
for Android
SREC User Guide

NUANCE PROFESSIONAL SERVICES I Version 1.42 I August 14, 2008

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 2 of 39 August 14, 2008

DOCUMENT HISTORY

Date Revised by Version Summary of Changes

12/18/2007 Jean Dahan,
Dennis Velasco,
Andy Wyatt

1.0 For delivery with SREC RC-1 for Android.

01/11/2008 Jean Dahan 1.1 Added description of dictionary lookup

02/12/2008 Rabih Majzoub 1.2 Added dynamic word addition documentation

03/07/2008 Jean Dahan
Dennis Velasco

1.3 Updated for dynamic slot allocation, replaced NR_
with SR_ functions.
Corrected typographical errors in TCP section.

03/14/2008 Jean Dahan 1.4 Added min/max information for parameters

05/30/2008 Jean Dahan 1.41 Added information on in-utterance channel norm

08/14/2008 Jean Dahan 1.42 Added word-specific pronunciations, grammar
naming convention

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 3 of 39 August 14, 2008

TABLE OF CONTENTS

1 Introduction ... 4

2 SREC Modules.. 5
2.1 ESR_Portable ..5
2.2 ESR_Shared ..5
2.3 SR_AcousticModels ...5
2.4 SR_AcousticState ..5
2.5 SR_Grammar ...5

2.5.1 SR_SemProc..6
2.6 SR_Nametag, SR_Nametags ..6
2.7 SR_Vocabulary ..6
2.8 SR_Recognizer, SR_RecognizerResult ...6
2.9 SR_Session ...6
2.10 SR_EventLog ...7
2.11 Mandatory Arguments ..7

3 Sample Code .. 8
3.1 SRecTest ...8

3.1.1 main() ...9
3.1.2 Initialization ..10
3.1.3 Execution ...13
3.1.4 Shutdown ...19

4 Creating Grammars for SREC... 21
4.1 Editing grammars ...21
4.2 Compiling grammars ..21
4.3 Pronunciation dictionaries at grammar compilation time ..22
4.4 Metas ...22

4.4.1 word_penalty..22
4.4.2 do_skip_interword_silence ...23

4.5 Dynamic Grammars and slot addition ..23
4.5.1 Dynamic word addition ...25

4.6 Testing for Semantic Results (parseStringTest)...25
4.7 Changes from previous grammar format specifications ...26
4.8 Grammars description and parse examples...26

5 Configuration Parameters ... 28
5.1 Setting configuration parameters ...28
5.2 Rules of parameter precedence ...28
5.3 Parameters set in PAR file ...28

5.3.1 Configuration Parameters ..29
5.3.2 Non-Tunable Parameters ...29
5.3.3 Tunable Parameters...30

6 Phonetic Representation ... 34

7 SRecTest Command file Format ... 37

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 4 of 39 August 14, 2008

1 INTRODUCTION

This document introduces the SREC embedded speech recognition engine. This gives a good introduction to a
developer on the use of the SREC API and other related subjects. A comprehensive, HTML-based API reference is
also available from source code

Chapter 2 discusses the SREC modules.

Chapter 3 walks through sample code, line by line, providing an example of how the API is meant to be used.

Chapter 4 provides an overview of creating grammars for SREC.

Chapter 5 details the various configuration parameters for SREC.

Chapter 6 describes the phonetic representation used by SREC.

Chapter 7 describes the SRecTest command file format used by the sample / test program.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 5 of 39 August 14, 2008

2 SREC MODULES

The SREC API is built on top of two other libraries: ESR_Portable and ESR_Shared. SREC consists of eight
modules:
 SR_AcousticModels
 SR_AcousticState
 SR_Grammar
 SR_Nametag
 SR_Nametags
 SR_Vocabulary
 SR_Recognizer
 SR_Session.

The following sections discuss them in greater detail.

2.1 ESR_Portable

The portable library abstracts I/O operations, memory management and other OS-dependent functionalities away
from users. The library is used by SREC, as well as the SREC sample code and other Nuance products. .

Another major feature set provided by this library is LCHAR. LCHAR is a locale and hardware-independent character
interface. On typical PCs, LCHAR translates to narrow characters (char) whereas in international distributions,
LCHAR translates into wide characters (wchar_t). All string manipulation is abstracted away using LSTR*() macros
which map to the correct implementation.

NOTE: This SREC release was only tested with narrow character builds.

2.2 ESR_Shared

The shared library provides utility classes used by the internal implementation. For example, ESR_Session (used to
create SREC sessions) is implemented in this module.

2.3 SR_AcousticModels

This class represents a collection of acoustic models. Models may be loaded from or saved to disk or associated with
a recognizer.

2.4 SR_AcousticState

This class represents the acoustic state of the caller and calling environment during a call in order to improve
recognition accuracy. The base acoustic state may be loaded from or saved to disk and reset in between calls.
Furthermore, this class may encapsulate multiple acoustic states such as those tuned for male or female models. As
of version 1.0, the implementation of this feature is incomplete.

2.5 SR_Grammar

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 6 of 39 August 14, 2008

This class represents the recognition grammar, a collection of words and sentences the user may utter. Grammars
may be loaded from or saved to disk.

Words may be dynamically added to predefined “slots”. For example, given a grammar rule “lookup <name>” where
<name> is a dynamic word slot, an application may populate the slot with names loaded from disk or names collected
at runtime. Words are removed from slots using a reset function, which returns the grammar to its original state.

For performance reasons, the current implementation of SR_Grammar only supports offline grammar compilation
with dynamic (onboard) slot manipulation.

2.5.1 SR_SemProc

SR_SemProc is a component used inside SR_Grammar, for semantic interpretation of recognition results. The
“literal” of recognition results is passed through a parser to generate key/value associations which are easy for an
application to extract. These key/value pairs allow for a language-independent and phrasing independent design of
the application (i.e. no application changes needed to add synonyms or alternative phrase forms).

2.6 SR_Nametag, SR_Nametags

SR_Nametag represents phonetic Nametags, used for voice-enrollment. A nametag is created from a recognition
result and may be inserted into dynamic grammar slots for subsequent recognitions.

SR_Nametags represents a collection of nametags and may be loaded from or saved to disk.

2.7 SR_Vocabulary

A vocabulary maps words to their phonetic representation, and is sometimes referred to as a dictionary. This
mapping it backed up by a dictionary (basically a lookup table loaded from disk) or a TTP engine for unknown entries.
Vocabularies are language-dependent. In the current version of the engine, there is no functionality to add words or
pronunciations to the dictionary, other than by externally editing the input files.

2.8 SR_Recognizer, SR_RecognizerResult

The speech recognizer binds SR_AcousticModels and SR_Grammars and uses them for recognition. The recognizer
takes in audio samples, processes them and returns recognition results. In case of successful recognition, the results
contain a list of semantic results (multiple semantic results per nbest-list entry).

The following semantic keys are guaranteed to be defined:

Key name (case sensitive) Description

meaning Equal to the literal, unless overridden
by the semantic script.

literal What the speaker said
conf Confidence score
raws Raw score

2.9 SR_Session

The SREC session binds all other components. Aside from holding configuration parameters, the session initializes
global objects used by all other SREC components. In order to use SREC API, one must first initialize the
SR_Session and close it on shutdown.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 7 of 39 August 14, 2008

The properties contained within the SREC session denote defaults. For example, when a new Grammar is loaded
from disk, it inherits default values from the SREC session. In order to override configuration on that specific grammar
instance, call SR_GrammarSetParameter() whereas if one wishes to override SREC-wide grammar parameters call
ESR_SessionSetProperty() instead.

2.10 SR_EventLog

The SREC engine can be configured to log events and waveforms. See “Logging parameters” for how to control this
logging. It should be used only for debugging, not at run-time.

2.11 Mandatory Arguments

Upon initializing the SREC_Session, most of the mandatory configuration parameters are read from the PAR file,
however there are some parameters that the application is responsible for. The following parameters (in the
SREC_Session) must be initialized before the SREC API may be used:

cmdline.arbfile
cmdline.argfile
cmdline.bgsniff
cmdline.channel
cmdline.datapath
cmdline.detail_res
cmdline.lda
cmdline.models
cmdline.multable
cmdline.parfile
cmdline.rejfile
cmdline.results
cmdline.rules
cmdline.tcp
cmdline.use_image
cmdline.vocabulary

These values usually come from the program command-line arguments or from the ARG file.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 8 of 39 August 14, 2008

3 SAMPLE CODE

SREC includes a set of sample code and grammars which are used for testing SREC. Refer to these files for more
examples on using the SREC functionality. [Note: some of these paths could change for different devices.]

Test programs are in:
device/out/target/product/sooner/system/bin

Source code for the test programs are in:
device/extlibs/srec/srec/test/SrecTest*

Libraries are in:
device/out/target/product/sooner/system/lib

Shell scripts are in:
device/extlibs/srec/config/en.us

and get installed in
/system/usr/srec/config/en.us

3.1 SRecTest

This is review of a sample program called SRecTest which reads a collection of audio samples from disk, runs a
recognition against them and outputs the results to the screen.

Some code within a described function may be omitted and replaced with “...”, especially error handling code, for
the sake of readability. Also note that the LCHAR macro only works when defined as char.

Not all functions are described below. To help visualize the nesting of the functions explored below, use the
indentation and coloring in the following list:

main()
srec_test_init_system()
srec_test_run_test()

srec_test_run_test_init()
srec_test_run_test_init_session()

InitSession()
srec_test_run_test_init_models()
srec_test_run_test_init_vocab_grammar()

srec_test_run_test_execute()
srec_test_process_commands()

srec_test_use_context()
srec_test_recognize_nist()

srec_test_run_test_shutdown()

srec_test_shutdown_system()

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 9 of 39 August 14, 2008

3.1.1 main()

SRecTest is a highly factored program, with a structure that allows looping with varying amounts of resource
destruction and allocation between the different levels of loops. This allows very thorough memory leak testing.

int main(int argc, LCHAR* argv [])
{
int test_status;
unsigned int num_shutdown_loops;
unsigned int current_shutdown_loop;
unsigned int num_continuous_run_loops;
unsigned int current_continuous_run_loop;
unsigned int srec_test_heap_size;

...
ApplicationData applicationData;
PLogger* logger;

srec_test_heap_size = (4 * 1024 * 1024);
logger = NULL;

...
test_status = srec_test_get_run_params (&num_shutdown_loops,

&num_continuous_run_loops);

if (test_status == 0)
{
current_shutdown_loop = 0;

while ((current_shutdown_loop < num_shutdown_loops) && (test_status == 0))
{
test_status = srec_test_init_system (srec_test_heap_size, logger, argc, argv);

if (test_status == 0)
{
current_continuous_run_loop = 0;

while ((current_continuous_run_loop < num_continuous_run_loops)
&& (test_status == 0))

{
test_status = srec_test_init_application_data (&applicationData,

argc, argv);

if (test_status == 0)
{
test_status = srec_test_run_test (&applicationData);
srec_test_shutdown_application_data (&applicationData);
}

current_continuous_run_loop++;
}

test_status = srec_test_shutdown_system (logger);
}

current_shutdown_loop++;
}

}

 The main() function has two while loops, a “shutdown loop” and “continuous run loop”.
 A shutdown loop is one where the recognizer is shutdown between repeats of the loop.
 There are matching “init” and “shutdown” function call pairs around the loops for the system, and application

data. Similar pairs of functions will be evident when deeper levels of the code are discussed.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 10 of 39 August 14, 2008

 The function srec_test_init_system(), described in the next section, calls several functions to initialize system
modules.

 The key function to step into is srec_test_run_test(), which calls srec_test_run_test_init() and
srec_test_run_test_execute(), both described in more detail in the following sections.

3.1.2 Initialization

3.1.2.1 srec_test_init_system()

static int srec_test_init_system (unsigned int srec_test_heap_size, PLogger* logger,
int arg_count, LCHAR *arg_vals [])

{
int init_status;

...
init_status = srec_test_init_memory_system (srec_test_heap_size);

if (init_status == 0)
{
init_status = srec_test_init_file_system (arg_count, arg_vals);

if (init_status == 0)
{
init_status = srec_test_init_logging_system (arg_count, arg_vals,

logger);

if (init_status != 0)
{
srec_test_shutdown_file_system ();
srec_test_shutdown_memory_system ();
}

}
else

{
srec_test_shutdown_memory_system ();
}

}
return (init_status);
}

 This function calls three key initialization functions for key subsystems: the memory system, file system, and
logging system.

 See the implementation of those functions for details.

3.1.2.2 srec_test_run_test_init()

static int srec_test_run_test_init (ApplicationData *applicationData)
{
int run_status;

run_status = srec_test_run_test_init_session (applicationData);

if (run_status == 0)
{
run_status = srec_test_run_test_init_models (applicationData);

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 11 of 39 August 14, 2008

if (run_status == 0)
{
run_status = srec_test_run_test_init_vocab_grammar (applicationData);

if (run_status != 0)
{
srec_test_run_test_shutdown_models (applicationData);
srec_test_run_test_shutdown_session (applicationData);
}

}
else

{
srec_test_run_test_shutdown_session (applicationData);
}

}
return (run_status);
}

 This function sets up everything needed for a run through a test: the session, acoustic models, and grammars.
 Each of these functions is described in more detail below.

3.1.2.3 srec_test_run_test_init_session()

static int srec_test_run_test_init_session (ApplicationData *applicationData)
{
int run_status;
ESR_ReturnCode esr_status;

run_status = 0;
LPRINTF(L("\nCreate recognizer:\n"));
LPRINTF(L(" InitSession()\n"));
esr_status = InitSession (applicationData->argc, applicationData->argv);

if (esr_status == ESR_SUCCESS)
{
LPRINTF(L(" SR_RecognizerCreate()\n"));
esr_status = SR_RecognizerCreate (&applicationData->recognizer);

if (esr_status != ESR_SUCCESS)
...

 The function InitSession() is described in the next section.
 If it returns successfully, a new Recognizer object is created.

3.1.2.4 InitSession()

ESR_ReturnCode InitSession(int argc, LCHAR *argv [])
{

ESR_ReturnCode init_status;
LCHAR path[P_PATH_MAX];
size_t len;

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 12 of 39 August 14, 2008

len = P_PATH_MAX;
init_status = ESR_CommandLineGetValue (argc, argv, L("parfile"), path, &len);

if (init_status == ESR_SUCCESS)
{
init_status = SR_SessionCreate (path);

if (init_status == ESR_SUCCESS)
{

/* Command-line options always override PAR file options */
init_status = ESR_SessionImportCommandLine (argc, argv);

if (init_status != ESR_SUCCESS)
{
SR_SessionDestroy ();
...

 The SREC session is initialized using the mandatory ‘parfile’ command-line argument from the application-
session, using ESR_CommandLineGetValue() and SR_SessionCreate().

 The command-line arguments are imported from the application session into the SREC session.

3.1.2.5 srec_test_run_test_init_models()

static int srec_test_run_test_init_models (ApplicationData *applicationData)
{
int run_status;
ESR_ReturnCode esr_status;
LCHAR filename[P_PATH_MAX];
size_t len;

run_status = 0;
LPRINTF(L("Load acoustic models:\n"));
len = P_PATH_MAX;
esr_status = ESR_SessionGetLCHAR (L("cmdline.models"), filename, &len);

if (esr_status == ESR_SUCCESS)
{
LPRINTF(L(" SR_AcousticModelsLoad()\n"));
esr_status = SR_AcousticModelsLoad (filename, &applicationData->models);

if (esr_status == ESR_SUCCESS)
{
LPRINTF(L(" SR_RecognizerSetup()\n"));
esr_status = SR_RecognizerSetup (applicationData->recognizer,

applicationData->models);

if (esr_status != ESR_SUCCESS)
...

 Retrieve the ‘models’ command-line argument, which denotes the acoustic models filename, and load the
acoustic models from disk into the ‘models’ object.

 ESR_SessionGetLCHAR() returns a copy of an LCHAR*-type value.
 SR_RecognizerSetup() associates acoustic models with the recognizer.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 13 of 39 August 14, 2008

3.1.2.6 srec_test_run_test_init_vocab_grammar()

static int srec_test_run_test_init_vocab_grammar (ApplicationData *applicationData)
{
int run_status;
ESR_ReturnCode esr_status;
LCHAR filename[P_PATH_MAX];
size_t len;

run_status = 0;
/* Create vocabulary object and associate with grammar */
LPRINTF(L("Create vocabulary object and associate with grammar:\n"));
len = P_PATH_MAX;
esr_status = ESR_SessionGetLCHAR (L("cmdline.vocabulary"), filename, &len);

if (esr_status == ESR_SUCCESS)
{
LPRINTF(L(" SR_VocabularyLoad()\n"));
esr_status = SR_VocabularyLoad (filename, &applicationData->vocabulary);

if (esr_status == ESR_SUCCESS)
{
LPRINTF(L(" SR_VocabularyGetLanguage()\n"));
esr_status = SR_VocabularyGetLanguage (applicationData->vocabulary,

&applicationData->locale);

if (esr_status == ESR_SUCCESS)
{
/* start a new log session */
LPRINTF(L("Start a new log session:\n"));
LPRINTF(L(" SR_RecognizerLogSessionStart()\n"));

esr_status = SR_RecognizerLogSessionStart (
applicationData->recognizer, L("SRecTest.session1"));

if (esr_status != ESR_SUCCESS)
{
SR_VocabularyDestroy (applicationData->vocabulary);
applicationData->vocabulary = NULL;
run_status = -1;

...

 The program gets the filename of the vocabulary file, then uses SR_VocabularyLoad() to load the vocabulary.
 Then set the locale based on the language of the vocabulary.
 If this succeeds, start a new log session with SR_RecognizerLogSessionStart()

3.1.3 Execution

3.1.3.1 srec_test_run_test_execute()

static int srec_test_run_test_execute (ApplicationData *applicationData)
int run_status;
ESR_ReturnCode esr_status;

run_status = 0;

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 14 of 39 August 14, 2008

applicationData->nametag = NULL;

LPRINTF(L("Recognize:\n"));
LPRINTF(L(" SR_NametagsCreate()\n"));

esr_status = SR_NametagsCreate (&applicationData->nametags);

if (esr_status == ESR_SUCCESS)
{
run_status = srec_test_process_commands (applicationData);
SR_NametagsDestroy (applicationData->nametags);
applicationData->nametags = NULL;

if (run_status != 0)
...

 Now the program is out of srec_test_run_test_init(), and almost ready to start recognition.
 SR_NametagsCreate() is called to setup a collection of nametags (empty).
 Then srec_test_process_commands() is called to process command files, as described below.

3.1.3.2 srec_test_process_commands()

int srec_test_process_commands (ApplicationData *data)
{
int process_status;
PFile *command_file;
FILE *results_file;
LCHAR *got_line_ok;
LCHAR linebuffer [MAX_LINE_LENGTH];
size_t recognition_count;

recognition_count = 0;
process_status = srec_test_open_command_file (&command_file);

if (process_status == 0)
{
process_status = srec_test_open_results_file (&results_file);

if (process_status == 0)
{
do

{
got_line_ok = pfgets (linebuffer, MAX_LINE_LENGTH, command_file);

if (got_line_ok != NULL)
srec_test_execute_command (data, linebuffer, results_file,

&recognition_count);
}

while ((got_line_ok != NULL) && (process_status == 0));

srec_test_close_results_file (results_file);
}

srec_test_close_command_file (command_file);
}

return (process_status);
}

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 15 of 39 August 14, 2008

 Open both a results file and TCP file from disk. The results file will be used to log events to disk. The TCP file is
an index of audio samples to be read from disk.

 pfgets() is a portable implementation of fgets(); reading one line of text from the TCP file.
 If the line is read successfully, srec_test_execute_command() is called (see next section), passing the line from

the TCP file and a pointer to the results file.

3.1.3.3 srec_test_execute_command()

int srec_test_execute_command (ApplicationData *data, LCHAR *text,
FILE *results_file, size_t *recognition_count)

{
int execute_status;
LCHAR *current_command_start;
LCHAR *current_end_command;
LCHAR command [MAX_LINE_LENGTH];
SR_Grammar *active_grammar;
LCHAR log_buffer [LOG_BUFFER_SIZE];

srec_test_get_active_grammar (data, &active_grammar);
current_command_start = text;

execute_status = srec_test_get_one_command_item (current_command_start,
MAX_LINE_LENGTH, command, ¤t_end_command);

if (execute_status == 0)
{
if (LSTRCMP (command, L("recognize_nist")) == 0)

execute_status = srec_test_recognize_nist_file (active_grammar, data,
results_file, current_end_command, recognition_count);

else if (LSTRCMP (command, L("recognize_pcm")) == 0)
execute_status = srec_test_recognize_pcm_file (active_grammar, data,

results_file, current_end_command, recognition_count);

else if (LSTRCMP (command, L("context_load")) == 0)
execute_status = srec_test_load_context (data, current_end_command);

else if (LSTRCMP (command, L("context_use")) == 0)
execute_status = srec_test_use_context (active_grammar, data,

current_end_command);
...

 This function has a much longer sequence of if/else if/else if… than reproduced above. There are a 20
commands matched by this function, which dispatches to the appropriate command-handling routines.

 The syntax of the command file is described in section 7. The following section shows an example command
file, bothtags5.tcp.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 16 of 39 August 14, 2008

3.1.3.4 bothtags5.tcp

this test describes operation of voicetags and texttags
#
to run this script please be sure to prepare the input grammars
#
grxmlcompile -par baseline11k.par -grxml bothtags5.grxml
make_g2g -base bothtags5,addWords=100 -out bothtags5.g2g
grxmlcompile -par baseline11k.par -grxml enroll.grxml –vocab ../dictionary/enroll.ok
make_g2g -base enroll -out enroll.g2g
#
now run the script with the following command line
/system/bin/SRecTest -parfile baseline11k.par -tcp tcp/bothtags5.tcp \
-datapath audio/ >out_SHIP_bothtags5.txt 2>&1
#
VOICETAGS PREPARATION
let's load up the voice-enrollment "grammar" and refer to it as "ve" later
ROOT is the name of the rule we activate in that grammar,
no other rule should work anyways

context_load grammars/bothtags5.g2g BothTags trash not_ve
context_load grammars/enroll.g2g VoiceEnroll ROOT ve

VOICETAGS
the pattern for voicetags is :
(1) the we loadup the voice-enrollment grammar
(2) the user utters the training token for the "voicetag"
(sometimes loosely called nametag)
(3) the voicetag "recognition result" from that training token
is then added to a list of tags (for saving to disk)
(4) the voicetag is also added to the primary recognition grammar

context_use VoiceEnroll
recognize_nist v139/v139_024.nwv 0 0 VCE_Pete_Gonzalez
context_free VoiceEnroll
context_use BothTags
addword_from_last_nametag @Names VCE_Pete_Gonzalez 0
add_to_nametags VCE_Pete_Gonzalez
context_free BothTags
...

 See section 7 for details of the command file format.
 This script starts by explaining (in the comments) how to build binary grammars for the test and run the test.
 It then makes context_load commands with the grammars, then shows a sequence of context_use,

recognize_nist, and context_free calls for setting up voicetags.
 See below to see how context_use and recognize_nist are implemented when handled by

srec_test_execute_command() in srec_test_use_context() and srec_test_recognize_nist_file()

3.1.3.5 srec_test_use_context()

int srec_test_use_context (SR_Grammar *active_grammar, ApplicationData *data,
LCHAR *command_text)

{

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 17 of 39 August 14, 2008

int use_status;
ESR_ReturnCode esr_status;
int grammar_num;
BOOL found_grammar;
BOOL grammar_is_active;
BOOL grammar_is_ve;
LCHAR grammar_id [P_PATH_MAX];

if (active_grammar == NULL)
{
use_status = srec_test_get_one_command_item (command_text, P_PATH_MAX,

grammar_id, NULL);

if (use_status == 0)
{
found_grammar = srec_test_get_grammar_from_id (data, grammar_id,

&grammar_num, &grammar_is_active, &grammar_is_ve);

if (found_grammar == TRUE)
{
esr_status = SR_RecognizerSetupRule (data->recognizer,

data->grammars [grammar_num].grammar,
data->grammars [grammar_num].ruleName);

if (esr_status == ESR_SUCCESS)
{
esr_status = SR_RecognizerActivateRule (data->recognizer,

data->grammars [grammar_num].grammar,
data->grammars [grammar_num].ruleName, 1);

if (esr_status == ESR_SUCCESS)
{
if (data->grammars [grammar_num].is_ve_grammar == TRUE)

{
esr_status = SR_RecognizerSetBoolParameter (

data->recognizer, L("enableGetWaveform"), TRUE);

if (esr_status == ESR_SUCCESS)
{
data->active_grammar_num = (int)grammar_num;
}

else
{
use_status = -1;
...

 This function processes a context_use command from a TCP command file.
 The ApplicationData structure includes a grammars array that contains a pointer to all loaded grammars.
 srec_test_get_grammar_from_id() is called to locate a loaded grammar (from that array).
 SR_RecognizerActivateRule() associates the grammar with the recognizer.

3.1.3.6 srec_test_recognize_nist_file()

static int srec_test_recognize_nist_file (SR_Grammar *active_grammar,
ApplicationData *data, FILE *results_file
LCHAR *command_text, size_t *recognition_count)

{
int recognize_status;
ESR_ReturnCode esr_status;

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 18 of 39 August 14, 2008

SR_RecognizerStatus esr_recog_status;
SR_RecognizerResultType result_type;
LCHAR *transcription;
LCHAR waveform [MAX_LINE_LENGTH];
LCHAR bos [MAX_LINE_LENGTH];
LCHAR eos [MAX_LINE_LENGTH];
PFile *waveform_file;
BOOL hit_eof;

if (active_grammar != NULL)
{
recognize_status = srec_test_get_three_command_items (command_text,

MAX_LINE_LENGTH, waveform,
MAX_LINE_LENGTH, bos, MAX_LINE_LENGTH,
eos, NULL, &transcription);

if (recognize_status == 0)
{
recognize_status = srec_test_log_reco_from_file_data (active_grammar,

data, waveform, bos, eos, transcription);

if (recognize_status == 0)
{
recognize_status = srec_test_open_nist_file (waveform,

&waveform_file);

if (recognize_status == 0)
{
if ((data->forced_rec_mode == ForcedRecModeOn) ||

(data->forced_rec_mode == ForcedRecModeOneTime))
SR_GrammarAllowOnly (active_grammar, data->transcription);

esr_status = SR_RecognizerStart (data->recognizer);

if (esr_status == ESR_SUCCESS)
{
(*recognition_count)++;
hit_eof = FALSE;

do
{
recognize_status = srec_test_get_audio_from_file (

waveform_file, data, &hit_eof);

if (recognize_status == 0)
recognize_status = srec_test_feed_recognizer (

data, hit_eof, &esr_recog_status, &result_type);
}

while ((hit_eof == FALSE) && (result_type !=
SR_RECOGNIZER_RESULT_TYPE_COMPLETE) &&
(recognize_status == 0));

if (recognize_status == 0)
{
recognize_status = srec_test_flush_audio (data,

&esr_recog_status, &result_type);

if (recognize_status == 0)
{
recognize_status = srec_test_process_results (data,

esr_recog_status,
results_file, *recognition_count);

}

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 19 of 39 August 14, 2008

}
}
esr_status = SR_RecognizerStop (data->recognizer);
...

 srec_test_recognize_nist_file() opens an audio test file in the nist format and sends the audio to the recognizer.
 The grammar is expected to have already been loaded and activated with the use_context command.
 The audio is read in parts and passed to the recognizer within the do / while loop using

srec_test_get_audio_from_file() and srec_test_feed_recognizer() until there is no more audio or
SR_RECOGNIZER_RESULT_TYPE_COMPLETE or the recognition has been aborted.

3.1.4 Shutdown

3.1.4.1 srec_test_run_test_shutdown

static int srec_test_run_test_shutdown (ApplicationData *applicationData)
{
int shutdown_status;

shutdown_status = srec_test_run_test_shutdown_vocab_grammar (applicationData);

if (shutdown_status == 0)
{
shutdown_status = srec_test_run_test_shutdown_models (applicationData);

if (shutdown_status == 0)
shutdown_status = srec_test_run_test_shutdown_session (applicationData);

}
return (shutdown_status);
}

 This is the counterpart to srec_test_run_test_init(), and makes calls to similar functions to release the resources
used by the vocabulary, grammar, acoustic models, and session.

 These functions are not discussed in detail, but always bear one rule in mind: tear things down in the opposite
order from when they were created.

3.1.4.2 srec_test_shutdown_system()

static int srec_test_shutdown_system (PLogger *logger)
{
int shutdown_status;

shutdown_status = srec_test_shutdown_logging_system (logger);

if (shutdown_status == 0)
{
shutdown_status = srec_test_shutdown_file_system ();

if (shutdown_status == 0)
shutdown_status = srec_test_shutdown_memory_system ();

}
return (shutdown_status);

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 20 of 39 August 14, 2008

}

 This is the counterpart to srec_test_init_system(), and does the expected release of system resources.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 21 of 39 August 14, 2008

4 CREATING GRAMMARS FOR SREC

4.1 Editing grammars

SREC grammars are defined in the W3C XML format and possibly extended at run-time through dynamic word
addition and for a different tag interpretation language. For details of the grammar formalism, developers should
refer the to W3C grammar specification at http://www.w3.org/TR/grammar-spec with the following exceptions:

 support for <item repeat=”$N” … $N can any number
 support for <item repeat=”$N-” … $N can any number
 support for <item repeat=”$N-$M” … but $M>$N
 there is no support for language specifications inside rules or individual items
 there is no support for rule imports or rule exports, scope specifications such as “public” or “private” are

largely ignored
 SREC uses the tinyxml xml document representation which does not link to a conformance checker

The important parameters that are looked for in the grammar are near the top of the file:

<?xml version="1.0" encoding="ISO8859-1"?>
<grammar xml:lang="en-US" version="1.0" mode="speech" root="myRoot">

xml:lang … indicates the language of the grammar, the specified language will trigger use of the right dictionaries
and acoustic models to compile the grammar. The engine supports an extensive but limited set of languages.
Language encoding conventions are detailed in the Phonology chapter. This parameter is overridden by the parfile
specified on the grxml command line.

encoding … for European language in which accents must be used, the use of ISO Latin-1 encoding is supported.

4.2 Compiling grammars

Grammars must always be compiled off-line on desktop Linux. The command line instructions are as follows:

(1) % grxmlcompile -par /device/extlibs/srec/config/en.us/baseline.par -grxml test.grxml
(2) % make_g2g base test –out test.g2g

In Step 1, we create AT&T text format fsms (http://www.research.att.com/~fsmtools/fsm/man4/fsm.5.html). The
required files are:

 .map … the list of words
 .PCLG.txt … the finite-state transducer to be used for the search
 .Grev2.det.txt … the transducer to be used for nbest processing
 .P.txt … the semantic interpretation graph
 .script … the semantic interpretation scripts
 .params … parameters to be used at grammar load time

These text files should not be edited; they are dumped for diagnostic purposes only.

In Step 2, we package these 5 files into a single binary format file to be used on the target platform.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 22 of 39 August 14, 2008

4.3 Pronunciation dictionaries at grammar compilation time

At grammar compilation time, the words in the grxml grammar are looked up the text-format user dictionary, which is
specified in the file that the “cmdline.vocabulary” parameter points to. This dictionary will typically be much larger
than the dictionary that is packaged for deployment. The default pronunciation dictionary is located at:

device/extlibs/srec/config/en.us/dictionary/large.ok

This dictionary is used by all grammar compilations. :

When words are found in the dictionary, all pronunciations for that word are used, and the word is not looked up in
any other dictionary. The dictionary is case-sensitive, but the same word in different casing should not be specified in
the dictionary, rather a case-convention should be adopted for you particular application.

When words are not found in the (.ok) dictionary, then the word is split into items on spaces and underscores. Each
item is looked up separately in the (.ok) dictionary, and words that are not found there are passed to the G2P engine.
The SETI G2P engine is case-insensitive and ignores all non-alphanumeric characters except for “’” (forward
apostrophe, as in can’t). It is strongly advised that orthographies be text normalized before passing them to the
SETI G2P engine. Normalization may include stripping/substituting out or translating non-alphanumeric characters,
replacing spaces with underscores, spelling out large numbers, etc. It is impossible to anticipate all possible
orthographies, but the types of orthographies should be anticipated and tested. A good developer should look at the
trends in a particular source of words (e.g. mp3 titles containing creative spellings, mixed digits and alpha, contact
names that can contain extra spaces or that may be preceded with titles or abbreviations, etc.

The dictTest tool can be used to test words in the dictionary and/or to test the formatting of the dictionary that you've
created.

Adding words to the dictionary should follow the phonological conventions documented in this guide. Similar words in
the large.ok dictionary can also be used as inspiration.

(1) % export ESRSDK=`pwd`/extlibs/srec
% export ESRLANG=en.us
% dictTest -par /device/extlibs/srec/config/en.us/baseline.par
Dictation Test Program for esr (Nuance Communications, 2007)
'qqq' to quit
> hello
hello : helO
>

4.4 Metas

4.4.1 word_penalty

“word_penalty” is used to balance insertions and deletions produced by the recognizer. To reduce the
number of insertions, word_penalty should be increased. To reduce the number of deletions, word_penalty
should be decreased. A default value of 40 is used when the “word_penalty” is not specified.

<?xml version="1.0" encoding="ISO8859-1"?>
<grammar xml:lang="en-us" version="1.0" root="ROOT">
<meta name="word_penalty" content="40"/>

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 23 of 39 August 14, 2008

4.4.2 do_skip_interword_silence

This is used only with the voice enrollment “enroll” grammar. During typical grammar compilation we add
optional silence after the pronunciation of each word, which allows the user to pause between words. In the
enrollment grammar, words are phonemes, and there is already a word associated with “silence”. As such
we don’t need to allow optional silence after for each word (phoneme). The voice-enrollment grammar is
carefully designed, developers should be take caution if editting it.

<?xml version="1.0" encoding="ISO8859-1"?>
<grammar xml:lang="en-us" version="1.0" root="ROOT">
<meta name="do_skip_interword_silence" content="true"/>

4.5 Dynamic Grammars and slot addition

All recognition contexts must have a grammar and all grammars must be compiled offline. For recognition contexts
that have dynamic content the engine supports slot-based dynamic word addition, but even if there are no static
words, an “empty” grammar must still be created and compiled.

SREC implementation allows that the number of words to be added to a grammar be specified at grammar
compilation time:

(3)% make_g2g –base mygrammar[,addWords=$N] –out

Note that the $N is a soft-limit on the number of words to be added, and the space required for these words is pre-
allocated in the file and in memory at grammar load-time. This obviously assumes certain limits on the number of
pronunciations per word and number of phonemes per pronunciation. Thus, the space required is an estimate
because averages are used to calculate it:

 Average number of characters per word: 18

 Average number of arcs & nodes (~phonemes) per word: 10 & 7

 Average number of characters per semantic script of word: 45

SREC is able to dynamically allocate slot memory at runtime, so the “,addWords=$N” is really intended for platforms
on which we prefer NOT to use allocations that way.

The file size of the g2g file is nearly identical to the memory requirement for this grammar.

The “slot” is the grammar element into which words will be added. The grammar in question may consist of a carrier
phrase such as:

lookup $Names

.. where $Names is the slot name.

The grammar specification must be such that the slot is specified as a rule unto itself in the grammar, and must be
empty except for a single marker word

The grxml file for this example must look as follows:

…
<rule id="ROOT" scope="public">

<item>

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 24 of 39 August 14, 2008

<ruleref uri="#LOOKUP"/>
<tag>M_N=LOOKUP.NAME?LOOKUP.NAME:'';

M_P=LOOKUP.PLACE?LOOKUP.PLACE:'';
M_T=LOOKUP.TELN?LOOKUP.TELN:'';</tag>

</item>
</rule>

<rule id="LOOKUP">
<item>lookup</item>
<one-of>
<item>

<ruleref uri="#NAMES"/>
<item repeat="0-1">

<item>at</item>
<ruleref uri="#PLACES"/>
<tag>PLACE=PLACES.P</tag>

</item>
<tag>NAME=NAMES.N</tag>

</item>
<item>

<ruleref uri="#S"/>
<tag>TELN=S.X;</tag>

</item>
</one-of>

</rule>
…

Note the use of the special __Names__ marker. This word does not need to be in the pronunciation dictionary, it will
be handled in a special way.

The API functions to be used for dynamic word addition are summarized in the table below:

/**
* Adds word to rule slot.
*
* @param self SR_Grammar handle
* @param slot Slot name, eg “@Names”
* @param word Word to be added to the slot
* @param pronunciation Word pronunciation (optional). Pass NULL to omit.
* @param weight value to associate the word; a positive integer penalty (0-300)
* @param tag eScript semantic expression for the word. In other words, eScript will execute
* "MEANING=<tag>"
*/
ESR_ReturnCode SR_GrammarAddWordToSlot(SR_Grammar* self, const LCHAR* slot, const LCHAR* word,
const LCHAR* pronunciation, int weight, const LCHAR* tag);
/**
* Removes all elements from rule slot.
*
* @param self SR_Grammar handle
* @param slot Slot name, eg “@Names”
*/
ESR_ReturnCode SR_GrammarResetSlot(SR_Grammar* self, const LCHAR* slot);
/**
* Adds word to rule slot.
*
* @param self SR_Grammar handle
* @param slot Slot name, eg “@Names”
* @param nametag Nametag to be added to the slot
* @param weight value to associate the word; a positive integer penalty (0-300)
* @param nametag Nametag to be added to the slot
*/
ESR_ReturnCode SR_GrammarAddNametagToSlot(SR_Grammar* self, const LCHAR* slot, const SR_Nametag*
nametag, int weight, const LCHAR* tag);

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 25 of 39 August 14, 2008

4.5.1 Dynamic word addition

SREC has now the ability to add words dynamically to a grammar. As a consequence, you don’t have to specify the
maximum number of words that can be added to a grammar a priori (during the compilation time), but instead you
can strip out the “addWords” key from the make_g2g command (or you can set it to zero), and the engine will
dynamically allocate the appropriate memory space needed to add all of the words you need, hence saving some
memory space.

(3)% make_g2g –base mygrammar,addWords=0 –out

Or

(3)% make_g2g –base mygrammar –out

Please note that once you decided to reset the slots of the grammar, you will be offered dynamic word addition mode
only, even if you had pre-allocated some space during grammar compilation time. In other words, the pre-allocated
space will be lost once the grammar is reset.

4.6 Grammar name conventions

Grammar names are typically called by a name.grxml, where the name can be any alphanumeric identifier. Non-
alphanumeric characters such as “$”, “@”, “#”, “.”, “__” should be avoided since these are used internally for rule
specifications.

4.7 The voice enrollment grammar

The voice enrollment grammar is located near esr/config/en.us/grammars/enroll.grxml. It should be compiled with the
following command line:

grxmlcompile –parfile ../baseline.par –grxml enroll.grxml –vocab
dictionary/enroll.ok

The enrollment grammar effectively represents a grammar where any word can be followed by any word, and the set
of words corresponds to the set of phonemes. As such, the word “ph_th”, represents the phoneme “th”. The proper
word to phoneme translations are in a custom dictionary located near dictionary/enroll.ok .

Only the generic phonemes are used (see word-specific phonemes elsewhere in this document).

The enrollment grammar should have the keyword “enroll” somewhere in the filename since this is an indication to
trigger special handlers associated with the enrollment process.

The grammar meta “do_skip_interword_silence” should always be used in the voice-enrollment grammar.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 26 of 39 August 14, 2008

4.8 Testing for Semantic Results (parseStringTest)

After the grammar has been written in grxml format, it is often useful to check the validity of the semantic tags without
having to activate the recognition engine. This is done by specifying phrases in the same form the recognizer
produces the words sequence of recognized words. For a specified input phrase, the results in the form of key
values pairs are as in this example:

Input Phrase: phone dial one two three
Semantic Result:
myRoot.N0 = “123”
myRoot.id = ‘PHONE2”
myRoot.meaning = “PHONE2 123”

To do this the parseStringTest tool can be used as follows:

parseStringTest –base mygrammar.g2g

parseStringTest –base mygrammar

The parseStringTest tool will prompt you to enter a recognition result such as “phone dial one two three”: The
tool will respond by telling the user whether the sentence is valid according to the grammar and what the keys
and values will be under the results API, as noted above.

4.9 Changes from previous grammar format specifications

1. The <count number=”optional” > formalism is no longer supported, replaced with <item repeat=”0-1”>
formalism

2. The <item tag=”script” formalism is not longer supported, replaced with <item><tag>script</tag> formalism

4.10 Grammars description and parse examples

The date grammar includes popular expressions of year, month, and day. For example,
YYYY = four-digit year,
MM = two-digit month (01=January, etc.),
DD = two-digit day of month (01 through 31),
DAY = Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.
The date grammar also allows relative date such as “yesterday” and “tomorrow”. Some parse examples are:
- friday eleventh october twenty thirty
- thursday the twenty second of october two thousand twenty eight
- saturday fifteenth november nineteen thirty eight

The time grammar is used to express clock time. For example,
hh = two digit hour (00 through 23) (am/pm is allowed),
mm = two digit minute (00 through 59),
ss = two digit second (00 through 59).
Some parse examples are:
- twelve o'clock PM
- ten forty two PM
- twelve hour

The digit grammar is a loop of digits (0~9), for example,
- zero nine one two
- three four five six eight oh.
0 could be “zero” or “oh”.

The lookup grammar is a phone number lookup grammar; the keyword is “lookup”. People names or phone numbers
are followed by “lookup”. For example,
- lookup Peter

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 27 of 39 August 14, 2008

- lookup David
- lookup one three four five six one one

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 28 of 39 August 14, 2008

5 CONFIGURATION PARAMETERS

5.1 Setting configuration parameters

Configuration parameters are set in different ways depending on the underlying operating system. In the
SREC API documentation, the description of each configuration parameter indicates the appropriate
configuration mechanisms.

How one sets parameters depends on how SREC is used. The mechanisms for setting configuration
parameters are:

 Grammar files - many parameters can be controlled with the <meta> tag inside XML grammars. these
parameters are dynamic in the sense that the values might from one recognition event to the next.

 API - many parameters can only be set with SR_RecognizerSetParameter(),
SR_GrammarSetParameter() and ESR_SessionSetProperty() functions.

 TRC keys for diagnostic logging

There are no SREC parameters that are set via environment variables.

5.2 Rules of parameter precedence

Parameters can be set in various ways including via: API function calls, statements in grammar files, and
default settings in user and baseline configuration files. Not all parameters can be set by all methods.
Regardless of how a parameter is set, its value is resolved when recognition starts using the following order
of precedence

 ESR_RecognizerSetParameter() takes the highest precedence.
 A grammar can define parameters via the <meta> tag.
 A user configuration file can provide application- or platform-specific defaults. These defaults are loaded

into the ESR_Session.
 The baseline.xml configuration file from Nuance provides default values.
 In the absence of a needed configuration parameter, SREC either provides a hard-coded value or

generates an error.

5.3 Parameters set in PAR file

The following list enumerates the various configuration parameters, their meaning and typical values.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 29 of 39 August 14, 2008

5.3.1 Configuration Parameters

Parameter Name Description Typical
Value(s)

Minimum Maximum

CREC.Frontend.samplerate Sample rate of the audio data (samples per
second); this is an indication on the input audio
such that audio can be a frequency higher than
the minimum required by the acoustic model
(high_cut), in such a case some high frequency
content is ignored

8000,
11025,
16000,
22050

8000 22050

5.3.2 Non-Tunable Parameters

Parameter Name Description Typical
Value(s)

CREC.Frontend.mel_dim Number of Cepstrum coefficients. 12

CREC.Frontend.premel Pre-emphasis coefficient. 0.9

CREC.Frontend.lowcut Lower cutoff frequency (Hz). 125

CREC.Frontend.highcut Upper cutoff frequency (Hz); this
parameter should be consistent with the
acoustic model specified in the par file;
5500 for the 11kHz acoustic model; 4000
for the 8kHz acoustic model; see also
“samplerate”

5500

CREC.Frontend.window_factor Analysis window size. (Number of
frame periods).

2

CREC.Frontend.offset Offset value to be removed from input
audio.

0

CREC.Frontend.ddmel Turns delta delta Cepstrum calculation
on or off.

YES

CREC.Frontend.melA Cepstrum scaling coefficients. See
Note 1

CREC.Frontend.melB Cepstrum offset coefficients. See
Note 1

CREC.Frontend.dmelA Delta Cepstrum scaling coefficients. See
Note 1

CREC.Frontend.dmelB Delta Cepstrum offset coefficients. See
Note 1

CREC.Frontend.ddmelA Delta delta Cepstrum scaling
coefficients.

See
Note 1

CREC.Frontend.ddmelB Delta delta Cepstrum offset
coefficients.

See
Note 1

CREC.Frontend.peakdecayup Non-linear filtering co-efficient. 0.3

CREC.Frontend.peakdecaydown Non-linear filtering co-efficient. 0.7

CREC.Frontend.do_skip_even_frames When set to YES, every other front-
end frame is not processed.

YES

CREC.Frontend.peakdecayup Spectral Envelope Detection
parameter.

0.3

CREC.Frontend.peakdecaydown Spectral Envelope Detection
parameter.

0.7

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 30 of 39 August 14, 2008

CREC.Frontend.cuberoot Replace Log function with a cube root
in dB power calculations.

NO

CREC.Frontend.forgetfactor Forget factor for channel
normalisation.

50

CREC.Acoustic.dimen Defines the number of dimensions in
the whole word acoustic vector.

36

CREC.Acoustic.whole_skip State skip penalty for whole words. 40

CREC.Acoustic.whole_stay State loop penalty for whole words. 40

CREC.Acoustic.minvar Floor value for variance. 2860

CREC.Acoustic.maxvar Ceiling value for variance. 2860

CREC.Acoustic.frame_period Acoustic matching frame period. 20

CREC.Pattern.imelda_scale Covariance scaling in IMELDA. 14

CREC.Pattern.mix_score_scale Scaling factor for subword distances. 0.46

CREC.Pattern.uni_score_scale Scaling factor for wholeword
distances.

0.46

5.3.2.1 Other Recognition Parameters

Parameter Name Description Typical
Value(s)

CREC.Pattern.dimen Number of dimensions in the pattern vector; the acoustic
models are packaged with 28 dimensions, only a value
lower than 28 can be used

26-36

5.3.3 Tunable Parameters

The following parameters may be adjusted during parameter tuning in order to optimize the performance of the
recognizer on a particular test Corpus.

Beginning of Utterance detection
The following parameters control the initial speech / silence detection within SREC.

Parameter Name Description Typical
Value(s)

Minimum Maximum

CREC.Frontend.do_smooth_c0 Controls whether C0 is smoothed prior
to voicing detection.

NO

CREC.Frontend.speech_detect Before any kind of processing begins,
first detect that some speech has
occurred. This parameter sets the
threshold for this initial speech
detection.

14 0 80

CREC.Frontend.start_windback Once 'speech_detect' has been
exceeded, rewind by 'start_windback'
frames then begin frame by frame
processing. Specifically, this means
that each frame is marked as either
speech, unsure or silence.

50 0 60

CREC.Frontend.speech_above Threshold for marking an individual
frame as speech. [not used]

18

CREC.Frontend.ambient_within While marking each frame as either
speech, unsure or silence, maintain an
estimate of the background level.

7 0 80

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 31 of 39 August 14, 2008

Frames where C0 does not exceed the
sum of the current background value
and 'ambient_within' are used to
update the background estimate.

CREC.Frontend.utterance_allowance Where a frame is marked as silence
and the previous or next frame is
marked as speech, up to 'utterance
allowance' frames of the region
marked as 'silence' will be changed to
'unsure' in order to pad out the speech
section. This reduces the risk of
missing part of the utterance.

40 0 80

Timeout and End-of-Utterance Detection Parameters

Parameter Name Description Typical
Value(s)

Minimum Maximum

SREC.Recognizer.utterance_timeou
t

maximum number of (10ms) frames to
wait for declaring start of speech (ms);
beyond this number we assume there
no useful speech to come

400 100 600

cmdline.bgsniff number of (10ms) frames to wait for
background level estimation

25 4 25

cmdline.bgsniff_min minimum number of (10ms) frames to
wait for background level estimation

4 4 4

cmdline.silence_duration_in_fram
es

Wait for this many quiet (10ms) frames
before declaring end of speech,
counting starts *after* the hold_off
period, see
end_of_utterance_hold_off_in_frames
, measured in 10ms frames

100 0 999

cmdline.gatedmode whether start of speech pointing should
be done at all

1 0 1

cmdline.end_of_utterance_hold_of
f_in_frames

number of (10ms) frames to skip
before attempting end of speech
detection

30 30 30

CREC.Recognizer.max_frames Maximum number of (20ms) frames on
which we can run recognition; after this
number end-of-speech is automatically
declared, measured in 20ms frames

1000 100 2000

CREC.Recognizer.eou_thresold Score delta, by which the best search
state needs to be best before starting
to count frames for timeouts below.

150 1 999

CREC.Recognizer.terminal_timeout Default end of utterance timeout when
the search is at the end of the grammar
(Number of 20ms frames, ie see
do_skip_even_frames).

20 1 2000

CREC.Recognizer.non_terminal_tim
eout

End of utterance timeout for words that
do not occur at the end of the
utterance. (Number of 20ms frames, ie
see do_skip_even_frames).

200 1 2000

CREC.Recognizer.optional_termina
l_timeout

End of utterance timeout when the
search is optionally at the end of the
grammar, eg. after any digit in an
unconstrained digit recognition
(Number of 20ms frames, ie see
do_skip_even_frames).

40 1 2000

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 32 of 39 August 14, 2008

Channel normalization Parameters
ESR/SREC run channel normalization by estimating the channel mean and subtracting it from incoming frames
before they are presented to the recognizer. The cross-utterance channel normalization is slow, the in-utterance
channel normalization is fast.

Parameter Name Description Typical
Value(s)

Minimum Maxiimum

CREC.Frontend.swicms.forget_fact
or

The weight given to the long-term
average cmn vector, higher values
imply learning will be slow and steady,
low values mean learning is fast but
possibly unsteady. The weight is used
as a number of 20ms frames such that
new_mean = (400*old_mean +
new_data*amt_new_data)/(400+amt_n
ew_data)

400 1 65000

CREC.Frontend.swicms.sbindex Balances the frames to be used for
channel estimation, 100 means use
speech only, 0 means use background
only, with in-between integers allowed

100 0 100

CREC.Frontend.swicms.inutt.forge
t_factor2

The weight given to the short-term
average cmn vector, higher values
means learning is slow, low values
mean learning is fast. The same
formula as above is used.

40 1 65000

CREC.Frontend.swicms.inutt.disab
le_after

Number of 20ms frames after which to
disable further short-term cmn learning
(although we continue to apply it); we
restart learning after a channel reset

200 0 65000

CREC.Frontend.swicms.inutt.enabl
e_after

Number of 20ms speech frames after
which to apply short-term cmn; i.e.
before which the estimate is unreliable;
consideration of speech frames is done
by consulting
CREC.Frontend.start_windback

10 0 65000

Accuracy and N-Best Parameters
ESR/SREC is capable of creating N-Best results. The cpu and memory usage, plus accuracy on top choice and
nbest choices can be adjusted with these parameters.

Parameter Name Description Typical
Value(s)

Minimum Maxiimum

CREC.Recognizer.max_fsm_arcs Maximum number of grammar arcs the
recognizer can support searching

25000 100 65000

CREC.Recognizer.max_fsm_nodes Maximum number of grammar nodes
the recognizer can searching

14500 100 65000

CREC.Recognizer.max_model_states Number of states to be scored in the
acoustic model; this should not be
changed unless the acoustic model
changes

3600 3600 3600

CREC.Recognizer.max_frames Maximum number of frames on which
we can run recognition; after this
number end-of-speech is automatically
declared

1000 100 2000

CREC.Recognizer.viterbi_prune_th
resh

score based pruning threshold, higher
means more accuracy and more cpu
intensive

400 100 999

CREC.Recognizer.max_hmm_tokens memory based pruning on active 400 40 800

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 33 of 39 August 14, 2008

search states, higher means more
accuracy and more cpu/memory use

CREC.Recognizer.max_fsmnode_toke
ns

memory based pruning on active
search states, higher means more
accuracy and more cpu/memory use

400 40 800

CREC.Recognizer.max_altword_toke
ns

memory based pruning for nbest,
higher means more nbest accuracy but
more memory

400 40 800

CREC.Recognizer.max_word_tokens memory based pruning for nbest,
higher means more memory use but
more dense nbest

2000 40 9000

CREC.Recognizer.num_wordends_per
_frame

memory based pruning for nbest,
higher means more dense nbest, but
too high will require re-pruning, ie
max_word_tokens ~
nframes*num_wordends_per_frame,
but too many frames will cause cpu
intense repruning

10 1 20

Logging Parameters
SREC is capable of logging events, words added to the grammar dynamically, and recoding waveforms at runtime.
Such logging is useful for debugging and tuning.
SREC is capable of creating N-Best results. When in N-Best mode, SREC produces a list of the top N results rather
than just the most likely result.

Parameter Name Description Typical Value(s)

SREC.Recognizer.osi_log_level score based pruning threshold, higher means more
accuracy and more cpu intensiveIndicates the type of
logging to perform at runtime. OSI Log levels (bit set
indicates level is ON)
0 no logging
BIT 0 -> BASIC logging
BIT 1 -> AUDIO waveform logging
BIT 2 -> DYNAMIC ADD WORD logging
e.g. value is 3 = BASIC+AUDIO logging, no ADDWORD

4007

cmdline.DataCaptureDirectory Set to the full path that is used by SREC to save all logged
data.

../logs

Nametag Parameters

Parameter Name Description Typical
Value(s)

cmdline.nametagPath Specifies the base path for all nametags. For example, on some platforms, all
nametags are saved to Flash ROM, so their base path is /dev/flash.

/dev/flash

enableGetWaveform Must be enabled prior to a recognition in order for
SR_RecognizerResultGetWaveform() to return a value; otherwise the function
will return NULL.

FALSE

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 34 of 39 August 14, 2008

6 PHONETIC REPRESENTATION

SREC uses two formats for phonemes. The short form, as stored in “.ok” dictionary files is used for on-platform
representation and in grammar-compilation, with only a single character per phoneme. The long form is used to
when editing in a text editor. The converter, pht_to_long.pl is used to convert short forms to long, the long form can
be edited, then converted back to short using pht_to_short.pl. Alternatively, the “.ok” file can be edited directly. The
converter is in: device/extlibs/srec/tools/cmd/

SREC
(long)

SREC
(short)

Example SREC
(long)

SREC
(short)

Example

sil # silence (should not be used) IH i cliff, pinch
& & optional interword silence j j jail, george
AH) carpet, hard (generally followed by

/r/)
k k cake

AE , care, square (generally followed
by /r/)

l l lake, bowl

ee / city, appreciate (short) m m monk, memes
ih 6 establish, become n n name, can
OY < join, toys AW o nominal, bomb
OW ? town, allowed p p pan
uh @ about, alive, arena (short) OO q book, good
EY A able, ace, raise r r rake
ch C cheat, chair s s sister
dh D the, bother t t tool
EE E beach, teach (long) UH u beechnut, become (long)
AY I nine, five v v van
ul L additional, able w w we
ng N taking, giving y y you
OH O aloha, though (stressed) z z birds, bizarre
ur P amateur, sister (unstressed) AWH { blossom, board
sh S shake um } bottom, calcium
th T thin, both un ~ american, ambition
OOH U annuity, booth ENV ^ reserved for used as marker for slots
UR V worth, iceberg (stressed) jnk J reserved for used as marker for slots
zh Z abrasion EH e object, jet, express
oh] windows, donation (unstressed) f f freight
AA a avalanche, alabaster g g googol
b b brake h h head
eh c express, Kentucky d d dad

SREC uses special phonetic representations for digits and natural numbers. These should be checked in the
dictionaries provided and should be re-used for words containing such words.

 Zero, oh, one, two, three, four, five, six, seven, eight, nine; 0, 1, 2, … 9
 Eleven, … nineteen; 11, 12, … 19
 Twenty, .. ninety; 20, 30, .. 90

Using the phonetic representation conversion utilities (optional), from the ‘device’ directory:
export ESRSDK=`pwd`/extlibs/srec

perl pht_to_long.pl -ok $ESRSDK/config/en.us/dictionary/large.ok -otxt $ESRSDK/config/en.us/dictionary/large.edit
perl pht_to_short.pl -i $ESRSDK/config/en.us/dictionary/large.edit -ok $ESRSDK/config/en.us/dictionary/large.ok

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 35 of 39 August 14, 2008

6.1 Digit specific phonetic representation

SREC also uses word-specific phonetic representations, mostly to improve accuracy for digit recognition. All
word specific pronunciations are listed in the table below

1
, but a dictionary can also include some extra

pronunciations for these words. It is most important to keep at least the digit pronunciations (zero, oh, .. nine,
0-9) in the dictionary since these are the most commonly used.

orthography SREC (short) SREC (long)
0 4 OH0
0 =Y07 z0 EE0 r0 oh0
1 5F| w0 UH0 n0

10 2x| t0 EH0 n0
100 uhundr6d UH h UH n d r ih d
100 wunhundr6d w UH n h UH n d r ih

1000 wunT?z~d w UH n th OW z un d
11 6lev~ ih l EH v un
12 twelv t w EH l v
13 BW2Y| th0 UR0 t0 EE0 n0
14 RX02Y| f0 AH0 r0 t0 EE0 n0
15 R.R2Y| f0 IH0 f0 t0 EE0 n0
16 1.\12Y| s0 IH0 k0 s0 t0 EE0
17 1x3M2Y| s0 EH0 v0 un0 t0 EE0
18 H2Y| EY0 t0 EE0 n0
19 +>|2Y| n1 AY0 n0 t0 EE0 n0

2 2K t0 AA0
20 25x|2[t0 w0 EH0 n0 t0 ee0
20 25x|[t0 w0 EH0 n0 ee0

3 B0Y th0 r0 EE0
30 BW2[th0 UR0 t0 ee0

4 RX0 f0 AH0 r0
40 RX02[f0 AH0 r0 t0 ee0

5 R>3 f0 AY0 v0
50 R.R2[f0 IH0 f0 t0 ee0

6 1.\1 s0 IH0 k0 s0
60 1.\12[s0 IH0 k0 s0 t0 ee0

7 1x3M s0 EH0 v0 un0
70 1x3M2[s0 EH0 v0 un0 t0 ee0
70 1x3M[s0 EH0 v0 un0 ee0

8 H2 EY0 t0
80 H2[EY0 t0 ee0

9 +>| n1 AY0 n0
90 +>|2[n1 AY0 n0 t0 ee0
90 +>|[n1 AY0 n0 ee0

eight H2 EY0 t0
eighteen H2Y| EY0 t0 EE0 n0
eighteenth H22Y|G EY0 t0 t0 EE0 n0 th1
eighth H2G EY0 t0 th1
eightieth HQ[(G EY0 d0 ee0 ih0 th1
eighty H2[EY0 t0 ee0
fifteen R.R2Y| f0 IH0 f0 t0 EE0 n0
fifteenth R.R2Y|G f0 IH0 f0 t0 EE0 n0
fifth R.RG f0 IH0 f0 th1
fiftieth R.R2[(G f0 IH0 f0 t0 ee0 ih0
fifty R.R2[f0 IH0 f0 t0 ee0

1
this table was generated in part by perl $esr/tools/cmd/pht_to_long.pl -pht ../models/generic.pht -i large.ok -o large.txt; perl -anle

'shift(@F); $f="@F"; print if(/\d/);'large.txt > word-spec.txt

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 36 of 39 August 14, 2008

five R>3 f0 AY0 v0
fortieth RX0Q[(G f0 AH0 r0 d0 ee0 ih0
forty RX02[f0 AH0 r0 t0 ee0
four RX0 f0 AH0 r0
fourteen RX02Y| f0 AH0 r0 t0 EE0 n0
fourteenth RX02Y|G f0 AH0 r0 t0 EE0 n0
fourth RX0G f0 AH0 r0 th1
nine +>| n1 AY0 n0
nineteen +>|2Y| n1 AY0 n0 t0 EE0 n0
nineteenth +>|2Y|G n1 AY0 n0 t0 EE0 n0
ninetieth +>|Q[(G n1 AY0 n0 d0 ee0 ih0
ninety +>|2[n1 AY0 n0 t0 ee0
ninety +>|[n1 AY0 n0 ee0
ninth +>|G n1 AY0 n0 th1
no +4 n1 OH0
off 8R AW0 f0
off XR AH0 f0
oh 4 OH0
on 8| AW0 n0
on X| AH0 n0
one 5F| w0 UH0 n0
seven 1x3M s0 EH0 v0 un0
seventeen 1x3M2Y| s0 EH0 v0 un0 t0 EE0
seventeenth 1x3M2Y|G s0 EH0 v0 un0 t0 EE0
seventh 1x3MG s0 EH0 v0 un0 th1
seventieth 1x3MQ[(G s0 EH0 v0 un0 d0 ee0
seventy 1x3M2[s0 EH0 v0 un0 t0 ee0
seventy 1x3M[s0 EH0 v0 un0 ee0
six 1.\1 s0 IH0 k0 s0
sixteen 1.\12Y| s0 IH0 k0 s0 t0 EE0
sixteenth 1.\12Y|G s0 IH0 k0 s0 t0 EE0
sixth 1.\1G s0 IH0 k0 s0 th1
sixtieth 1.\12[(G s0 IH0 k0 s0 t0 ee0
sixty 1.\12[s0 IH0 k0 s0 t0 ee0
ten 2x| t0 EH0 n0
tenth 2x|G t0 EH0 n0 th1
third BWd th0 UR0 d
thirteen BW2Y| th0 UR0 t0 EE0 n0
thirteenth BW2Y|G th0 UR0 t0 EE0 n0 th
thirtieth BWQ[(G th0 UR0 d0 ee0 ih0 t
thirty BW2[th0 UR0 t0 ee0
three B0Y th0 r0 EE0
twentieth 25x|2[(G t0 w0 EH0 n0 t0 ee0
twenty 25x|2[t0 w0 EH0 n0 t0 ee0
twenty 25x|[t0 w0 EH0 n0 ee0
two 2K t0 AA0
yes 9x1 y0 EH0 s0
zero =Y07 z0 EE0 r0 oh0

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 37 of 39 August 14, 2008

7 SRECTEST COMMAND FILE FORMAT

The command file (a.k.a. TCP file because of the .tcp extension) consists of lines containing commands to be
executed by SRecTest. Each line consists of a command followed by zero or more parameters, or it contains a
comment.

Commands:

context_load context_path context_id rule_name voice_enroll_indicator
The context_load command loads a context into the recognizer for later use. This command is mandatory for
executing any recognition commands. To activate this context, use the context_use command. The SRecTest
program can store up to 4 contexts at a time.

The context path gives the location of the context.
The context_id is a unique identifier for this context. All context commands will refer to this id.
The rule_name is the rule that’s activated when the context is activated.
The voice_enroll_indicator indicates whether or not this context is for voice enrollment or not. “ve” indicates a voice
enrollment context. “not_ve” indicates the context is not for voice enrollment.

context_use context_id
The context_use command activates a previously loaded context. Any previously activated contexts must be de-
activated with context_free before this context can be activated.

The context_id is a unique identifier for this context. It was set with context_load. All context commands will refer to
this id.

context_free context_id
The context_free command de-activates the current active context. The context must be de-activated before another
context can be activated.

The context_id is a unique identifier for this context. It was set with context_load. All context commands will refer to
this id.

context_unload context_id
The context_unload command unloads a previously loaded context. The context must be de-activated, if it is active,
before being unloaded.

The context_id is a unique identifier for this context. It was set with context_load. All context commands will refer to
this id.

recognize_nist file_name bos_time eos_time transcription(s)
The recognize_nist command recognizes an audio file with a NIST header attached.

The file_name is the location of the audio file. This will be prepended with the -datapath that is passed on the
command line.
The bos_time is the time in seconds for the beginning of speech. If not known, put 0. [NOT SUPPORTED]
The eos_time is the time in seconds for the end of speech. If not known, put 0. [NOT SUPPORTED]
The transcription(s) contains a space delimited set of words for the audio being recognized.

recognize_pcm file_name bos_time eos_time transcription(s)
The recognize_pcm command recognizes an audio file with straight pcm encoding and no header attached.

The file_name is the location of the audio file. This will be prepended with the -datapath that is passed on the
command line.
The bos_time is the time in seconds for the beginning of speech. If not known, put 0. [NOT SUPPORTED]
The eos_time is the time in seconds for the end of speech. If not known, put 0. [NOT SUPPORTED]

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 38 of 39 August 14, 2008

The transcription(s) contains a space delimited set of words for the audio being recognized. This is the only place
where spaces are allowed in a parameter.

addwords_from_nametags slot
This command enrolls the set of nametags for a slot into the currently active grammar.

The slot is the placeholder in the grammar where the grammar developer intends to add words or phrases.

resetslots
This command resets all of the slots in the active grammar to their default settings.

addword slot word pronunciation weight sematic_tag
This command adds a word to the active grammar.

The slot is the placeholder in the grammar where the grammar developer intends to add words or phrases.
The word is the text to be added.
The pronunciation is the phoneme string for the word.
The weight <Finish Me>. Set this to zero for no weight applied.
The semantic_tag is the key that will be returned from the recognizer for this word.

context_compile
This command compiles the currently active grammar. This command takes no parameters.

context_save file_name
This command saves the currently active context to a file.

The filename is the name of the file that the grammar will be saved to. I don’t know if any path will be prepended to
this.

addword_from_last_nametag slot nametag_id weight
This command adds the specific nametag_id to a slot with the appropriate weight.

The slot is the placeholder in the grammar where the grammar developer intends to add words or phrases.
The nametag_id identifies the word being added.
The weight <Finish Me>. Set this to zero for no weight applied.

load_nametags file_name
This command loads a set of nametags that is stored in a file.

The filename is the name of the file that the nametags will be loaded from. I don’t know if any path will be prepended
to this.

save_nametags file_name
This command saves a set of nametags to a file.

The filename is the name of the file that the nametags will be stored to. I don’t know if any path will be prepended to
this.

clear_nametags
This command destroys the current set of nametags and creates a new empty set of nametags. This command takes
no parameters.

add_to_nametags nametag_id
This command adds a nametag id to a set of nametags.

The nametag_id identifies the nametag set.

acousticstate_load file_name
This command loads the acoustic state that is stored in a file.

SREC User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.42
Confidential – Nuance Proprietary Information Page 39 of 39 August 14, 2008

The file_name is the name of the file where the acoustic state data is loaded from.
.
acousticstate_reset
This command clears the acoustic state of the recognizer. This is mainly to run a test as if the waveforms that follow
were presented at startup. This resets only the cepstral mean values, not the speech detection state values. This
command takes no parameters.

forced_rec mode
This command sets the recognition mode in the recognizer.

The mode can be one of : on, meaning it is always on; off, meaning it is always off; one_time, meaning it is on once
then turned off.

#
This is the comment indicator. It must begin the line. This line is skipped during processing.

change_sample_rate new_rate
This command sets the sample rate of the audio in the recognizer. This does not affect the audio device in any way.

The new_sample_rate can be one of 8000, 11025, 16000 or 22050.

set_audio_size new_size
This command sets the sample size of the audio in the recognizer. This affects how much audio is requested by the
application from the file or audio device or audio file and how much data is passed to the recognizer.

The new_size can be in the range of 1 to 10240 bytes.

