
for SREC RC-1 for Android

UAPI User Guide

NUANCE PROFESSIONAL SERVICES I Version 1.0 I December 20, 2007

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 2 of 25 December 20, 2007

DOCUMENT HISTORY

Date Revised by Version Summary of Changes

12/20/2007 K. Evdokimov
Andy Wyatt

1.0 For delivery with SREC RC-1 for Android.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 3 of 25 December 20, 2007

TABLE OF CONTENTS

1 Audience ... 4

2 References.. 5

3 Glossary .. 6

4 Tables and Figures.. 7
4.1 Tables ..7
4.2 Figures ...7

5 Overview ... 8
5.1 UAPI highlights...8
5.2 SREC Implementation capabilities ...8
5.3 System Requirements ..9

6 Recognizer: android.speech.recognition ... 10
6.1 Hello World application...10
6.2 Instantiation of the Recognizer...14
6.3 Configuration of the Recognizer...14

6.3.1 Configuration State System..15
6.3.2 Configuration is Synchronous ..16

6.4 Busy-Idle State System..16
6.5 Recognizer Events ...18
6.6 Recognition Results ...18
6.7 Audio Management ..18

6.7.1 Microphone ..19
6.7.2 MediaFileReader..20
6.7.3 MediaFileWriter ..20
6.7.4 DeviceSpeaker...20

6.8 Error Handling ..20
6.8.1 Recognizer Errors ..21

6.9 Other Recognizer Functionality ..21
6.9.1 Acoustic Adaptation..21
6.9.2 Recognizer Parameters..22

7 SREC Grammars .. 24
7.1 Editing grammars ...24
7.2 Compiling grammars ..24
7.3 Dynamic Grammar modification at runtime ..24
7.4 Additional Grammar Concepts ...25

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 4 of 25 December 20, 2007

1 AUDIENCE

This document is intended for application developers writing speech enabled applications using UAPI SREC
recognizer on Android Platform. An understanding of the Java programming language and the core
Java APIs is assumed.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 5 of 25 December 20, 2007

2 REFERENCES

1. SREC User Guide, Version 1.0, December 20, 2007

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 6 of 25 December 20, 2007

3 GLOSSARY

UAPI
Unified API

JNI
Java Native Interface

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 7 of 25 December 20, 2007

4 TABLES AND FIGURES

4.1 Tables

Table 1 Minimum System Requirements ...9
Table 2: Asynchronous Grammar Methods and Events...21
Table 3: Asynchronous Recognizer Methods and Events..21
Table 4: Dynamic Recognizer Parameters...23

4.2 Figures

Figure 1: Recognizer Configuration State System ...15
Figure 2: IDLE and BUSY Recognizer states...17
Figure 3: Microphone State System...19

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 8 of 25 December 20, 2007

5 OVERVIEW

The Unified API (UAPI) is a common interface by which mobile applications may access device-resident and network-
resident media resources. The UAPI has been designed to allow applications to access both in a transparent manner
and to adjust usage as network connectivity warrants.

The term “unified” in “Unified API” refers to the unification of embedded and network speech technologies under the
same API.

This document introduces the UAPI interface to SREC embedded speech recognition engine on Android Platform.
The UAPI is implemented in the android.speech.recognition Java API package.

The UAPI User Guide is a programmer’s guide to developing speech applications using the
android.speech.recognition package on Android Platform. A comprehensive API reference (javadoc) for
android.speech.recognition is available.

In this guide the terms UAPI, SREC and Recognizer are used interchangeably.

5.1 UAPI highlights

 Java API

 Multithreaded

 Asynchronous

 Platform independent

 Implementation independent

 Language independent

 Unified interface for network and embedded (local) recognizers.

5.2 SREC Implementation capabilities

 SREC is a continuous speech recognizer. This means that the speaker doesn’t have to pause between the
words when giving complex commands.

 SREC is a speaker independent recognizer.

 SREC is a phoneme-based recognizer. This allows any word to be recognized without previous training.
Despite its phoneme-based nature, SREC also uses some whole word models to maximize accuracy for
specific categories of words such as digits.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 9 of 25 December 20, 2007

 SREC is a constrained speech (grammar based) recognizer

 SREC supports dynamic word addition to the grammar. Online Grapheme-to-Phoneme is supported. This
allows the application to add new words to the grammar and perform the conversion from standard
orthography to the appropriate phonetic dictionary.

 SREC supports voice enrollment. SREC can learn new words “on the fly” from a given speaker. This means
that one SREC-based application can train online, store and later recognize user specific words (also known
as voice tags or speaker-dependent words). Training requires only one utterance of the user word (more
than one is possible).

 SREC supports a simple semantic interpretation language that allows grammar developers to associate
grammar-specific orthographies and/or synonyms to application actions.

 US English language support only (in this release)

 Push-to-talk (no support for echo cancellation)

 Prompting (Speaker interface) not supported

 End point detection

 Native implementation (JNI)

5.3 System Requirements

The application and recognition engine will reside on the Android platform, whose minimum specifications are
detailed in the table below:

Platform Name Google development platform “sooner”

Processor model
TI OMAP, Qualcomm or similar with ARM9 or
ARM11 core.

Processor clock 190 MHz minimum

RAM Minimum: 32 MB SDRAM, 32 MB Flash

Audio Input 16 bit, PCM format, 8 kHz

Operating System
Google Open Handset Distribution, now known as
“Android”, based on Linux OS and Java 2 SE.

Debugger Tools part of Ubuntu Linux 6.06 and Mac OS X.

C Compiler Tools part of Ubuntu Linux 6.06 and Mac OS X.

Table 1 Minimum System Requirements

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 10 of 25 December 20, 2007

6 RECOGNIZER: android.speech.recognition

The javax.speech.recognition package defines the EmbeddedRecognizer interface and well as a set of
supporting classes and interfaces.

The functionality of the Unified API is grouped into 5 modules:
 EmbeddedRecognizer

 Microphone

 DeviceSpeaker

 MediaFileReader

 MediaFileWriter

A typical application would only use a Recognizer and a Microphone. The other modules are available for
convenience and testability.

This section begins with a simple code example, and then reviews the capabilities of the UAPI in more detail through
the following sub-sections.

6.1 Hello World application

The following example shows a simple application that uses SREC recognizer. In this example, we define a grammar
that allows a user to say either “yes” or “no”. The grammar is defined using the W3C Speech Recognition Grammar
Specification Version 1 grammar format. This format is documented by the W3C grammar specification at
http://www.w3.org/TR/grammar-spec. Please see “UAPI User Guide” for specific details on SREC grammar format.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<grammar version="1.0" xml:lang="en-US" mode="voice" root="_boolean">

<rule id="_boolean" scope="public">
<one-of>

<item>yes <tag>MEANING='1'</tag></item>
<item>no <tag>MEANING='0'</tag></item>
<item> <ruleref uri="#ROOT"/> </item>

</one-of>
</rule>

<rule id="ROOT" scope="public">
<item>__ROOT__</item>
</rule>

</grammar>

The following code shows how to obtain a recognizer, create and load the grammar, and then to process microphone
based speech using the grammar. After the applications processes the audio input, it performs some cleanup and
exits.

/*---*
* HelloWorld.java *
/*---*

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 11 of 25 December 20, 2007

* HelloWorld.java *
* *
* Copyright 2007 Nuance Communciations, Inc. *
* *
* Licensed under the Apache License, Version 2.0 (the 'License'); *
* you may not use this file except in compliance with the License. *
* *
* You may obtain a copy of the License at *
* http://www.apache.org/licenses/LICENSE-2.0 *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an 'AS IS' BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* *
---/

package android.speech.recognition.examples;

import java.util.Hashtable;

import android.speech.recognition.EmbeddedRecognizer;
import android.speech.recognition.AbstractRecognizerListener;
import android.speech.recognition.RecognizerListener;

import android.speech.recognition.SrecGrammar;
import android.speech.recognition.G2GConfiguration;
import android.speech.recognition.SrecGrammarListener;
import android.speech.recognition.AbstractSrecGrammarListener;
import android.speech.recognition.GrammarListener;

import android.speech.recognition.Microphone;
import android.speech.recognition.AudioSource;
import android.speech.recognition.AudioStream;
import android.speech.recognition.Codec;

import android.speech.recognition.NBestRecognitionResult;
import android.speech.recognition.NBestRecognitionResult.Entry;

/**
* Hello World application for UAPI Users Guide.
*
* @author kman
*/

public class HelloWorld extends AbstractRecognizerListener
implements RecognizerListener

{
static final String ESRSDK =
(System.getenv("ESRSDK") != null) ? System.getenv("ESRSDK") :

"/system/usr/srec";

EmbeddedRecognizer rec;
SrecGrammar grammar;

boolean bDone = false;

public static void main(String[] args)

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 12 of 25 December 20, 2007

{
try {

HelloWorld helloWorld = new HelloWorld();

helloWorld.recognize();

}
catch (Exception e) {

e.printStackTrace();
}

}

public void recognize()
{

try {

//obtain the recognizer
rec = EmbeddedRecognizer.getInstance();

//configure the recognizer
String recConfig = ESRSDK + "/config/en.us/baseline11k.par";
System.out.println("configuring recognizer with " + recConfig);
rec.configure(recConfig);

//set listener
rec.setListener(this);

//create grammar
String grammarPath = ESRSDK + "/config/en.us/grammars/boolean.g2g";
System.out.println("creating grammar " + grammarPath);
grammar =
(SrecGrammar) rec.createGrammar(grammarPath,

new HelloWorldGrammarConfig());

//kick-off grammar load
System.out.println("loading grammar");
grammar.load();

synchronized (this) {
while (!bDone) {

wait();
}
}

}
catch (Exception e) {

e.printStackTrace();
}

System.out.println("good bye.");
}

private class HelloWorldGrammarListener extends AbstractSrecGrammarListener
implements SrecGrammarListener

{
@Override
public void onError(Exception e)

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 13 of 25 December 20, 2007

{
System.out.println("Error during grammar load: " + e.toString());

}

@Override
public void onLoaded()
{

System.out.println("grammar loaded");

System.out.println("setting up microphone for 16bit 11KHz");
Microphone mic = Microphone.getInstance();
mic.setCodec(Codec.PCM_16BIT_11K);
AudioStream audioStream = mic.createAudio();
mic.start();

System.out.println("Please say \"yes\" or \"no\"");

rec.recognize(audioStream, grammar);
}

}

private class HelloWorldGrammarConfig implements G2GConfiguration
{
SrecGrammarListener grammarListener = new HelloWorldGrammarListener();

public GrammarListener getListener()
{

return grammarListener;
}

public Object grammarToMeaning(String semanticMeaning,
Hashtable<String, String> parameters)

{
return semanticMeaning;

}
}

/* RecognizerListener overrides */
@Override
public void onRecognitionFailure(RecognizerListener.FailureReason reason)
{
System.out.println("recognition failed: " + reason.toString());

}

@Override
public void onRecognitionSuccess(NBestRecognitionResult result)
{
int numResults = result.getSize();
System.out.println("RECOGNITION SUCCESS: got " + numResults + " results.");

NBestRecognitionResult.Entry entry;
for (int i = 0; i < numResults; i++)
{

entry = result.getEntry(i);
System.out.println("result " + (i + 1) + ": '" + entry.getLiteralMeaning() +

"'");
}

}

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 14 of 25 December 20, 2007

@Override
public void onStopped()
{
System.out.println("done recognizing");

Microphone.getInstance().stop();

synchronized (this) {
bDone = true;
notifyAll();

}
}

}

This example illustrates the basic steps which UAPI interface should be used:

 Instantiate the Recognizer: EmbeddedRrcognizer.getInstance() is used to obtain an instance of the
Recognizer.

 Configure Recognizer: configure() call is used to configure recognizer.

 Create and load grammars: EmbeddedRecongizer.createGrammar() and SrecGrammar.load() are
used to create the grammar object and load the grammar from file.

 Attach the recognizer listener to the recognizer

 Create AudioStream and start AudioSource

 Start recognition

 Listen for and process results

 Stop AudioSource

 Cleanup

6.2 Instantiation of the Recognizer

EmbeddedRecognizer instantiation follows the singleton design pattern. There is only one instance of
EmbeddedRecognizer per application process. This single instance of the recognizer is obtained via a call to
EmbeddedRecognizer.getInstance().

6.3 Configuration of the Recognizer

Before the recognizer is used to process speech it needs to be configured using
EmbeddedRecognizer.configure()method:

public abstract void configure(java.lang.String config)
throws java.lang.IllegalArgumentException,

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 15 of 25 December 20, 2007

java.io.FileNotFoundException,
java.io.IOException,
java.lang.UnsatisfiedLinkError,
java.lang.ClassNotFoundException

EmbeddedRecognizer configuration is the process during which the system resources necessary for operation of
the recognizer are obtained. EmbeddedRecognizer is not automatically configured at the system start-up time
because it requires a substantial CPU and memory resources. Also the process of configuration is a relatively slow
procedure, when compared to typical recognizer response times.

6.3.1 Configuration State System

The behavior of an EmbeddedRecognizer with respect to configuration can be described by the state system in
Figure 1. Each state defines a particular mode of operation of an EmbeddedRecognizer. The
EmbeddedRecognizer behaves differently depending on its current state. UAPI does not provide for an explicit way
to query or modify the state of EmbeddedRecognizer. The EmbeddedRecognizer state system detailed below is
meant as an aid to application developer, to illustrate applicability and behavior of different methods as different
times.

In some cases applications can monitor the EmbeddedRecognizer state through the event/listener system, e.g. by
using EmbeddedRecognzierListener.onStopped(). However, there are no events associated with the
completion of the configure() operation.

Figure 1: Recognizer Configuration State System

Each block represents a state of the EmbeddedRecognizer. The EmbeddedRecognizer is always in one of the
four specified states. There are no events issued as the recognizer transitions between these states. The current
configuration state of the recognizer cannot be queried.

The normal operational state of the EmbeddedRecognizer is CONFIGURED. While in the CONFIGURED state, the
EmbeddedRecognizer will be either BUSY or IDLE. The BUSY-IDLE state subsystem of the recognizer’s
CONFIGURED state is described in section 6.4.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 16 of 25 December 20, 2007

It is important to note that once the recognizer is configured, it cannot return to the UNCONFIGURED state. There is no
way for the application developer to cause the recognizer to free the resources obtained during the initial
configuration process.

The recognizer can be reconfigured. The reconfiguration resets all recognizer state, parameters to the defaults
specified by the config parameter of configure() method, which transitions the recognizer into the
RECONFGURING state. If no errors occur during reconfiguring, the recognizer then returns to the CONFIGURED state,
just as it had after being configured initially.

The reconfiguration process invalidates any grammars that have been created. The grammar objects created in the
context of the previous configurations should not be used in the context of the new configuration. The old grammar
objects should be dereferenced and the new grammar object should be created in the context of the current
recognizer configuration. Any operations on invalid (old) grammar object will fail.

6.3.2 Configuration is Synchronous

Unlike most of the android.speech.recognition API methods, the configure() method is synchronous
(blocking). For advanced applications, it is often desirable to start up the configuration of a recognizer in a
background thread while other parts of the application are being initialized. For GUI applications, it is often necessary
to process user interface related events concurrently with configuration of the recognizer. This can be achieved by
calling the configure()method in a separate thread. The following code shows an example of this using an inner
class implementation of the Runnable interface, as in the following example.

new Thread(new Runnable() {
public void run() {
try {
…configure()
}
catch (Exception e) {
e.printStackTrace();
}
}
}).start();

// Do other stuff while allocation takes place
...
// Now wait until configuration is completed
//

A configure() call during CONFIGURING or RECONFIGURING states will block until the
previous configuration is completed and then run normally.

A configure() call will fail with if the recognizer is not in the IDLE state.

6.4 Busy-Idle State System

An EmbeddedRecognizer in CONFIGURED state has BUSY and IDLE sub-states. Once an
EmbeddedRecognizer reaches CONFIGURED state, it also enters the IDLE state.

The IDLE/BUSY state indicates whether the recognizer is busy performing a tack such as processing input audio or
performing a grammar related operation.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 17 of 25 December 20, 2007

Figure 2 shows the BUSY-IDLE state sub-system of an EmbeddedRecognizer.

Figure 2: IDLE and BUSY Recognizer states

The following methods represent the requests to the recognizer and cause the transition from IDLE to BUSY state:

EmbeddedRecognizer.resetAcousticState

EmbeddedRecognizer.recognize

EmbeddedRecognzier.getParameters

EmbeddedRecognizer.setParameters

SrecGrammar.addItemList

SrecGrammar.compileAllSlotsve

SrecGrammar.resetAllSlots

SrecGrammar.save

SrecGrammar.load

SrecGrammar.unload

The EmbeddedRecognizer interface does not provide any explicit methods to test or monitor the IDLE/BUSY state
directly. Instead, the application developer should monitor recognizer and grammar related events to determine when
the current operation is completed and the recognizer returns to the IDLE state.

The implicit IDLE/BUSY state sub-system determines how the recognizer and grammar operations are handled.

Calling the methods from the above list while the recognizer is in the BUSY state is illegal. The UAPI contact does not
guarantee the behaviour or the order of execution of the methods listed above if called while the recognizer is in the
BUSY state. Application developer must wait for the current asynchronous operation to complete and the recognizer
enter the IDLE state before invoking the next call on the recognizer.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 18 of 25 December 20, 2007

One exception to the rule above is the EmbeddedRecognizer.stop() method which is intended to be called while
the recognizer is in the BUSY state.

6.5 Recognizer Events

During recognition process the recognizer generates several events. The typical sequence of events during
recognition is as follows:

 onStarted – indicates the start of the recognition. This is the first event during the recognition. It is always
issued.

 onBeginningOfSpeech – begin of speech detected. Issued only if the recognizer detects the beginning

of speech. May not occur.

 onEndOfSpeech – end of speech detected. Issued only if the recognizer detects the end of speech in the

input audio stream. May not occur.

 onRecognitionSuccess or onRecognitionFailure – one and only one of these is guaranteed to
occur.

 onStopped – indicated the end of the recognition. This is the last event during the recognition sequence

of events. It is guaranteed to occur.

6.6 Recognition Results

Recognition results are provided by the recognizer to an application when the recognizer processes the incoming
speech that matches the current recognition grammar. The recognition results provide an application with information
about what the speaker said. The recognizer may not be correct about what the speaker said every time. Never the
less, this situation of misrecognition is still referred to as recognition success. The situation when the recognizer is
unable to make any guesses as to what the speaker said is called recognition failure. Recognition failure should not
be confused with unexpected API errors, exceptions and failures. Recognition failure is an expected outcome of
speech recognition.

The recognizer notifies an application of the recognition results by the onRecognitionSuccess and
onRecognitionFailure events issued to the RecognizerListener.

6.7 Audio Management

The input audio for the recognizer is specified by means of AudioSream objects. Each AudioStream object
represents a sequence of audio samples associated with an audio source. The AudioStream interface does not
have any public members. The application writer does not manipulate the audio data directly. Audio manipulation is
performed by the underlying implementation.

The audio data originates from AudioSource objects. There are two types of AudioSource objects currently
available: Microphone and MediaFileReader. Microphone represents the microphone on the Android platform.
The MediaFileReader objects allow application developer to work with audio data stored in files.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 19 of 25 December 20, 2007

Each AudioStream object is associated with one and only one AudioSource. There may be multiple
AudioStream objects associated with a single AudioSource object.

From the logical perspective, the application developer may view AudioStream objects as containers for audio data.
The AudioSource object associated with the AudioStream object writes audio data to the AudioStream object
and the EmbeddedRecognizer and MediaFileWriter objects read audio data from the AudioStream.

6.7.1 Microphone

Microphone instantiation follows the singleton design pattern. There is only one instance of Microphone per
application process. This single instance of the microphone is obtained via a call to Microphone.getInstance().

The behavior of the Microphone can be described by the state system in Figure 3: Microphone State System.

Figure 3: Microphone State System

In the IDLE state the Microphone does nothing. While in the RECORDING state the Microphone sends audio data
from the underlying microphone system device into all AudioStream objects associated with the Microphone.

Microphone.start() method transitions the Microphone from the IDLE state to the STARTING state.
Microphone.stop() method transitions the Microphone from the RECODRING state to the STOPPING state.

When the Microphone completes the IDLE-STARTING-RECORDING state transition, the Microphone issues
onStarted() event to the associated MicrophoneListener. The RECORDING-STOPPING-IDLE state transition
is indicated by the onStopped() event. Unexpected errors during the state machine traversal are indicated by the
onError() event sent to the MicrophoneListener.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 20 of 25 December 20, 2007

6.7.2 MediaFileReader

MediaFilerReader supports reading audio from a file. Speech application developers will typically use this
interface for off-line debugging and testing.

Below is the section from HelloWorld application modified to use audio stored in a file rather than microphone
based audio.

String audioPath = ESRSDK + "/config/en.us/audio/v139/v139_113.nwv";
int headerLength = 1024;
MediaFileReader mediaFileReader =
MediaFileReader.create(audioPath, headerLength, Codec.PCM_16BIT_11K,

null);

//make MediaFileReader file look more like microphone
mediaFileReader.setMode(MediaFileReader.Mode.REAL_TIME);
AudioStream audioStream = mediaFileReader.createAudio();
mediaFileReader.start();

rec.recognize(audioStream, grammar);

6.7.3 MediaFileWriter

MediaFileWriter interface allows programmers to save AudioStream audio data into a file. Application developers will
typically use this interface for saving recognized audio input for offline processing and debugging. For more
information please see UAPI Reference on android.speech.recognition.MediaFileWriter.

6.7.4 DeviceSpeaker

DeviceSpeaker is an interface for audio output. It can be used to implement audio prompts during speech recognition
application. See UAPI reference on android.speech.recognition.DeviceSpeaker for more details. This
interface is not implemented on Android Platform with this release.

6.8 Error Handling

This section describes how the errors from UAPI methods are reported to the applciation. The terms error and failure
in this section refer to the unexpected errors (exceptions) arising from execution of various methods of UAPI. These
API function errors and failures should not be confused with the recognition failures which are also sometimes
referred to as recognition errors. The recognition failure (or recognition error) is an expected outcome of speech
recognition process.

UAPI features both synchronous and asynchronous functionality. Synchronous methods of UAPI follow a typical Java
design pattern under which a method either succeeds or throws an exception.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 21 of 25 December 20, 2007

6.8.1 Recognizer Errors

The outcomes of asynchronous grammar operation are indicated by events delivered to the GrammarListener
specified by the GrammarConfiguration. The table below summarizes the asynchronous grammar operations and
the corresponding asynchronous outcomes.

Grammar method success failure

addItemList onAddItemList onAddItemListFailure

compileAllSlots onCompileAllSlots onError

resetAllSlots onResetAllSlots onError

save onSaved onEror

load onLoaded onError

unload onUnloaded onError

Table 2: Asynchronous Grammar Methods and Events

The outcomes of asynchronous recognizer operations are indicated by events delivered to the
RecognizerListener specified by the EmbeddedRecognizer.setListener(…) method. The table below summarizes
the asynchronous recognizer operations and the corresponding asynchronous outcomes.

Recognizer method success failure

resetAcousticState onAcousticStateReset onError

getParameters onParametersGet onParametersGetError

setParameters onParametersSet onParametersSetError

recognize onStopped onError

Table 3: Asynchronous Recognizer Methods and Events

6.9 Other Recognizer Functionality

6.9.1 Acoustic Adaptation

The recognizer may adapt to the speaker and speaker environment in order to improve recognition accuracy. This
adaptation process relies on the recognizer preserving some amount of acoustic state information between the
recognitions.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 22 of 25 December 20, 2007

In order to achieve the best accuracy, the application developer should clear the accumulated acoustic state
information when the speaker or the speaker environment is known to have changed.

It is also important to explicitly control recognizer adaptation during automated accuracy tests in order to obtain
consistent accuracy results.

The acoustic state information is cleared during configuration or reconfiguration process as the recognizer transitions
through the CONFIGURING or RECONFIGURING states.

The application developer can control the acoustic state information of the recognizer by calling
EmbeddedRecognizer.resetAcousticState() method. Upon successful completion of the call, the recognizer
acoustic state information is reset and the recognizer is returned to the same state acoustic adaptation state it was in
right after it entered CONFIGURED state but before any calls to recognize(…).

The EmbeddedRecognizer.resetAcousticState() is an asynchronous (non-blocking) method. A successful
completion is indicated via RecognizerListener.onAcousticStateReset() event. An error is indicated by
RecognizerListener.onError(…) event.

6.9.2 Recognizer Parameters

The recognizer parameters that can be changed dynamically are listed in Table 4. For a complete list of recognizer
parameters, please refer to the SREC User Guide.

Parameter Name Description Typical
Values

Min Max

CREC.Frontend.swicms.cmn Channel normalization values in
string form. These values have no
logical value to the application. They
should normally only be set after
having been get previously.

SREC.Recognizer.utterance_timeout maximum number of frames to wait
for declaring start of speech (ms)

400

CREC.Frontend.samplerate Sample rate of the audio data
(samples per second); this is an
indication on the input audio such that
audio can be a frequency higher than
the minimum required by the acoustic
model (high_cut), in such a case
some high frequency content is
ignored

8000,
11025,
16000,
22050

8000 22050

CREC.Recognizer.terminal_timeout Default end of utterance timeout
when the search is at the end of the
grammar (Number of 20ms frames,
ie see do_skip_even_frames).

20

CREC.Recognizer.optional_terminal_timeout End of utterance timeout when the
search is optionally at the end of the
grammar, eg. after any digit in an
unconstrained digit recognition
(Number of 20ms frames, ie see
do_skip_even_frames).

40

CREC.Recognizer.non_terminal_timeout End of utterance timeout for words
that do not occur at the end of the
utterance. (Number of 20ms frames,

200

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 23 of 25 December 20, 2007

ie see do_skip_even_frames).

CREC.Recognizer.eou_threshold Score delta, by which this search
state needs to be best before starting
to count frames for timeouts below.

150

enableGetWaveform Used only during voice enrollment
process.

If set to “1” before the recognition, the
voicetag produced during the
recognition will also contain the audio
data produced during the recognition
process.

The user can retrieve the audio data
with the
VoicetagItem.getAudio()
function or it can be saved to a file at
the same time the voicetag item is
saved using the
VoicetagItem.save(…) function.

The audio is in PCM format and is
start-pointed and end-pointed.

“0”
“1”

Table 4: Dynamic Recognizer Parameters

The parameters summarized above can be manipulated during runtime via
EmbeddedRecognizer.setParameters() and EmbeddedRecognizer.getParametres().

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 24 of 25 December 20, 2007

7 SREC GRAMMARS

7.1 Editing grammars

SREC grammars are defined in the W3C XML format and possibly extended at run-time through dynamic word
addition and for a different tag interpretation language. For details of the grammar formalism, developers should
refer the to W3C grammar specification at http://www.w3.org/TR/grammar-spec, with the following exceptions:

 support for <item repeat=”$N” … $N can any number
 support for <item repeat=”$N-” … $N can any number
 support for <item repeat=”$N-$M” … but $M>$N

The important parameters that are looked for in the grammar are near the top of the file:

<?xml version="1.0" encoding="ISO8859-1"?>
<grammar xml:lang="en-US" version="1.0" mode="speech" root="myRoot">

xml:lang … indicates the language of the grammar, the specified language will trigger use of the right dictionaries
and acoustic models to compile the grammar. The engine supports an extensive but limited set of languages.
Language encoding conventions are detailed in the Phonology chapter.

encoding … for European language in which accents must be used, the use of ISO Latin-1 encoding is supported

7.2 Compiling grammars

Grammars must always be compiled off-line on desktop Linux. The command line instructions are as follows:

(1) % grxmlcompile -par /device/extlibs/srec/config/en.us/baseline.par -grxml
test.grxml
(2) % make_g2g –base test –out test.g2g

In Step 1, we create AT&T text format fsms (http://www.research.att.com/~fsmtools/fsm/man4/fsm.5.html). The
required files are:

 .map … the list of words
 .PCLG.txt … the finite-state transducer to be used for the search
 .Grev2.det.txt … the transducer to be used for nbest processing
 .P.txt … the semantic interpretation graph
 .script … the semantic interpretation scripts

These text files should not be edited; they are dumped for diagnostic purposes only.

In Step 2, we package these 5 files into a single binary format file to be used on the target platform.

7.3 Dynamic Grammar modification at runtime

The SREC recognizer supports the ability for an application to modify grammars at runtime. There are two ways to
modify the grammars as runtime: dynamic word addition and voice enrolment.

UAPI User Guide Nuance Professional Services

NUANCE COMMUNICATIONS, INC. Version 1.0
Confidential – Nuance Proprietary Information Page 25 of 25 December 20, 2007

SREC supports dynamic word addition to the grammar. Online Grapheme-to-Phoneme is supported. This allows the
application to add new words to the grammar and perform the conversion from standard orthography to the
appropriate phonetic dictionary.

SREC supports voice enrollment. SREC can learn new words “on the fly” from a given speaker. This means that one
SREC-based application can train online, store and later recognize user specific words (also known as voice tags or
speaker-dependent words). Training requires only one utterance of the user word (more than one is possible).

7.4 Additional Grammar Concepts

For additional information regarding grammars, please refer to the SREC User Guide.

