSuccess) { return res; } } uint64_t pos = 0; if (frameIndex < 0) { return SkCodec::kInternalError; } else if (frameIndex == 0) { pos = fFirstFrameIOPosition; } else if (static_cast(frameIndex) < fFrames.size()) { pos = fFrames[frameIndex].ioPosition(); } else { return SkCodec::kInternalError; } if (!seek_buffer(&fIOBuffer, fStream.get(), pos)) { return SkCodec::kInternalError; } const char* status = fDecoder->restart_frame(frameIndex, fIOBuffer.reader_io_position()); if (status != nullptr) { return SkCodec::kInternalError; } return SkCodec::kSuccess; } // An overview of the Wuffs decoding API: // // An animated image (such as GIF) has an image header and then N frames. The // image header gives e.g. the overall image's width and height. Each frame // consists of a frame header (e.g. frame rectangle bounds, display duration) // and a payload (the pixels). // // In Wuffs terminology, there is one image config and then N pairs of // (frame_config, frame). To decode everything (without knowing N in advance) // sequentially: // - call wuffs_gif__decoder::decode_image_config // - while (true) { // - call wuffs_gif__decoder::decode_frame_config // - if that returned wuffs_base__warning__end_of_data, break // - call wuffs_gif__decoder::decode_frame // - } // // The first argument to each decode_foo method is the destination struct to // store the decoded information. // // For random (instead of sequential) access to an image's frames, call // wuffs_gif__decoder::restart_frame to prepare to decode the i'th frame. // Essentially, it restores the state to be at the top of the while loop above. // The wuffs_base__io_buffer's reader position will also need to be set at the // right point in the source data stream. The position for the i'th frame is // calculated by the i'th decode_frame_config call. You can only call // restart_frame after decode_image_config is called, explicitly or implicitly // (see below), as decoding a single frame might require for-all-frames // information like the overall image dimensions and the global palette. // // All of those decode_xxx calls are optional. For example, if // decode_image_config is not called, then the first decode_frame_config call // will implicitly parse and verify the image header, before parsing the first // frame's header. Similarly, you can call only decode_frame N times, without // calling decode_image_config or decode_frame_config, if you already know // metadata like N and each frame's rectangle bounds by some other means (e.g. // this is a first party, statically known image). // // Specifically, starting with an unknown (but re-windable) GIF image, if you // want to just find N (i.e. count the number of frames), you can loop calling // only the decode_frame_config method and avoid calling the more expensive // decode_frame method. In terms of the underlying GIF image format, this will // skip over the LZW-encoded pixel data, avoiding the costly LZW decompression. // // Those decode_xxx methods are also suspendible. They will return early (with // a status code that is_suspendible and therefore isn't is_complete) if there // isn't enough source data to complete the operation: an incremental decode. // Calling decode_xxx again with additional source data will resume the // previous operation, instead of starting a new operation. Calling decode_yyy // whilst decode_xxx is suspended will result in an error. // // Once an error is encountered, whether from invalid source data or from a // programming error such as calling decode_yyy while suspended in decode_xxx, // all subsequent calls will be no-ops that return an error. To reset the // decoder into something that does productive work, memset the entire struct // to zero, check the Wuffs version and then, in order to be able to call // restart_frame, call decode_image_config. The io_buffer and its associated // stream will also need to be rewound. static SkCodec::Result reset_and_decode_image_config(wuffs_gif__decoder* decoder, wuffs_base__image_config* imgcfg, wuffs_base__io_buffer* b, SkStream* s) { memset(decoder, 0, sizeof__wuffs_gif__decoder()); const char* status = decoder->check_wuffs_version(sizeof__wuffs_gif__decoder(), WUFFS_VERSION); if (status != nullptr) { SkCodecPrintf("check_wuffs_version: %s", status); return SkCodec::kInternalError; } while (true) { status = decoder->decode_image_config(imgcfg, b->reader()); if (status == nullptr) { return SkCodec::kSuccess; } else if (status != wuffs_base__suspension__short_read) { SkCodecPrintf("decode_image_config: %s", status); return SkCodec::kErrorInInput; } else if (!fill_buffer(b, s)) { return SkCodec::kIncompleteInput; } } } SkCodec::Result SkWuffsCodec::resetDecoder() { if (!fStream->rewind()) { return SkCodec::kInternalError; } fIOBuffer.meta = ((wuffs_base__io_buffer_meta){}); SkCodec::Result result = reset_and_decode_image_config(fDecoder.get(), nullptr, &fIOBuffer, fStream.get()); if (result == SkCodec::kIncompleteInput) { return SkCodec::kInternalError; } else if (result != SkCodec::kSuccess) { return result; } fDecoderIsSuspended = false; return SkCodec::kSuccess; } const char* SkWuffsCodec::decodeFrameConfig() { while (true) { const char* status = fDecoder->decode_frame_config(&fFrameConfig, fIOBuffer.reader()); if ((status == wuffs_base__suspension__short_read) && fill_buffer(&fIOBuffer, fStream.get())) { continue; } fDecoderIsSuspended = !wuffs_base__status__is_complete(status); this->updateNumFullyReceivedFrames(); return status; } } const char* SkWuffsCodec::decodeFrame() { while (true) { const char* status = fDecoder->decode_frame(&fPixelBuffer, fIOBuffer.reader(), ((wuffs_base__slice_u8){ .ptr = fWorkbufPtr.get(), .len = fWorkbufLen, }), NULL); if ((status == wuffs_base__suspension__short_read) && fill_buffer(&fIOBuffer, fStream.get())) { continue; } fDecoderIsSuspended = !wuffs_base__status__is_complete(status); this->updateNumFullyReceivedFrames(); return status; } } void SkWuffsCodec::updateNumFullyReceivedFrames() { // num_decoded_frames's return value, n, can change over time, both up and // down, as we seek back and forth in the underlying stream. // fNumFullyReceivedFrames is the highest n we've seen. uint64_t n = fDecoder->num_decoded_frames(); if (fNumFullyReceivedFrames < n) { fNumFullyReceivedFrames = n; } } // -------------------------------- SkWuffsCodec.h functions bool SkWuffsCodec_IsFormat(const void* buf, size_t bytesRead) { constexpr const char* gif_ptr = "GIF8"; constexpr size_t gif_len = 4; return (bytesRead >= gif_len) && (memcmp(buf, gif_ptr, gif_len) == 0); } std::unique_ptr SkWuffsCodec_MakeFromStream(std::unique_ptr stream, SkCodec::Result* result) { uint8_t buffer[SK_WUFFS_CODEC_BUFFER_SIZE]; wuffs_base__io_buffer iobuf = ((wuffs_base__io_buffer){ .data = ((wuffs_base__slice_u8){ .ptr = buffer, .len = SK_WUFFS_CODEC_BUFFER_SIZE, }), .meta = ((wuffs_base__io_buffer_meta){}), }); wuffs_base__image_config imgcfg = ((wuffs_base__image_config){}); // Wuffs is primarily a C library, not a C++ one. Furthermore, outside of // the wuffs_base__etc types, the sizeof a file format specific type like // GIF's wuffs_gif__decoder can vary between Wuffs versions. If p is of // type wuffs_gif__decoder*, then the supported API treats p as a pointer // to an opaque type: a private implementation detail. The API is always // "set_foo(p, etc)" and not "p->foo = etc". // // See https://en.wikipedia.org/wiki/Opaque_pointer#C // // Thus, we don't use C++'s new operator (which requires knowing the sizeof // the struct at compile time). Instead, we use sk_malloc_canfail, with // sizeof__wuffs_gif__decoder returning the appropriate value for the // (statically or dynamically) linked version of the Wuffs library. // // As a C (not C++) library, none of the Wuffs types have constructors or // destructors. // // In RAII style, we can still use std::unique_ptr with these pointers, but // we pair the pointer with sk_free instead of C++'s delete. void* decoder_raw = sk_malloc_canfail(sizeof__wuffs_gif__decoder()); if (!decoder_raw) { *result = SkCodec::kInternalError; return nullptr; } std::unique_ptr decoder( reinterpret_cast(decoder_raw), &sk_free); SkCodec::Result reset_result = reset_and_decode_image_config(decoder.get(), &imgcfg, &iobuf, stream.get()); if (reset_result != SkCodec::kSuccess) { *result = reset_result; return nullptr; } uint32_t width = imgcfg.pixcfg.width(); uint32_t height = imgcfg.pixcfg.height(); if ((width == 0) || (width > INT_MAX) || (height == 0) || (height > INT_MAX)) { *result = SkCodec::kInvalidInput; return nullptr; } uint64_t workbuf_len = decoder->workbuf_len().max_incl; void* workbuf_ptr_raw = nullptr; if (workbuf_len) { workbuf_ptr_raw = workbuf_len <= SIZE_MAX ? sk_malloc_canfail(workbuf_len) : nullptr; if (!workbuf_ptr_raw) { *result = SkCodec::kInternalError; return nullptr; } } std::unique_ptr workbuf_ptr( reinterpret_cast(workbuf_ptr_raw), &sk_free); uint64_t pixbuf_len = imgcfg.pixcfg.pixbuf_len(); void* pixbuf_ptr_raw = pixbuf_len <= SIZE_MAX ? sk_malloc_canfail(pixbuf_len) : nullptr; if (!pixbuf_ptr_raw) { *result = SkCodec::kInternalError; return nullptr; } std::unique_ptr pixbuf_ptr( reinterpret_cast(pixbuf_ptr_raw), &sk_free); wuffs_base__pixel_buffer pixbuf = ((wuffs_base__pixel_buffer){}); const char* status = pixbuf.set_from_slice(&imgcfg.pixcfg, ((wuffs_base__slice_u8){ .ptr = pixbuf_ptr.get(), .len = pixbuf_len, })); if (status != nullptr) { SkCodecPrintf("set_from_slice: %s", status); *result = SkCodec::kInternalError; return nullptr; } // In Skia's API, the alpha we calculate here and return is only for the // first frame. SkEncodedInfo::Alpha alpha = imgcfg.first_frame_is_opaque() ? SkEncodedInfo::kOpaque_Alpha : SkEncodedInfo::kBinary_Alpha; SkEncodedInfo encodedInfo = SkEncodedInfo::Make(width, height, SkEncodedInfo::kPalette_Color, alpha, 8); *result = SkCodec::kSuccess; return std::unique_ptr(new SkWuffsCodec( std::move(encodedInfo), std::move(stream), std::move(decoder), std::move(pixbuf_ptr), std::move(workbuf_ptr), workbuf_len, imgcfg, pixbuf, iobuf)); }