summaryrefslogtreecommitdiff
path: root/crypto/hash/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/hash/sha1.c')
-rw-r--r--crypto/hash/sha1.c405
1 files changed, 405 insertions, 0 deletions
diff --git a/crypto/hash/sha1.c b/crypto/hash/sha1.c
new file mode 100644
index 0000000..b9a8d10
--- /dev/null
+++ b/crypto/hash/sha1.c
@@ -0,0 +1,405 @@
+/*
+ * sha1.c
+ *
+ * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
+ * specified in FIPS 180-1
+ *
+ * David A. McGrew
+ * Cisco Systems, Inc.
+ */
+
+/*
+ *
+ * Copyright (c) 2001-2006, Cisco Systems, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials provided
+ * with the distribution.
+ *
+ * Neither the name of the Cisco Systems, Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+ * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+ * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
+ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+
+
+#include "sha1.h"
+
+debug_module_t mod_sha1 = {
+ 0, /* debugging is off by default */
+ "sha-1" /* printable module name */
+};
+
+/* SN == Rotate left N bits */
+#define S1(X) ((X << 1) | (X >> 31))
+#define S5(X) ((X << 5) | (X >> 27))
+#define S30(X) ((X << 30) | (X >> 2))
+
+#define f0(B,C,D) ((B & C) | (~B & D))
+#define f1(B,C,D) (B ^ C ^ D)
+#define f2(B,C,D) ((B & C) | (B & D) | (C & D))
+#define f3(B,C,D) (B ^ C ^ D)
+
+/*
+ * nota bene: the variable K0 appears in the curses library, so we
+ * give longer names to these variables to avoid spurious warnings
+ * on systems that uses curses
+ */
+
+uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */
+uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
+uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
+uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
+
+void
+sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) {
+ sha1_ctx_t ctx;
+
+ sha1_init(&ctx);
+ sha1_update(&ctx, msg, octets_in_msg);
+ sha1_final(&ctx, hash_value);
+
+}
+
+/*
+ * sha1_core(M, H) computes the core compression function, where M is
+ * the next part of the message (in network byte order) and H is the
+ * intermediate state { H0, H1, ...} (in host byte order)
+ *
+ * this function does not do any of the padding required in the
+ * complete SHA1 function
+ *
+ * this function is used in the SEAL 3.0 key setup routines
+ * (crypto/cipher/seal.c)
+ */
+
+void
+sha1_core(const uint32_t M[16], uint32_t hash_value[5]) {
+ uint32_t H0;
+ uint32_t H1;
+ uint32_t H2;
+ uint32_t H3;
+ uint32_t H4;
+ uint32_t W[80];
+ uint32_t A, B, C, D, E, TEMP;
+ int t;
+
+ /* copy hash_value into H0, H1, H2, H3, H4 */
+ H0 = hash_value[0];
+ H1 = hash_value[1];
+ H2 = hash_value[2];
+ H3 = hash_value[3];
+ H4 = hash_value[4];
+
+ /* copy/xor message into array */
+
+ W[0] = be32_to_cpu(M[0]);
+ W[1] = be32_to_cpu(M[1]);
+ W[2] = be32_to_cpu(M[2]);
+ W[3] = be32_to_cpu(M[3]);
+ W[4] = be32_to_cpu(M[4]);
+ W[5] = be32_to_cpu(M[5]);
+ W[6] = be32_to_cpu(M[6]);
+ W[7] = be32_to_cpu(M[7]);
+ W[8] = be32_to_cpu(M[8]);
+ W[9] = be32_to_cpu(M[9]);
+ W[10] = be32_to_cpu(M[10]);
+ W[11] = be32_to_cpu(M[11]);
+ W[12] = be32_to_cpu(M[12]);
+ W[13] = be32_to_cpu(M[13]);
+ W[14] = be32_to_cpu(M[14]);
+ W[15] = be32_to_cpu(M[15]);
+ TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP);
+ TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP);
+ TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP);
+ TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP);
+ TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP);
+ TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP);
+ TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP);
+ TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP);
+ TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP);
+ TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP);
+ TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP);
+ TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP);
+ TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP);
+ TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP);
+ TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP);
+ TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP);
+
+ /* process the remainder of the array */
+ for (t=32; t < 80; t++) {
+ TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+ W[t] = S1(TEMP);
+ }
+
+ A = H0; B = H1; C = H2; D = H3; E = H4;
+
+ for (t=0; t < 20; t++) {
+ TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 40; t++) {
+ TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 60; t++) {
+ TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 80; t++) {
+ TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+
+ hash_value[0] = H0 + A;
+ hash_value[1] = H1 + B;
+ hash_value[2] = H2 + C;
+ hash_value[3] = H3 + D;
+ hash_value[4] = H4 + E;
+
+ return;
+}
+
+void
+sha1_init(sha1_ctx_t *ctx) {
+
+ /* initialize state vector */
+ ctx->H[0] = 0x67452301;
+ ctx->H[1] = 0xefcdab89;
+ ctx->H[2] = 0x98badcfe;
+ ctx->H[3] = 0x10325476;
+ ctx->H[4] = 0xc3d2e1f0;
+
+ /* indicate that message buffer is empty */
+ ctx->octets_in_buffer = 0;
+
+ /* reset message bit-count to zero */
+ ctx->num_bits_in_msg = 0;
+
+}
+
+void
+sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) {
+ int i;
+ uint8_t *buf = (uint8_t *)ctx->M;
+
+ /* update message bit-count */
+ ctx->num_bits_in_msg += octets_in_msg * 8;
+
+ /* loop over 16-word blocks of M */
+ while (octets_in_msg > 0) {
+
+ if (octets_in_msg + ctx->octets_in_buffer >= 64) {
+
+ /*
+ * copy words of M into msg buffer until that buffer is full,
+ * converting them into host byte order as needed
+ */
+ octets_in_msg -= (64 - ctx->octets_in_buffer);
+ for (i=ctx->octets_in_buffer; i < 64; i++)
+ buf[i] = *msg++;
+ ctx->octets_in_buffer = 0;
+
+ /* process a whole block */
+
+ debug_print(mod_sha1, "(update) running sha1_core()", NULL);
+
+ sha1_core(ctx->M, ctx->H);
+
+ } else {
+
+ debug_print(mod_sha1, "(update) not running sha1_core()", NULL);
+
+ for (i=ctx->octets_in_buffer;
+ i < (ctx->octets_in_buffer + octets_in_msg); i++)
+ buf[i] = *msg++;
+ ctx->octets_in_buffer += octets_in_msg;
+ octets_in_msg = 0;
+ }
+
+ }
+
+}
+
+/*
+ * sha1_final(ctx, output) computes the result for ctx and copies it
+ * into the twenty octets located at *output
+ */
+
+void
+sha1_final(sha1_ctx_t *ctx, uint32_t *output) {
+ uint32_t A, B, C, D, E, TEMP;
+ uint32_t W[80];
+ int i, t;
+
+ /*
+ * process the remaining octets_in_buffer, padding and terminating as
+ * necessary
+ */
+ {
+ int tail = ctx->octets_in_buffer % 4;
+
+ /* copy/xor message into array */
+ for (i=0; i < (ctx->octets_in_buffer+3)/4; i++)
+ W[i] = be32_to_cpu(ctx->M[i]);
+
+ /* set the high bit of the octet immediately following the message */
+ switch (tail) {
+ case (3):
+ W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80;
+ W[i] = 0x0;
+ break;
+ case (2):
+ W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000;
+ W[i] = 0x0;
+ break;
+ case (1):
+ W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000;
+ W[i] = 0x0;
+ break;
+ case (0):
+ W[i] = 0x80000000;
+ break;
+ }
+
+ /* zeroize remaining words */
+ for (i++ ; i < 15; i++)
+ W[i] = 0x0;
+
+ /*
+ * if there is room at the end of the word array, then set the
+ * last word to the bit-length of the message; otherwise, set that
+ * word to zero and then we need to do one more run of the
+ * compression algo.
+ */
+ if (ctx->octets_in_buffer < 56)
+ W[15] = ctx->num_bits_in_msg;
+ else if (ctx->octets_in_buffer < 60)
+ W[15] = 0x0;
+
+ /* process the word array */
+ for (t=16; t < 80; t++) {
+ TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+ W[t] = S1(TEMP);
+ }
+
+ A = ctx->H[0];
+ B = ctx->H[1];
+ C = ctx->H[2];
+ D = ctx->H[3];
+ E = ctx->H[4];
+
+ for (t=0; t < 20; t++) {
+ TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 40; t++) {
+ TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 60; t++) {
+ TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 80; t++) {
+ TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+
+ ctx->H[0] += A;
+ ctx->H[1] += B;
+ ctx->H[2] += C;
+ ctx->H[3] += D;
+ ctx->H[4] += E;
+
+ }
+
+ debug_print(mod_sha1, "(final) running sha1_core()", NULL);
+
+ if (ctx->octets_in_buffer >= 56) {
+
+ debug_print(mod_sha1, "(final) running sha1_core() again", NULL);
+
+ /* we need to do one final run of the compression algo */
+
+ /*
+ * set initial part of word array to zeros, and set the
+ * final part to the number of bits in the message
+ */
+ for (i=0; i < 15; i++)
+ W[i] = 0x0;
+ W[15] = ctx->num_bits_in_msg;
+
+ /* process the word array */
+ for (t=16; t < 80; t++) {
+ TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16];
+ W[t] = S1(TEMP);
+ }
+
+ A = ctx->H[0];
+ B = ctx->H[1];
+ C = ctx->H[2];
+ D = ctx->H[3];
+ E = ctx->H[4];
+
+ for (t=0; t < 20; t++) {
+ TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 40; t++) {
+ TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 60; t++) {
+ TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+ for ( ; t < 80; t++) {
+ TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3;
+ E = D; D = C; C = S30(B); B = A; A = TEMP;
+ }
+
+ ctx->H[0] += A;
+ ctx->H[1] += B;
+ ctx->H[2] += C;
+ ctx->H[3] += D;
+ ctx->H[4] += E;
+ }
+
+ /* copy result into output buffer */
+ output[0] = be32_to_cpu(ctx->H[0]);
+ output[1] = be32_to_cpu(ctx->H[1]);
+ output[2] = be32_to_cpu(ctx->H[2]);
+ output[3] = be32_to_cpu(ctx->H[3]);
+ output[4] = be32_to_cpu(ctx->H[4]);
+
+ /* indicate that message buffer in context is empty */
+ ctx->octets_in_buffer = 0;
+
+ return;
+}
+
+
+