summaryrefslogtreecommitdiff
path: root/tools/thirdparty/OpenFst/fst/lib/partition.h
blob: 2b6db6b039f40307dfbdc3ff617b97538d43690e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// partition.h
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// \file Functions and classes to create a partition of states
//

#ifndef FST_LIB_PARTITION_H__
#define FST_LIB_PARTITION_H__

#include <algorithm>
#include <vector>

#include "fst/lib/queue.h"


namespace fst {

template <typename T> class PartitionIterator;

// \class Partition
// \brief Defines a partitioning of states. Typically used to represent
//        equivalence classes for Fst operations like minimization.
//
template <typename T>
class Partition {
  friend class PartitionIterator<T>;

  struct Element {
   Element() : value(0), next(0), prev(0) {}
   Element(T v) : value(v), next(0), prev(0) {}

   T        value;
   Element* next;
   Element* prev;
  };

 public:
  Partition() {}

  Partition(T num_states) {
    Initialize(num_states);
  }

  ~Partition() {
    for (size_t i = 0; i < elements_.size(); ++i)
      delete elements_[i];
  }

  // Create an empty partition for num_states. At initialization time
  // all elements are not assigned to a class (i.e class_index = -1).
  // Initialize just creates num_states of elements. All element
  // operations are then done by simply disconnecting the element from
  // it current class and placing it at the head of the next class.
  void Initialize(size_t num_states) {
    for (size_t i = 0; i < elements_.size(); ++i)
      delete elements_[i];
    elements_.clear();
    classes_.clear();
    class_index_.clear();

    elements_.resize(num_states);
    class_index_.resize(num_states, -1);
    class_size_.reserve(num_states);
    for (size_t i = 0; i < num_states; ++i)
      elements_[i] = new Element(i);
    num_states_ = num_states;
  }

  // Add a class, resize classes_ and class_size_ resource by 1.
  size_t AddClass() {
    size_t num_classes = classes_.size();
    classes_.resize(num_classes + 1, 0);
    class_size_.resize(num_classes + 1, 0);
    class_split_.resize(num_classes + 1, 0);
    split_size_.resize(num_classes + 1, 0);
    return num_classes;
  }

  void AllocateClasses(T num_classes) {
    size_t n = classes_.size() + num_classes;
    classes_.resize(n, 0);
    class_size_.resize(n, 0);
    class_split_.resize(n, 0);
    split_size_.resize(n, 0);
  }

  // Add element_id to class_id. The Add method is used to initialize
  // partition. Once elements have been added to a class, you need to
  // use the Move() method move an element from once class to another.
  void Add(T element_id, T class_id) {
    Element* element = elements_[element_id];

    if (classes_[class_id])
      classes_[class_id]->prev = element;
    element->next = classes_[class_id];
    element->prev = 0;
    classes_[class_id] = element;

    class_index_[element_id] = class_id;
    class_size_[class_id]++;
  }

  // Move and element_id to class_id. Disconnects (removes) element
  // from it current class and
  void Move(T element_id, T class_id) {
    T old_class_id = class_index_[element_id];

    Element* element = elements_[element_id];
    if (element->next) element->next->prev = element->prev;
    if (element->prev) element->prev->next = element->next;
    else               classes_[old_class_id] = element->next;

    Add(element_id, class_id);
    class_size_[old_class_id]--;
  }

  // split class on the element_id
  void SplitOn(T element_id) {
    T class_id = class_index_[element_id];
    if (class_size_[class_id] == 1) return;

    // first time class is split
    if (split_size_[class_id] == 0)
      visited_classes_.push_back(class_id);

    // increment size of split (set of element at head of chain)
    split_size_[class_id]++;

    // update split point
    if (class_split_[class_id] == 0)
      class_split_[class_id] = classes_[class_id];
    if (class_split_[class_id] == elements_[element_id])
      class_split_[class_id] = elements_[element_id]->next;

    // move to head of chain in same class
    Move(element_id, class_id);
  }

  // Finalize class_id, split if required, and update class_splits,
  // class indices of the newly created class. Returns the new_class id
  // or -1 if no new class was created.
  T SplitRefine(T class_id) {
    // only split if necessary
    if (class_size_[class_id] == split_size_[class_id]) {
      class_split_[class_id] = 0;
      split_size_[class_id] = 0;
      return -1;
    } else {

      T new_class = AddClass();
      size_t remainder = class_size_[class_id] - split_size_[class_id];
      if (remainder < (size_t)split_size_[class_id]) {  // add smaller 
        Element* split_el   = class_split_[class_id];
        classes_[new_class] = split_el;
        class_size_[class_id] = split_size_[class_id];
        class_size_[new_class] = remainder;
        split_el->prev->next = 0;
        split_el->prev = 0;
      } else {
        Element* split_el   = class_split_[class_id];
        classes_[new_class] = classes_[class_id];
        class_size_[class_id] = remainder;
        class_size_[new_class] = split_size_[class_id];
        split_el->prev->next = 0;
        split_el->prev = 0;
        classes_[class_id] = split_el;
      }

      // update class index for element in new class
      for (Element* el = classes_[new_class]; el; el = el->next)
        class_index_[el->value] = new_class;

      class_split_[class_id] = 0;
      split_size_[class_id] = 0;

      return new_class;
    }
  }

  // Once all states have been processed for a particular class C, we
  // can finalize the split. FinalizeSplit() will update each block in the
  // partition, create new once and update the queue of active classes
  // that require further refinement.
  template <class Queue>
  void FinalizeSplit(Queue* L) {
    for (size_t i = 0; i < visited_classes_.size(); ++i) {
      T new_class = SplitRefine(visited_classes_[i]);
      if (new_class != -1 && L)
        L->Enqueue(new_class);
    }
    visited_classes_.clear();
  }


  const T class_id(T element_id) const {
    return class_index_[element_id];
  }

  const vector<T>& class_sizes() const {
    return class_size_;
  }

  size_t class_size(T class_id)  const {
    return class_size_[class_id];
  }

  const T num_classes() const {
    return classes_.size();
  }


 private:
  int num_states_;

  // container of all elements (owner of ptrs)
  vector<Element*> elements_;

  // linked list of elements belonging to class
  vector<Element*> classes_;

  // pointer to split point for each class
  vector<Element*> class_split_;

  // class index of element
  vector<T> class_index_;

  // class sizes
  vector<T> class_size_;

  // size of split for each class
  vector<T> split_size_;

  // set of visited classes to be used in split refine
  vector<T> visited_classes_;
};


// iterate over members of a class in a partition
template <typename T>
class PartitionIterator {
  typedef typename Partition<T>::Element Element;
 public:
  PartitionIterator(const Partition<T>& partition, T class_id)
      : p_(partition),
        element_(p_.classes_[class_id]),
        class_id_(class_id) {}

  bool Done() {
    return (element_ == 0);
  }

  const T Value() {
    return (element_->value);
  }

  void Next() {
    element_ = element_->next;
  }

  void Reset() {
    element_ = p_.classes_[class_id_];
  }

 private:
  const Partition<T>& p_;

  const Element* element_;

  T class_id_;
};
}

#endif  // FST_LIB_PARTITION_H__