aboutsummaryrefslogtreecommitdiff
path: root/src/org/jivesoftware/smack/util/Cache.java
blob: 964ac2382c78728b8567a2c341029e5d46d101a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/**
 * $Revision: 1456 $
 * $Date: 2005-06-01 22:04:54 -0700 (Wed, 01 Jun 2005) $
 *
 * Copyright 2003-2005 Jive Software.
 *
 * All rights reserved. Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.jivesoftware.smack.util;

import org.jivesoftware.smack.util.collections.AbstractMapEntry;

import java.util.*;

/**
 * A specialized Map that is size-limited (using an LRU algorithm) and
 * has an optional expiration time for cache items. The Map is thread-safe.<p>
 *
 * The algorithm for cache is as follows: a HashMap is maintained for fast
 * object lookup. Two linked lists are maintained: one keeps objects in the
 * order they are accessed from cache, the other keeps objects in the order
 * they were originally added to cache. When objects are added to cache, they
 * are first wrapped by a CacheObject which maintains the following pieces
 * of information:<ul>
 * <li> A pointer to the node in the linked list that maintains accessed
 * order for the object. Keeping a reference to the node lets us avoid
 * linear scans of the linked list.
 * <li> A pointer to the node in the linked list that maintains the age
 * of the object in cache. Keeping a reference to the node lets us avoid
 * linear scans of the linked list.</ul>
 * <p/>
 * To get an object from cache, a hash lookup is performed to get a reference
 * to the CacheObject that wraps the real object we are looking for.
 * The object is subsequently moved to the front of the accessed linked list
 * and any necessary cache cleanups are performed. Cache deletion and expiration
 * is performed as needed.
 *
 * @author Matt Tucker
 */
public class Cache<K, V> implements Map<K, V> {

    /**
     * The map the keys and values are stored in.
     */
    protected Map<K, CacheObject<V>> map;

    /**
     * Linked list to maintain order that cache objects are accessed
     * in, most used to least used.
     */
    protected LinkedList lastAccessedList;

    /**
     * Linked list to maintain time that cache objects were initially added
     * to the cache, most recently added to oldest added.
     */
    protected LinkedList ageList;

    /**
     * Maximum number of items the cache will hold.
     */
    protected int maxCacheSize;

    /**
     * Maximum length of time objects can exist in cache before expiring.
     */
    protected long maxLifetime;

    /**
     * Maintain the number of cache hits and misses. A cache hit occurs every
     * time the get method is called and the cache contains the requested
     * object. A cache miss represents the opposite occurence.<p>
     *
     * Keeping track of cache hits and misses lets one measure how efficient
     * the cache is; the higher the percentage of hits, the more efficient.
     */
    protected long cacheHits, cacheMisses = 0L;

    /**
     * Create a new cache and specify the maximum size of for the cache in
     * bytes, and the maximum lifetime of objects.
     *
     * @param maxSize the maximum number of objects the cache will hold. -1
     *      means the cache has no max size.
     * @param maxLifetime the maximum amount of time (in ms) objects can exist in
     *      cache before being deleted. -1 means objects never expire.
     */
    public Cache(int maxSize, long maxLifetime) {
        if (maxSize == 0) {
            throw new IllegalArgumentException("Max cache size cannot be 0.");
        }
        this.maxCacheSize = maxSize;
        this.maxLifetime = maxLifetime;

        // Our primary data structure is a hash map. The default capacity of 11
        // is too small in almost all cases, so we set it bigger.
        map = new HashMap<K, CacheObject<V>>(103);

        lastAccessedList = new LinkedList();
        ageList = new LinkedList();
    }

    public synchronized V put(K key, V value) {
        V oldValue = null;
        // Delete an old entry if it exists.
        if (map.containsKey(key)) {
            oldValue = remove(key, true);
        }

        CacheObject<V> cacheObject = new CacheObject<V>(value);
        map.put(key, cacheObject);
        // Make an entry into the cache order list.
        // Store the cache order list entry so that we can get back to it
        // during later lookups.
        cacheObject.lastAccessedListNode = lastAccessedList.addFirst(key);
        // Add the object to the age list
        LinkedListNode ageNode = ageList.addFirst(key);
        ageNode.timestamp = System.currentTimeMillis();
        cacheObject.ageListNode = ageNode;

        // If cache is too full, remove least used cache entries until it is not too full.
        cullCache();

        return oldValue;
    }

    public synchronized V get(Object key) {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        CacheObject<V> cacheObject = map.get(key);
        if (cacheObject == null) {
            // The object didn't exist in cache, so increment cache misses.
            cacheMisses++;
            return null;
        }
        // Remove the object from it's current place in the cache order list,
        // and re-insert it at the front of the list.
        cacheObject.lastAccessedListNode.remove();
        lastAccessedList.addFirst(cacheObject.lastAccessedListNode);

        // The object exists in cache, so increment cache hits. Also, increment
        // the object's read count.
        cacheHits++;
        cacheObject.readCount++;

        return cacheObject.object;
    }

    public synchronized V remove(Object key) {
        return remove(key, false);
    }

    /*
     * Remove operation with a flag so we can tell coherence if the remove was
     * caused by cache internal processing such as eviction or loading
     */
    public synchronized V remove(Object key, boolean internal) {
        //noinspection SuspiciousMethodCalls
        CacheObject<V> cacheObject =  map.remove(key);
        // If the object is not in cache, stop trying to remove it.
        if (cacheObject == null) {
            return null;
        }
        // Remove from the cache order list
        cacheObject.lastAccessedListNode.remove();
        cacheObject.ageListNode.remove();
        // Remove references to linked list nodes
        cacheObject.ageListNode = null;
        cacheObject.lastAccessedListNode = null;

        return cacheObject.object;
    }

    public synchronized void clear() {
        Object[] keys = map.keySet().toArray();
        for (Object key : keys) {
            remove(key);
        }

        // Now, reset all containers.
        map.clear();
        lastAccessedList.clear();
        ageList.clear();

        cacheHits = 0;
        cacheMisses = 0;
    }

    public synchronized int size() {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return map.size();
    }

    public synchronized boolean isEmpty() {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return map.isEmpty();
    }

    public synchronized Collection<V> values() {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return Collections.unmodifiableCollection(new AbstractCollection<V>() {
            Collection<CacheObject<V>> values = map.values();
            public Iterator<V> iterator() {
                return new Iterator<V>() {
                    Iterator<CacheObject<V>> it = values.iterator();

                    public boolean hasNext() {
                        return it.hasNext();
                    }

                    public V next() {
                        return it.next().object;
                    }

                    public void remove() {
                        it.remove();
                    }
                };
            }

            public int size() {
                return values.size();
            }
        });
    }

    public synchronized boolean containsKey(Object key) {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return map.containsKey(key);
    }

    public void putAll(Map<? extends K, ? extends V> map) {
        for (Entry<? extends K, ? extends V> entry : map.entrySet()) {
            V value = entry.getValue();
            // If the map is another DefaultCache instance than the
            // entry values will be CacheObject instances that need
            // to be converted to the normal object form.
            if (value instanceof CacheObject) {
                //noinspection unchecked
                value = ((CacheObject<V>) value).object;
            }
            put(entry.getKey(), value);
        }
    }

    public synchronized boolean containsValue(Object value) {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        //noinspection unchecked
        CacheObject<V> cacheObject = new CacheObject<V>((V) value);

        return map.containsValue(cacheObject);
    }

    public synchronized Set<Map.Entry<K, V>> entrySet() {
        // Warning -- this method returns CacheObject instances and not Objects
        // in the same form they were put into cache.

        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return new AbstractSet<Map.Entry<K, V>>() {
            private final Set<Map.Entry<K, CacheObject<V>>> set = map.entrySet();

            public Iterator<Entry<K, V>> iterator() {
                return new Iterator<Entry<K, V>>() {
                    private final Iterator<Entry<K, CacheObject<V>>> it = set.iterator();
                    public boolean hasNext() {
                        return it.hasNext();
                    }

                    public Entry<K, V> next() {
                        Map.Entry<K, CacheObject<V>> entry = it.next();
                        return new AbstractMapEntry<K, V>(entry.getKey(), entry.getValue().object) {
                            @Override
                            public V setValue(V value) {
                                throw new UnsupportedOperationException("Cannot set");
                            }
                        };
                    }

                    public void remove() {
                        it.remove();
                    }
                };

            }

            public int size() {
                return set.size();
            }
        };
    }

    public synchronized Set<K> keySet() {
        // First, clear all entries that have been in cache longer than the
        // maximum defined age.
        deleteExpiredEntries();

        return Collections.unmodifiableSet(map.keySet());
    }

    public long getCacheHits() {
        return cacheHits;
    }

    public long getCacheMisses() {
        return cacheMisses;
    }

    public int getMaxCacheSize() {
        return maxCacheSize;
    }

    public synchronized void setMaxCacheSize(int maxCacheSize) {
        this.maxCacheSize = maxCacheSize;
        // It's possible that the new max size is smaller than our current cache
        // size. If so, we need to delete infrequently used items.
        cullCache();
    }

    public long getMaxLifetime() {
        return maxLifetime;
    }

    public void setMaxLifetime(long maxLifetime) {
        this.maxLifetime = maxLifetime;
    }

    /**
     * Clears all entries out of cache where the entries are older than the
     * maximum defined age.
     */
    protected synchronized void deleteExpiredEntries() {
        // Check if expiration is turned on.
        if (maxLifetime <= 0) {
            return;
        }

        // Remove all old entries. To do this, we remove objects from the end
        // of the linked list until they are no longer too old. We get to avoid
        // any hash lookups or looking at any more objects than is strictly
        // neccessary.
        LinkedListNode node = ageList.getLast();
        // If there are no entries in the age list, return.
        if (node == null) {
            return;
        }

        // Determine the expireTime, which is the moment in time that elements
        // should expire from cache. Then, we can do an easy check to see
        // if the expire time is greater than the expire time.
        long expireTime = System.currentTimeMillis() - maxLifetime;

        while (expireTime > node.timestamp) {
            if (remove(node.object, true) == null) {
                System.err.println("Error attempting to remove(" + node.object.toString() +
                ") - cacheObject not found in cache!");
                // remove from the ageList
                node.remove();
            }

            // Get the next node.
            node = ageList.getLast();
            // If there are no more entries in the age list, return.
            if (node == null) {
                return;
            }
        }
    }

    /**
     * Removes the least recently used elements if the cache size is greater than
     * or equal to the maximum allowed size until the cache is at least 10% empty.
     */
    protected synchronized void cullCache() {
        // Check if a max cache size is defined.
        if (maxCacheSize < 0) {
            return;
        }

        // See if the cache is too big. If so, clean out cache until it's 10% free.
        if (map.size() > maxCacheSize) {
            // First, delete any old entries to see how much memory that frees.
            deleteExpiredEntries();
            // Next, delete the least recently used elements until 10% of the cache
            // has been freed.
            int desiredSize = (int) (maxCacheSize * .90);
            for (int i=map.size(); i>desiredSize; i--) {
                // Get the key and invoke the remove method on it.
                if (remove(lastAccessedList.getLast().object, true) == null) {
                    System.err.println("Error attempting to cullCache with remove(" +
                            lastAccessedList.getLast().object.toString() + ") - " +
                            "cacheObject not found in cache!");
                    lastAccessedList.getLast().remove();
                }
            }
        }
    }

    /**
     * Wrapper for all objects put into cache. It's primary purpose is to maintain
     * references to the linked lists that maintain the creation time of the object
     * and the ordering of the most used objects.
     *
     * This class is optimized for speed rather than strictly correct encapsulation.
     */
    private static class CacheObject<V> {

       /**
        * Underlying object wrapped by the CacheObject.
        */
        public V object;

        /**
         * A reference to the node in the cache order list. We keep the reference
         * here to avoid linear scans of the list. Every time the object is
         * accessed, the node is removed from its current spot in the list and
         * moved to the front.
         */
        public LinkedListNode lastAccessedListNode;

        /**
         * A reference to the node in the age order list. We keep the reference
         * here to avoid linear scans of the list. The reference is used if the
         * object has to be deleted from the list.
         */
        public LinkedListNode ageListNode;

        /**
         * A count of the number of times the object has been read from cache.
         */
        public int readCount = 0;

        /**
         * Creates a new cache object wrapper.
         *
         * @param object the underlying Object to wrap.
         */
        public CacheObject(V object) {
            this.object = object;
        }

        public boolean equals(Object o) {
            if (this == o) {
                return true;
            }
            if (!(o instanceof CacheObject)) {
                return false;
            }

            final CacheObject<?> cacheObject = (CacheObject<?>) o;

            return object.equals(cacheObject.object);

        }

        public int hashCode() {
            return object.hashCode();
        }
    }

    /**
     * Simple LinkedList implementation. The main feature is that list nodes
     * are public, which allows very fast delete operations when one has a
     * reference to the node that is to be deleted.<p>
     */
    private static class LinkedList {

        /**
         * The root of the list keeps a reference to both the first and last
         * elements of the list.
         */
        private LinkedListNode head = new LinkedListNode("head", null, null);

        /**
         * Creates a new linked list.
         */
        public LinkedList() {
            head.next = head.previous = head;
        }

        /**
         * Returns the first linked list node in the list.
         *
         * @return the first element of the list.
         */
        public LinkedListNode getFirst() {
            LinkedListNode node = head.next;
            if (node == head) {
                return null;
            }
            return node;
        }

        /**
         * Returns the last linked list node in the list.
         *
         * @return the last element of the list.
         */
        public LinkedListNode getLast() {
            LinkedListNode node = head.previous;
            if (node == head) {
                return null;
            }
            return node;
        }

        /**
         * Adds a node to the beginning of the list.
         *
         * @param node the node to add to the beginning of the list.
         * @return the node
         */
        public LinkedListNode addFirst(LinkedListNode node) {
            node.next = head.next;
            node.previous = head;
            node.previous.next = node;
            node.next.previous = node;
            return node;
        }

        /**
         * Adds an object to the beginning of the list by automatically creating a
         * a new node and adding it to the beginning of the list.
         *
         * @param object the object to add to the beginning of the list.
         * @return the node created to wrap the object.
         */
        public LinkedListNode addFirst(Object object) {
            LinkedListNode node = new LinkedListNode(object, head.next, head);
            node.previous.next = node;
            node.next.previous = node;
            return node;
        }

        /**
         * Adds an object to the end of the list by automatically creating a
         * a new node and adding it to the end of the list.
         *
         * @param object the object to add to the end of the list.
         * @return the node created to wrap the object.
         */
        public LinkedListNode addLast(Object object) {
            LinkedListNode node = new LinkedListNode(object, head, head.previous);
            node.previous.next = node;
            node.next.previous = node;
            return node;
        }

        /**
         * Erases all elements in the list and re-initializes it.
         */
        public void clear() {
            //Remove all references in the list.
            LinkedListNode node = getLast();
            while (node != null) {
                node.remove();
                node = getLast();
            }

            //Re-initialize.
            head.next = head.previous = head;
        }

        /**
         * Returns a String representation of the linked list with a comma
         * delimited list of all the elements in the list.
         *
         * @return a String representation of the LinkedList.
         */
        public String toString() {
            LinkedListNode node = head.next;
            StringBuilder buf = new StringBuilder();
            while (node != head) {
                buf.append(node.toString()).append(", ");
                node = node.next;
            }
            return buf.toString();
        }
    }

    /**
     * Doubly linked node in a LinkedList. Most LinkedList implementations keep the
     * equivalent of this class private. We make it public so that references
     * to each node in the list can be maintained externally.
     *
     * Exposing this class lets us make remove operations very fast. Remove is
     * built into this class and only requires two reference reassignments. If
     * remove existed in the main LinkedList class, a linear scan would have to
     * be performed to find the correct node to delete.
     *
     * The linked list implementation was specifically written for the Jive
     * cache system. While it can be used as a general purpose linked list, for
     * most applications, it is more suitable to use the linked list that is part
     * of the Java Collections package.
     */
    private static class LinkedListNode {

        public LinkedListNode previous;
        public LinkedListNode next;
        public Object object;

        /**
         * This class is further customized for the Jive cache system. It
         * maintains a timestamp of when a Cacheable object was first added to
         * cache. Timestamps are stored as long values and represent the number
         * of milliseconds passed since January 1, 1970 00:00:00.000 GMT.<p>
         *
         * The creation timestamp is used in the case that the cache has a
         * maximum lifetime set. In that case, when
         * [current time] - [creation time] > [max lifetime], the object will be
         * deleted from cache.
         */
        public long timestamp;

        /**
         * Constructs a new linked list node.
         *
         * @param object the Object that the node represents.
         * @param next a reference to the next LinkedListNode in the list.
         * @param previous a reference to the previous LinkedListNode in the list.
         */
        public LinkedListNode(Object object, LinkedListNode next,
                LinkedListNode previous)
        {
            this.object = object;
            this.next = next;
            this.previous = previous;
        }

        /**
         * Removes this node from the linked list that it is a part of.
         */
        public void remove() {
            previous.next = next;
            next.previous = previous;
        }

        /**
         * Returns a String representation of the linked list node by calling the
         * toString method of the node's object.
         *
         * @return a String representation of the LinkedListNode.
         */
        public String toString() {
            return object.toString();
        }
    }
}