aboutsummaryrefslogtreecommitdiff
path: root/starlark/example_test.go
blob: 5feca385e6fbad0b8e2d1810210bfc9e9fdfe567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package starlark_test

import (
	"fmt"
	"log"
	"reflect"
	"sort"
	"strings"
	"sync"
	"sync/atomic"
	"testing"
	"unsafe"

	"go.starlark.net/starlark"
)

// ExampleExecFile demonstrates a simple embedding
// of the Starlark interpreter into a Go program.
func ExampleExecFile() {
	const data = `
print(greeting + ", world")
print(repeat("one"))
print(repeat("mur", 2))
squares = [x*x for x in range(10)]
`

	// repeat(str, n=1) is a Go function called from Starlark.
	// It behaves like the 'string * int' operation.
	repeat := func(thread *starlark.Thread, b *starlark.Builtin, args starlark.Tuple, kwargs []starlark.Tuple) (starlark.Value, error) {
		var s string
		var n int = 1
		if err := starlark.UnpackArgs(b.Name(), args, kwargs, "s", &s, "n?", &n); err != nil {
			return nil, err
		}
		return starlark.String(strings.Repeat(s, n)), nil
	}

	// The Thread defines the behavior of the built-in 'print' function.
	thread := &starlark.Thread{
		Name:  "example",
		Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
	}

	// This dictionary defines the pre-declared environment.
	predeclared := starlark.StringDict{
		"greeting": starlark.String("hello"),
		"repeat":   starlark.NewBuiltin("repeat", repeat),
	}

	// Execute a program.
	globals, err := starlark.ExecFile(thread, "apparent/filename.star", data, predeclared)
	if err != nil {
		if evalErr, ok := err.(*starlark.EvalError); ok {
			log.Fatal(evalErr.Backtrace())
		}
		log.Fatal(err)
	}

	// Print the global environment.
	fmt.Println("\nGlobals:")
	for _, name := range globals.Keys() {
		v := globals[name]
		fmt.Printf("%s (%s) = %s\n", name, v.Type(), v.String())
	}

	// Output:
	// hello, world
	// one
	// murmur
	//
	// Globals:
	// squares (list) = [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
}

// ExampleThread_Load_sequential demonstrates a simple caching
// implementation of 'load' that works sequentially.
func ExampleThread_Load_sequential() {
	fakeFilesystem := map[string]string{
		"c.star": `load("b.star", "b"); c = b + "!"`,
		"b.star": `load("a.star", "a"); b = a + ", world"`,
		"a.star": `a = "Hello"`,
	}

	type entry struct {
		globals starlark.StringDict
		err     error
	}

	cache := make(map[string]*entry)

	var load func(_ *starlark.Thread, module string) (starlark.StringDict, error)
	load = func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
		e, ok := cache[module]
		if e == nil {
			if ok {
				// request for package whose loading is in progress
				return nil, fmt.Errorf("cycle in load graph")
			}

			// Add a placeholder to indicate "load in progress".
			cache[module] = nil

			// Load and initialize the module in a new thread.
			data := fakeFilesystem[module]
			thread := &starlark.Thread{Name: "exec " + module, Load: load}
			globals, err := starlark.ExecFile(thread, module, data, nil)
			e = &entry{globals, err}

			// Update the cache.
			cache[module] = e
		}
		return e.globals, e.err
	}

	globals, err := load(nil, "c.star")
	if err != nil {
		log.Fatal(err)
	}
	fmt.Println(globals["c"])

	// Output:
	// "Hello, world!"
}

// ExampleThread_Load_parallel demonstrates a parallel implementation
// of 'load' with caching, duplicate suppression, and cycle detection.
func ExampleThread_Load_parallel() {
	cache := &cache{
		cache: make(map[string]*entry),
		fakeFilesystem: map[string]string{
			"c.star": `load("a.star", "a"); c = a * 2`,
			"b.star": `load("a.star", "a"); b = a * 3`,
			"a.star": `a = 1; print("loaded a")`,
		},
	}

	// We load modules b and c in parallel by concurrent calls to
	// cache.Load.  Both of them load module a, but a is executed
	// only once, as witnessed by the sole output of its print
	// statement.

	ch := make(chan string)
	for _, name := range []string{"b", "c"} {
		go func(name string) {
			globals, err := cache.Load(name + ".star")
			if err != nil {
				log.Fatal(err)
			}
			ch <- fmt.Sprintf("%s = %s", name, globals[name])
		}(name)
	}
	got := []string{<-ch, <-ch}
	sort.Strings(got)
	fmt.Println(strings.Join(got, "\n"))

	// Output:
	// loaded a
	// b = 3
	// c = 2
}

// TestThread_Load_parallelCycle demonstrates detection
// of cycles during parallel loading.
func TestThreadLoad_ParallelCycle(t *testing.T) {
	cache := &cache{
		cache: make(map[string]*entry),
		fakeFilesystem: map[string]string{
			"c.star": `load("b.star", "b"); c = b * 2`,
			"b.star": `load("a.star", "a"); b = a * 3`,
			"a.star": `load("c.star", "c"); a = c * 5; print("loaded a")`,
		},
	}

	ch := make(chan string)
	for _, name := range "bc" {
		name := string(name)
		go func() {
			_, err := cache.Load(name + ".star")
			if err == nil {
				log.Fatalf("Load of %s.star succeeded unexpectedly", name)
			}
			ch <- err.Error()
		}()
	}
	got := []string{<-ch, <-ch}
	sort.Strings(got)

	// Typically, the c goroutine quickly blocks behind b;
	// b loads a, and a then fails to load c because it forms a cycle.
	// The errors observed by the two goroutines are:
	want1 := []string{
		"cannot load a.star: cannot load c.star: cycle in load graph",                     // from b
		"cannot load b.star: cannot load a.star: cannot load c.star: cycle in load graph", // from c
	}
	// But if the c goroutine is slow to start, b loads a,
	// and a loads c; then c fails to load b because it forms a cycle.
	// The errors this time are:
	want2 := []string{
		"cannot load a.star: cannot load c.star: cannot load b.star: cycle in load graph", // from b
		"cannot load b.star: cycle in load graph",                                         // from c
	}
	if !reflect.DeepEqual(got, want1) && !reflect.DeepEqual(got, want2) {
		t.Error(got)
	}
}

// cache is a concurrency-safe, duplicate-suppressing,
// non-blocking cache of the doLoad function.
// See Section 9.7 of gopl.io for an explanation of this structure.
// It also features online deadlock (load cycle) detection.
type cache struct {
	cacheMu sync.Mutex
	cache   map[string]*entry

	fakeFilesystem map[string]string
}

type entry struct {
	owner   unsafe.Pointer // a *cycleChecker; see cycleCheck
	globals starlark.StringDict
	err     error
	ready   chan struct{}
}

func (c *cache) Load(module string) (starlark.StringDict, error) {
	return c.get(new(cycleChecker), module)
}

// get loads and returns an entry (if not already loaded).
func (c *cache) get(cc *cycleChecker, module string) (starlark.StringDict, error) {
	c.cacheMu.Lock()
	e := c.cache[module]
	if e != nil {
		c.cacheMu.Unlock()
		// Some other goroutine is getting this module.
		// Wait for it to become ready.

		// Detect load cycles to avoid deadlocks.
		if err := cycleCheck(e, cc); err != nil {
			return nil, err
		}

		cc.setWaitsFor(e)
		<-e.ready
		cc.setWaitsFor(nil)
	} else {
		// First request for this module.
		e = &entry{ready: make(chan struct{})}
		c.cache[module] = e
		c.cacheMu.Unlock()

		e.setOwner(cc)
		e.globals, e.err = c.doLoad(cc, module)
		e.setOwner(nil)

		// Broadcast that the entry is now ready.
		close(e.ready)
	}
	return e.globals, e.err
}

func (c *cache) doLoad(cc *cycleChecker, module string) (starlark.StringDict, error) {
	thread := &starlark.Thread{
		Name:  "exec " + module,
		Print: func(_ *starlark.Thread, msg string) { fmt.Println(msg) },
		Load: func(_ *starlark.Thread, module string) (starlark.StringDict, error) {
			// Tunnel the cycle-checker state for this "thread of loading".
			return c.get(cc, module)
		},
	}
	data := c.fakeFilesystem[module]
	return starlark.ExecFile(thread, module, data, nil)
}

// -- concurrent cycle checking --

// A cycleChecker is used for concurrent deadlock detection.
// Each top-level call to Load creates its own cycleChecker,
// which is passed to all recursive calls it makes.
// It corresponds to a logical thread in the deadlock detection literature.
type cycleChecker struct {
	waitsFor unsafe.Pointer // an *entry; see cycleCheck
}

func (cc *cycleChecker) setWaitsFor(e *entry) {
	atomic.StorePointer(&cc.waitsFor, unsafe.Pointer(e))
}

func (e *entry) setOwner(cc *cycleChecker) {
	atomic.StorePointer(&e.owner, unsafe.Pointer(cc))
}

// cycleCheck reports whether there is a path in the waits-for graph
// from resource 'e' to thread 'me'.
//
// The waits-for graph (WFG) is a bipartite graph whose nodes are
// alternately of type entry and cycleChecker.  Each node has at most
// one outgoing edge.  An entry has an "owner" edge to a cycleChecker
// while it is being readied by that cycleChecker, and a cycleChecker
// has a "waits-for" edge to an entry while it is waiting for that entry
// to become ready.
//
// Before adding a waits-for edge, the cache checks whether the new edge
// would form a cycle.  If so, this indicates that the load graph is
// cyclic and that the following wait operation would deadlock.
func cycleCheck(e *entry, me *cycleChecker) error {
	for e != nil {
		cc := (*cycleChecker)(atomic.LoadPointer(&e.owner))
		if cc == nil {
			break
		}
		if cc == me {
			return fmt.Errorf("cycle in load graph")
		}
		e = (*entry)(atomic.LoadPointer(&cc.waitsFor))
	}
	return nil
}