summaryrefslogtreecommitdiff
path: root/tools/thirdparty/OpenFst/fst/lib/symbol-table.h
blob: 0a67f2966b9b942667280b62c38aadb5493470f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// symbol-table.h
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//
// \file
// Classes to provide symbol-to-integer and integer-to-symbol mappings.

#ifndef FST_LIB_SYMBOL_TABLE_H__
#define FST_LIB_SYMBOL_TABLE_H__

#include <ext/hash_map>
using __gnu_cxx::hash_map;
#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include "fst/lib/compat.h"



DECLARE_bool(fst_compat_symbols);

namespace fst {

class SymbolTableImpl {
  friend class SymbolTableIterator;
 public:
  SymbolTableImpl(const string &name)
      : name_(name), available_key_(0), ref_count_(1),
        check_sum_finalized_(false) {}
  ~SymbolTableImpl() {
    for (size_t i = 0; i < symbols_.size(); ++i)
      delete[] symbols_[i];
  }

  int64 AddSymbol(const string& symbol, int64 key);

  int64 AddSymbol(const string& symbol) {
    int64 key = Find(symbol);
    return (key == -1) ? AddSymbol(symbol, available_key_++) : key;
  }

  void AddTable(SymbolTableImpl* table) {
    for (size_t i = 0; i < table->symbols_.size(); ++i) {
      AddSymbol(table->symbols_[i]);
    }
  }

  static SymbolTableImpl* ReadText(const string& filename);

  static SymbolTableImpl* Read(istream &strm, const string& source);

  bool Write(ostream &strm) const;

  bool WriteText(ostream &strm) const;

  //
  // Return the string associated with the key. If the key is out of
  // range (<0, >max), return an empty string.
  string Find(int64 key) const {
    hash_map<int64, string>::const_iterator it =
      key_map_.find(key);
    if (it == key_map_.end()) {
      return "";
    }
    return it->second;
  }

  //
  // Return the key associated with the symbol. If the symbol
  // does not exists, return -1.
  int64 Find(const string& symbol) const {
    return Find(symbol.c_str());
  }

  //
  // Return the key associated with the symbol. If the symbol
  // does not exists, return -1.
  int64 Find(const char* symbol) const {
    hash_map<string, int64>::const_iterator it =
      symbol_map_.find(symbol);
    if (it == symbol_map_.end()) {
      return -1;
    }
    return it->second;
  }

  const string& Name() const { return name_; }

  int IncrRefCount() const {
    return ++ref_count_;
  }
  int DecrRefCount() const {
    return --ref_count_;
  }

  string CheckSum() const {
    if (!check_sum_finalized_) {
      RecomputeCheckSum();
      check_sum_string_ = check_sum_.Digest();
    }
    return check_sum_string_;
  }

  int64 AvailableKey() const {
    return available_key_;
  }

  // private support methods
 private:
  void RecomputeCheckSum() const;
  static SymbolTableImpl* Read1(istream &, const string &);

  string name_;
  int64 available_key_;
  vector<const char *> symbols_;
  hash_map<int64, string> key_map_;
  hash_map<string, int64> symbol_map_;

  mutable int ref_count_;
  mutable bool check_sum_finalized_;
  mutable MD5 check_sum_;
  mutable string check_sum_string_;

  DISALLOW_EVIL_CONSTRUCTORS(SymbolTableImpl);
};


class SymbolTableIterator;

//
// \class SymbolTable
// \brief Symbol (string) to int and reverse mapping
//
// The SymbolTable implements the mappings of labels to strings and reverse.
// SymbolTables are used to describe the alphabet of the input and output
// labels for arcs in a Finite State Transducer.
//
// SymbolTables are reference counted and can therefore be shared across
// multiple machines. For example a language model grammar G, with a
// SymbolTable for the words in the language model can share this symbol
// table with the lexical representation L o G.
//
class SymbolTable {
  friend class SymbolTableIterator;
 public:
  static const int64 kNoSymbol = -1;

  // Construct symbol table with a unique name.
  SymbolTable(const string& name) : impl_(new SymbolTableImpl(name)) {}

  // Create a reference counted copy.
  SymbolTable(const SymbolTable& table) : impl_(table.impl_) {
    impl_->IncrRefCount();
  }

  // Derefence implentation object. When reference count hits 0, delete
  // implementation.
  ~SymbolTable() {
    if (!impl_->DecrRefCount()) delete impl_;
  }

  // create a reference counted copy
  SymbolTable* Copy() const {
    return new SymbolTable(*this);
  }

  // Add a symbol with given key to table. A symbol table also
  // keeps track of the last available key (highest key value in
  // the symbol table).
  //
  // \param symbol string symbol to add
  // \param key associated key for string symbol
  // \return the key created by the symbol table. Symbols allready added to
  //         the symbol table will not get a different key.
  int64 AddSymbol(const string& symbol, int64 key) {
    return impl_->AddSymbol(symbol, key);
  }

  // Add a symbol to the table. The associated value key is automatically
  // assigned by the symbol table.
  //
  // \param symbol string to add to the table
  // \return the value key assigned to the associated string symbol
  int64 AddSymbol(const string& symbol) {
    return impl_->AddSymbol(symbol);
  }

  // Add another symbol table to this table. All key values will be offset
  // by the current available key (highest key value in the symbol table).
  // Note string symbols with the same key value with still have the same
  // key value after the symbol table has been merged, but a different
  // value. Adding symbol tables do not result in changes in the base table.
  //
  // Merging N symbol tables is often useful when combining the various
  // name spaces of transducers to a unified representation.
  //
  // \param table the symbol table to add to this table
  void AddTable(const SymbolTable& table) {
    return impl_->AddTable(table.impl_);
  }

  // return the name of the symbol table
  const string& Name() const {
    return impl_->Name();
  }

  // return the MD5 check-sum for this table. All new symbols added to
  // the table will result in an updated checksum.
  string CheckSum() const {
    return impl_->CheckSum();
  }

  // read an ascii representation of the symbol table
  static SymbolTable* ReadText(const string& filename) {
    SymbolTableImpl* impl = SymbolTableImpl::ReadText(filename);
    if (!impl)
      return 0;
    else
      return new SymbolTable(impl);
  }

  // read a binary dump of the symbol table
  static SymbolTable* Read(istream &strm, const string& source) {
    SymbolTableImpl* impl = SymbolTableImpl::Read(strm, source);
    if (!impl)
      return 0;
    else
      return new SymbolTable(impl);
  }

  // read a binary dump of the symbol table
  static SymbolTable* Read(const string& filename) {
    ifstream strm(filename.c_str());
    if (!strm) {
      LOG(ERROR) << "SymbolTable::Read: Can't open file " << filename;
      return 0;
    }
    return Read(strm, filename);
  }

  bool Write(ostream  &strm) const {
    return impl_->Write(strm);
  }

  bool Write(const string& filename) const {
    ofstream strm(filename.c_str());
    if (!strm) {
      LOG(ERROR) << "SymbolTable::Write: Can't open file " << filename;
      return false;
    }
    return Write(strm);
  }

  // Dump an ascii text representation of the symbol table
  bool WriteText(ostream &strm) const {
    return impl_->WriteText(strm);
  }

  // Dump an ascii text representation of the symbol table
  bool WriteText(const string& filename) const {
    ofstream strm(filename.c_str());
    if (!strm) {
      LOG(ERROR) << "SymbolTable::WriteText: Can't open file " << filename;
      return false;
    }
    return WriteText(strm);
  }

  // Return the string associated with the key. If the key is out of
  // range (<0, >max), log error and return an empty string.
  string Find(int64 key) const {
    return impl_->Find(key);
  }

  // Return the key associated with the symbol. If the symbol
  // does not exists, log error and  return -1
  int64 Find(const string& symbol) const {
    return impl_->Find(symbol);
  }

  // Return the key associated with the symbol. If the symbol
  // does not exists, log error and  return -1
  int64 Find(const char* symbol) const {
    return impl_->Find(symbol);
  }

  // return the current available key (i.e highest key number) in
  // the symbol table
  int64 AvailableKey(void) const {
    return impl_->AvailableKey();
  }

 protected:
  explicit SymbolTable(SymbolTableImpl* impl) : impl_(impl) {}

  const SymbolTableImpl* Impl() const {
    return impl_;
  }

 private:
  SymbolTableImpl* impl_;


  void operator=(const SymbolTable &table);  // disallow
};


//
// \class SymbolTableIterator
// \brief Iterator class for symbols in a symbol table
class SymbolTableIterator {
 public:
  // Constructor creates a refcounted copy of underlying implementation
  SymbolTableIterator(const SymbolTable& symbol_table) {
    impl_ = symbol_table.Impl();
    impl_->IncrRefCount();
    pos_ = 0;
    size_ = impl_->symbols_.size();
  }

  // decrement implementation refcount, and delete if 0
  ~SymbolTableIterator() {
    if (!impl_->DecrRefCount()) delete impl_;
  }

  // is iterator done
  bool Done(void) {
    return (pos_ == size_);
  }

  // return the Value() of the current symbol (in64 key)
  int64 Value(void) {
    return impl_->Find(impl_->symbols_[pos_]);
  }

  // return the string of the current symbol
  const char* Symbol(void) {
    return impl_->symbols_[pos_];
  }

  // advance iterator forward
  void Next(void) {
    if (Done()) return;
    ++pos_;
  }

  // reset iterator
  void Reset(void) {
    pos_ = 0;
  }

 private:
  const SymbolTableImpl* impl_;
  size_t pos_;
  size_t size_;
};


// Tests compatibilty between two sets of symbol tables
inline bool CompatSymbols(const SymbolTable *syms1,
                          const SymbolTable *syms2) {
  if (!FLAGS_fst_compat_symbols)
    return true;
  else if (!syms1 && !syms2)
    return true;
  else if (syms1 && !syms2 || !syms1 && syms2)
    return false;
  else
    return syms1->CheckSum() == syms2->CheckSum();
}

}  // namespace fst

#endif  // FST_LIB_SYMBOL_TABLE_H__