aboutsummaryrefslogtreecommitdiff
path: root/samplecode/SampleCusp.cpp
blob: 7eb85f18ef806d98e12ad3e1ec98ae570a04672d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright 2018 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "Sample.h"
#include "SkAnimTimer.h"
#include "SkCanvas.h"
#include "SkGeometry.h"
#include "SkPath.h"
#include <string>

// This draws an animation where every cubic has a cusp, to test drawing a circle
// at the cusp point. Create a unit square. A cubic with its control points
// at the four corners crossing over itself has a cusp.

// Project the unit square through a random affine matrix.
// Chop the cubic in two. One half of the cubic will have a cusp
// (unless it was chopped exactly at the cusp point).

// Running this looks mostly OK, but will occasionally draw something odd.
// The odd parts don't appear related to the cusp code, but are old stroking
// bugs that have not been fixed, yet.

SkMSec start = 0;
SkMSec curTime;
bool first = true;

// Create a path with one or two cubics, where one has a cusp.
static SkPath cusp(const SkPoint P[4], SkPoint PP[7], bool& split, int speed, SkScalar phase) {
    SkPath path;
    path.moveTo(P[0]);
    SkScalar t = (curTime % speed) / SkIntToFloat(speed);
    t += phase;
    if (t > 1) {
        t -= 1;
    }
    if (0 <= t || t >= 1) {
        path.cubicTo(P[1], P[2], P[3]);
        split = false;
    } else {
        SkChopCubicAt(P, PP, t);
        path.cubicTo(PP[1], PP[2], PP[3]);
        path.cubicTo(PP[4], PP[5], PP[6]);
        split = true;
    }
    return path;
}

// Scale the animation counter to a value that oscillates from -scale to +scale.
static SkScalar linearToLoop(int speed, SkScalar phase, SkScalar scale) {
    SkScalar loop;
    SkScalar linear = (curTime % speed) / SkIntToFloat(speed);  // 0 to 1
    linear += phase;
    if (linear > 1) {
        linear -= 1;
    }
    if (linear < .25) {
        loop = linear * 4;     //  0 to .25  ==> 0 to  1
    } else if (linear < .75) { // .25 to .75 ==> 1 to -1
        loop = (.5 - linear) * 4;
    } else  {                  // .75 to 1   ==> -1 to 0
        loop = (linear - 1) * 4;
    }
    return loop * scale;
}

struct data {
    SkIPoint pt[4];
} dat[] = {
// When the animation looks funny, pause, and paste the last part of the stream in stdout here.
// Enable the 1st #if to play the recorded stream backwards.
// Enable the 2nd #if and replace the second 'i = ##' with the value of datCount that shows the bug.
{{{0x43480000,0x43960000},{0x4318b999,0x4321570b},{0x432f999a,0x435a0a3d},{0x43311fff,0x43734cce},}},
{{{0x43480000,0x43960000},{0x431d1ddf,0x4321ae13},{0x4331ddde,0x435c147c},{0x43334001,0x43719997},}},
{{{0x43480000,0x43960000},{0x43218224,0x43220520},{0x43342223,0x435e1eba},{0x43356001,0x436fe666},}},
{{{0x43480000,0x43960000},{0x4325a445,0x43225708},{0x43364444,0x43600a3c},{0x43376001,0x436e4ccc},}},
{{{0x43480000,0x43960000},{0x432a0889,0x4322ae16},{0x43388889,0x4362147b},{0x43398000,0x436c999b},}},
{{{0x43480000,0x43960000},{0x432e6ccd,0x43230523},{0x433acccd,0x43641eba},{0x433ba000,0x436ae66a},}},
{{{0x43480000,0x43960000},{0x43328eef,0x4323570c},{0x433ceeee,0x43660a3c},{0x433da000,0x43694cd0},}},
{{{0x43480000,0x43960000},{0x4336f333,0x4323ae13},{0x433f3333,0x4368147a},{0x433fc000,0x43679998},}},
{{{0x43480000,0x43960000},{0x433b5777,0x43240520},{0x43417777,0x436a1eb9},{0x4341e000,0x4365e668},}},
{{{0x43480000,0x43960000},{0x433f799a,0x4324570c},{0x4343999a,0x436c0a3e},{0x4343e000,0x43644cce},}},
{{{0x43480000,0x43960000},{0x4343ddde,0x4324ae13},{0x4345dddf,0x436e147c},{0x43460000,0x43629996},}},
{{{0x43480000,0x43960000},{0x43484222,0x4325051e},{0x43482222,0x43701eb9},{0x43481fff,0x4360e666},}},
{{{0x43480000,0x43960000},{0x434c6446,0x43255709},{0x434a4444,0x43720a3e},{0x434a2002,0x435f4ccc},}},
{{{0x43480000,0x43960000},{0x4350c888,0x4325ae16},{0x434c8889,0x4374147c},{0x434c3fff,0x435d999a},}},
{{{0x43480000,0x43960000},{0x43552cce,0x43260521},{0x434ecccd,0x43761eb8},{0x434e6001,0x435be669},}},
{{{0x43480000,0x43960000},{0x43594eee,0x4326570c},{0x4350eeef,0x43780a3d},{0x43505fff,0x435a4ccf},}},
{{{0x43480000,0x43960000},{0x435db334,0x4326ae19},{0x43533333,0x437a147c},{0x43528001,0x4358999e},}},
{{{0x43480000,0x43960000},{0x4361d555,0x43270002},{0x43555555,0x437bfffe},{0x43547fff,0x43570004},}},
{{{0x43480000,0x43960000},{0x4366399a,0x4327570c},{0x4357999a,0x437e0a3f},{0x4356a001,0x43554ccd},}},
{{{0x43480000,0x43960000},{0x436a9ddc,0x4327ae12},{0x4359ddde,0x43800a3e},{0x4358bffe,0x43539996},}},
{{{0x43480000,0x43960000},{0x436f0222,0x4328051c},{0x435c2222,0x43810f5c},{0x435ae000,0x4351e664},}},
};

size_t datCount = SK_ARRAY_COUNT(dat);

class CuspView : public Sample {
public:
    CuspView() {}
protected:
    bool onQuery(Sample::Event* evt) override {
        if (Sample::TitleQ(*evt)) {
            Sample::TitleR(evt, "Cusp");
            return true;
        }
        return this->INHERITED::onQuery(evt);
    }

    void onDrawContent(SkCanvas* canvas) override {
        SkPaint p;
        p.setAntiAlias(true);
        p.setStyle(SkPaint::kStroke_Style);
        p.setStrokeWidth(20);
    #if 0   // enable to play through the stream above backwards.
        SkPath path;
        int i;
    #if 0  // disable to draw only one problematic cubic
        i = --datCount;
    #else
        i = 14; // index into dat of  problematic cubic
    #endif
        path.moveTo( SkBits2Float(dat[i].pt[0].fX), SkBits2Float(dat[i].pt[0].fY));
        path.cubicTo(SkBits2Float(dat[i].pt[1].fX), SkBits2Float(dat[i].pt[1].fY),
                     SkBits2Float(dat[i].pt[2].fX), SkBits2Float(dat[i].pt[2].fY),
                     SkBits2Float(dat[i].pt[3].fX), SkBits2Float(dat[i].pt[3].fY));
    #else
        SkPath path;
        SkRect rect;
        rect.setWH(100, 100);
        SkMatrix matrix;
        SkScalar vals[9];
        vals[0] = linearToLoop(3000, 0, 1);
        vals[1] = linearToLoop(4000, .25, 1.25);
        vals[2] = 200;
        vals[3] = linearToLoop(5000, .5, 1.5);
        vals[4] = linearToLoop(7000, .75, 1.75);
        vals[5] = 300;
        vals[6] = 0;
        vals[7] = 0;
        vals[8] = 1;
        matrix.set9(vals);
        SkPoint pts[4], pp[7];
        matrix.mapRectToQuad(pts, rect);
        std::swap(pts[1], pts[2]);
        bool split;
        path = cusp(pts, pp, split, 8000, .125);
        auto debugOutCubic = [](const SkPoint* pts) {
            return false; // comment out to capture stream of cusp'd cubics in stdout
            SkDebugf("{{");
            for (int i = 0; i < 4; ++i) {
                SkDebugf("{0x%08x,0x%08x},", SkFloat2Bits(pts[i].fX), SkFloat2Bits(pts[i].fY));
            }
            SkDebugf("}},\n");
        };
        if (split) {
            debugOutCubic(&pp[0]);
            debugOutCubic(&pp[4]);
        } else {
            debugOutCubic(&pts[0]);
        }
    #endif
        canvas->drawPath(path, p);
        // draw time to make it easier to guess when the bad cubic was drawn
        std::string timeStr = std::to_string((float) (curTime - start) / 1000.f);
        canvas->drawString(timeStr.c_str(), 20, 20, SkPaint());
        SkDebugf("");
    }

    bool onAnimate(const SkAnimTimer& timer) override {
        curTime = timer.msec();
        if (!start) {
            start = curTime;
        }
        return true;
    }

private:

    typedef Sample INHERITED;
};

DEF_SAMPLE( return new CuspView(); )