package skylark // This file defines the bytecode interpreter. import ( "fmt" "math/big" "os" "unsafe" "github.com/google/skylark/internal/compile" "github.com/google/skylark/syntax" ) const vmdebug = false // TODO(adonovan): use a bitfield of specific kinds of error. // TODO(adonovan): // - optimize position table. // - opt: reduce allocations by preallocating a large stack, saving it // in the thread, and slicing it. // - opt: record MaxIterStack during compilation and preallocate the stack. func (fn *Function) Call(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) { if debug { fmt.Printf("call of %s %v %v\n", fn.Name(), args, kwargs) } // detect recursion for fr := thread.frame; fr != nil; fr = fr.parent { // We look for the same function code, // not function value, otherwise the user could // defeat the check by writing the Y combinator. if fr.fn != nil && fr.fn.funcode == fn.funcode { return nil, fmt.Errorf("function %s called recursively", fn.Name()) } } thread.frame = &Frame{parent: thread.frame, fn: fn} result, err := call(thread, args, kwargs) thread.frame = thread.frame.parent return result, err } func call(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) { fr := thread.frame f := fr.fn.funcode nlocals := len(f.Locals) stack := make([]Value, nlocals+f.MaxStack) locals := stack[:nlocals:nlocals] // local variables, starting with parameters stack = stack[nlocals:] err := setArgs(locals, fr.fn, args, kwargs) if err != nil { return nil, fr.errorf(fr.fn.Position(), "%v", err) } if vmdebug { fmt.Printf("Entering %s @ %s\n", f.Name, f.Position(0)) fmt.Printf("%d stack, %d locals\n", len(stack), len(locals)) defer fmt.Println("Leaving ", f.Name) } // TODO(adonovan): add static check that beneath this point // - there is exactly one return statement // - there is no redefinition of 'err'. var iterstack []Iterator // stack of active iterators sp := 0 var pc, savedpc uint32 var result Value code := f.Code loop: for { savedpc = pc op := compile.Opcode(code[pc]) pc++ var arg uint32 if op >= compile.OpcodeArgMin { // TODO(adonovan): opt: profile this. // Perhaps compiling big endian would be less work to decode? for s := uint(0); ; s += 7 { b := code[pc] pc++ arg |= uint32(b&0x7f) << s if b < 0x80 { break } } } if vmdebug { fmt.Fprintln(os.Stderr, stack[:sp]) // very verbose! compile.PrintOp(f, savedpc, op, arg) } switch op { case compile.NOP: // nop case compile.DUP: stack[sp] = stack[sp-1] sp++ case compile.DUP2: stack[sp] = stack[sp-2] stack[sp+1] = stack[sp-1] sp += 2 case compile.POP: sp-- case compile.EXCH: stack[sp-2], stack[sp-1] = stack[sp-1], stack[sp-2] case compile.EQL, compile.NEQ, compile.GT, compile.LT, compile.LE, compile.GE: op := syntax.Token(op-compile.EQL) + syntax.EQL y := stack[sp-1] x := stack[sp-2] sp -= 2 ok, err2 := Compare(op, x, y) if err2 != nil { err = err2 break loop } stack[sp] = Bool(ok) sp++ case compile.PLUS, compile.MINUS, compile.STAR, compile.SLASH, compile.SLASHSLASH, compile.PERCENT, compile.PIPE, compile.AMP, compile.IN: binop := syntax.Token(op-compile.PLUS) + syntax.PLUS if op == compile.IN { binop = syntax.IN // IN token is out of order } y := stack[sp-1] x := stack[sp-2] sp -= 2 z, err2 := Binary(binop, x, y) if err2 != nil { err = err2 break loop } stack[sp] = z sp++ case compile.UPLUS, compile.UMINUS: unop := syntax.Token(op-compile.UPLUS) + syntax.PLUS x := stack[sp-1] y, err2 := Unary(unop, x) if err2 != nil { err = err2 break loop } stack[sp-1] = y case compile.INPLACE_ADD: y := stack[sp-1] x := stack[sp-2] sp -= 2 // It's possible that y is not Iterable but // nonetheless defines x+y, in which case we // should fall back to the general case. var z Value if xlist, ok := x.(*List); ok { if yiter, ok := y.(Iterable); ok { if err = xlist.checkMutable("apply += to", true); err != nil { break loop } listExtend(xlist, yiter) z = xlist } } if z == nil { z, err = Binary(syntax.PLUS, x, y) if err != nil { break loop } } stack[sp] = z sp++ case compile.NONE: stack[sp] = None sp++ case compile.TRUE: stack[sp] = True sp++ case compile.FALSE: stack[sp] = False sp++ case compile.JMP: pc = arg case compile.CALL, compile.CALL_VAR, compile.CALL_KW, compile.CALL_VAR_KW: var kwargs Value if op == compile.CALL_KW || op == compile.CALL_VAR_KW { kwargs = stack[sp-1] sp-- } var args Value if op == compile.CALL_VAR || op == compile.CALL_VAR_KW { args = stack[sp-1] sp-- } // named args (pairs) var kvpairs []Tuple if nkvpairs := int(arg & 0xff); nkvpairs > 0 { kvpairs = make([]Tuple, 0, nkvpairs) kvpairsAlloc := make(Tuple, 2*nkvpairs) // allocate a single backing array sp -= 2 * nkvpairs for i := 0; i < nkvpairs; i++ { pair := kvpairsAlloc[:2:2] kvpairsAlloc = kvpairsAlloc[2:] pair[0] = stack[sp+2*i] // name pair[1] = stack[sp+2*i+1] // value kvpairs = append(kvpairs, pair) } } if kwargs != nil { // Add key/value items from **kwargs dictionary. dict, ok := kwargs.(*Dict) if !ok { err = fmt.Errorf("argument after ** must be a mapping, not %s", kwargs.Type()) break loop } items := dict.Items() for _, item := range items { if _, ok := item[0].(String); !ok { err = fmt.Errorf("keywords must be strings, not %s", item[0].Type()) break loop } } if len(kvpairs) == 0 { kvpairs = items } else { kvpairs = append(kvpairs, items...) } } // positional args var positional Tuple if npos := int(arg >> 8); npos > 0 { positional = make(Tuple, npos) sp -= npos copy(positional, stack[sp:]) } if args != nil { // Add elements from *args sequence. iter := Iterate(args) if iter == nil { err = fmt.Errorf("argument after * must be iterable, not %s", args.Type()) break loop } var elem Value for iter.Next(&elem) { positional = append(positional, elem) } iter.Done() } function := stack[sp-1] if vmdebug { fmt.Printf("VM call %s args=%s kwargs=%s @%s\n", function, positional, kvpairs, f.Position(fr.callpc)) } fr.callpc = savedpc z, err2 := Call(thread, function, positional, kvpairs) if err2 != nil { err = err2 break loop } if vmdebug { fmt.Printf("Resuming %s @ %s\n", f.Name, f.Position(0)) } stack[sp-1] = z case compile.ITERPUSH: x := stack[sp-1] sp-- iter := Iterate(x) if iter == nil { err = fmt.Errorf("%s value is not iterable", x.Type()) break loop } iterstack = append(iterstack, iter) case compile.ITERJMP: iter := iterstack[len(iterstack)-1] if iter.Next(&stack[sp]) { sp++ } else { pc = arg } case compile.ITERPOP: n := len(iterstack) - 1 iterstack[n].Done() iterstack = iterstack[:n] case compile.NOT: stack[sp-1] = !stack[sp-1].Truth() case compile.RETURN: result = stack[sp-1] break loop case compile.SETINDEX: z := stack[sp-1] y := stack[sp-2] x := stack[sp-3] sp -= 3 err = setIndex(fr, x, y, z) if err != nil { break loop } case compile.INDEX: y := stack[sp-1] x := stack[sp-2] sp -= 2 z, err2 := getIndex(fr, x, y) if err2 != nil { err = err2 break loop } stack[sp] = z sp++ case compile.ATTR: x := stack[sp-1] name := f.Prog.Names[arg] y, err2 := getAttr(fr, x, name) if err2 != nil { err = err2 break loop } stack[sp-1] = y case compile.SETFIELD: y := stack[sp-1] x := stack[sp-2] sp -= 2 name := f.Prog.Names[arg] if err2 := setField(fr, x, name, y); err2 != nil { err = err2 break loop } case compile.MAKEDICT: stack[sp] = new(Dict) sp++ case compile.SETDICT, compile.SETDICTUNIQ: dict := stack[sp-3].(*Dict) k := stack[sp-2] v := stack[sp-1] sp -= 3 oldlen := dict.Len() if err2 := dict.Set(k, v); err2 != nil { err = err2 break loop } if op == compile.SETDICTUNIQ && dict.Len() == oldlen { err = fmt.Errorf("duplicate key: %v", k) break loop } case compile.APPEND: elem := stack[sp-1] list := stack[sp-2].(*List) sp -= 2 list.elems = append(list.elems, elem) case compile.SLICE: x := stack[sp-4] lo := stack[sp-3] hi := stack[sp-2] step := stack[sp-1] sp -= 4 res, err2 := slice(x, lo, hi, step) if err2 != nil { err = err2 break loop } stack[sp] = res sp++ case compile.UNPACK: n := int(arg) iterable := stack[sp-1] sp-- iter := Iterate(iterable) if iter == nil { err = fmt.Errorf("got %s in sequence assignment", iterable.Type()) break loop } i := 0 sp += n for i < n && iter.Next(&stack[sp-1-i]) { i++ } var dummy Value if iter.Next(&dummy) { // NB: Len may return -1 here in obscure cases. err = fmt.Errorf("too many values to unpack (got %d, want %d)", Len(iterable), n) break loop } iter.Done() if i < n { err = fmt.Errorf("too few values to unpack (got %d, want %d)", i, n) break loop } case compile.CJMP: if stack[sp-1].Truth() { pc = arg } sp-- case compile.INT: stack[sp] = MakeInt64(f.Prog.Constants[arg].(int64)) sp++ case compile.BIGINT: s := f.Prog.Constants[arg].(string) bigint := new(big.Int) if _, ok := bigint.SetString(s, 10); !ok { err = fmt.Errorf("internal error: failed to parse compiled large integer constant") break loop } stack[sp] = Int{bigint} sp++ case compile.FLOAT: stack[sp] = Float(f.Prog.Constants[arg].(float64)) sp++ case compile.STRING: // TODO(adonovan): opt: avoid allocation here // by prematerializing String values. // stack[sp] = String(f.Prog.Constants[arg].(string)) stack[sp] = string2String(f.Prog.Constants[arg]) sp++ case compile.MAKETUPLE: n := int(arg) tuple := make(Tuple, n) sp -= n copy(tuple, stack[sp:]) stack[sp] = tuple sp++ case compile.MAKELIST: n := int(arg) elems := make([]Value, n) sp -= n copy(elems, stack[sp:]) stack[sp] = NewList(elems) sp++ case compile.MAKEFUNC: funcode := f.Prog.Functions[arg] freevars := stack[sp-1].(Tuple) defaults := stack[sp-2].(Tuple) sp -= 2 stack[sp] = &Function{ funcode: funcode, predeclared: fr.fn.predeclared, globals: fr.fn.globals, defaults: defaults, freevars: freevars, } sp++ case compile.LOAD: n := int(arg) module := string(stack[sp-1].(String)) sp-- if thread.Load == nil { err = fmt.Errorf("load not implemented by this application") break loop } dict, err2 := thread.Load(thread, module) if err2 != nil { err = fmt.Errorf("cannot load %s: %v", module, err2) break loop } for i := 0; i < n; i++ { from := string(stack[sp-1-i].(String)) v, ok := dict[from] if !ok { err = fmt.Errorf("load: name %s not found in module %s", from, module) break loop } stack[sp-1-i] = v } case compile.SETLOCAL: locals[arg] = stack[sp-1] sp-- case compile.SETGLOBAL: fr.fn.globals[arg] = stack[sp-1] sp-- case compile.LOCAL: x := locals[arg] if x == nil { err = fmt.Errorf("local variable %s referenced before assignment", f.Locals[arg].Name) break loop } stack[sp] = x sp++ case compile.FREE: stack[sp] = fr.fn.freevars[arg] sp++ case compile.GLOBAL: x := fr.fn.globals[arg] if x == nil { err = fmt.Errorf("global variable %s referenced before assignment", f.Prog.Globals[arg].Name) break loop } stack[sp] = x sp++ case compile.PREDECLARED: name := f.Prog.Names[arg] x := fr.fn.predeclared[name] if x == nil { if name == "PACKAGE_NAME" { // Gross spec, gross hack. // Users should just call package_name() function. if v, ok := fr.fn.predeclared["package_name"].(*Builtin); ok { x, _ = v.fn(thread, v, nil, nil) } } if x == nil { err = fmt.Errorf("internal error: predeclared variable %s is uninitialized", name) break loop } } stack[sp] = x sp++ case compile.UNIVERSAL: stack[sp] = Universe[f.Prog.Names[arg]] sp++ default: err = fmt.Errorf("unimplemented: %s", op) break loop } } // ITERPOP the rest of the iterator stack. for _, iter := range iterstack { iter.Done() } if err != nil { if _, ok := err.(*EvalError); !ok { err = fr.errorf(f.Position(savedpc), "%s", err.Error()) } } return result, err } // string2String converts an empty interface containing a string into a // Value containing a String, without allocating a new string header; // see github.com/golang/go/issues/24582. // TODO(adonovan): do this safely by preconverting constants a priori. // This requires that Program provide a field for use by the interpreter. func string2String(x interface{}) (y Value) { // Equivalent to: // return String(x.(string)) // but avoids allocation. _ = x.(string) type iface struct { typ, data unsafe.Pointer } xi := (*iface)((unsafe.Pointer)(&x)) yi := (*iface)((unsafe.Pointer)(&y)) si := (*iface)((unsafe.Pointer)(&dummystr)) yi.typ = si.typ yi.data = xi.data return y } var dummystr Value = String("")