aboutsummaryrefslogtreecommitdiff
path: root/starlark/int.go
blob: 397be865dae5586c1fa29840c282018ae4146f78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package starlark

import (
	"fmt"
	"math"
	"math/big"
	"strconv"

	"go.starlark.net/syntax"
)

// Int is the type of a Starlark int.
//
// The zero value is not a legal value; use MakeInt(0).
type Int struct{ impl intImpl }

// --- high-level accessors ---

// MakeInt returns a Starlark int for the specified signed integer.
func MakeInt(x int) Int { return MakeInt64(int64(x)) }

// MakeInt64 returns a Starlark int for the specified int64.
func MakeInt64(x int64) Int {
	if math.MinInt32 <= x && x <= math.MaxInt32 {
		return makeSmallInt(x)
	}
	return makeBigInt(big.NewInt(x))
}

// MakeUint returns a Starlark int for the specified unsigned integer.
func MakeUint(x uint) Int { return MakeUint64(uint64(x)) }

// MakeUint64 returns a Starlark int for the specified uint64.
func MakeUint64(x uint64) Int {
	if x <= math.MaxInt32 {
		return makeSmallInt(int64(x))
	}
	return makeBigInt(new(big.Int).SetUint64(x))
}

// MakeBigInt returns a Starlark int for the specified big.Int.
// The caller must not subsequently modify x.
func MakeBigInt(x *big.Int) Int {
	if n := x.BitLen(); n < 32 || n == 32 && x.Int64() == math.MinInt32 {
		return makeSmallInt(x.Int64())
	}
	return makeBigInt(x)
}

var (
	zero, one = makeSmallInt(0), makeSmallInt(1)
	oneBig    = big.NewInt(1)

	_ HasUnary = Int{}
)

// Unary implements the operations +int, -int, and ~int.
func (i Int) Unary(op syntax.Token) (Value, error) {
	switch op {
	case syntax.MINUS:
		return zero.Sub(i), nil
	case syntax.PLUS:
		return i, nil
	case syntax.TILDE:
		return i.Not(), nil
	}
	return nil, nil
}

// Int64 returns the value as an int64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Int64() (_ int64, ok bool) {
	iSmall, iBig := i.get()
	if iBig != nil {
		x, acc := bigintToInt64(iBig)
		if acc != big.Exact {
			return // inexact
		}
		return x, true
	}
	return iSmall, true
}

// BigInt returns the value as a big.Int.
// The returned variable must not be modified by the client.
func (i Int) BigInt() *big.Int {
	iSmall, iBig := i.get()
	if iBig != nil {
		return iBig
	}
	return big.NewInt(iSmall)
}

// Uint64 returns the value as a uint64.
// If it is not exactly representable the result is undefined and ok is false.
func (i Int) Uint64() (_ uint64, ok bool) {
	iSmall, iBig := i.get()
	if iBig != nil {
		x, acc := bigintToUint64(iBig)
		if acc != big.Exact {
			return // inexact
		}
		return x, true
	}
	if iSmall < 0 {
		return // inexact
	}
	return uint64(iSmall), true
}

// The math/big API should provide this function.
func bigintToInt64(i *big.Int) (int64, big.Accuracy) {
	sign := i.Sign()
	if sign > 0 {
		if i.Cmp(maxint64) > 0 {
			return math.MaxInt64, big.Below
		}
	} else if sign < 0 {
		if i.Cmp(minint64) < 0 {
			return math.MinInt64, big.Above
		}
	}
	return i.Int64(), big.Exact
}

// The math/big API should provide this function.
func bigintToUint64(i *big.Int) (uint64, big.Accuracy) {
	sign := i.Sign()
	if sign > 0 {
		if i.BitLen() > 64 {
			return math.MaxUint64, big.Below
		}
	} else if sign < 0 {
		return 0, big.Above
	}
	return i.Uint64(), big.Exact
}

var (
	minint64 = new(big.Int).SetInt64(math.MinInt64)
	maxint64 = new(big.Int).SetInt64(math.MaxInt64)
)

func (i Int) Format(s fmt.State, ch rune) {
	iSmall, iBig := i.get()
	if iBig != nil {
		iBig.Format(s, ch)
		return
	}
	big.NewInt(iSmall).Format(s, ch)
}
func (i Int) String() string {
	iSmall, iBig := i.get()
	if iBig != nil {
		return iBig.Text(10)
	}
	return strconv.FormatInt(iSmall, 10)
}
func (i Int) Type() string { return "int" }
func (i Int) Freeze()      {} // immutable
func (i Int) Truth() Bool  { return i.Sign() != 0 }
func (i Int) Hash() (uint32, error) {
	iSmall, iBig := i.get()
	var lo big.Word
	if iBig != nil {
		lo = iBig.Bits()[0]
	} else {
		lo = big.Word(iSmall)
	}
	return 12582917 * uint32(lo+3), nil
}
func (x Int) CompareSameType(op syntax.Token, v Value, depth int) (bool, error) {
	y := v.(Int)
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return threeway(op, x.BigInt().Cmp(y.BigInt())), nil
	}
	return threeway(op, signum64(xSmall-ySmall)), nil
}

// Float returns the float value nearest i.
func (i Int) Float() Float {
	iSmall, iBig := i.get()
	if iBig != nil {
		f, _ := new(big.Float).SetInt(iBig).Float64()
		return Float(f)
	}
	return Float(iSmall)
}

// finiteFloat returns the finite float value nearest i,
// or an error if the magnitude is too large.
func (i Int) finiteFloat() (Float, error) {
	f := i.Float()
	if math.IsInf(float64(f), 0) {
		return 0, fmt.Errorf("int too large to convert to float")
	}
	return f, nil
}

func (x Int) Sign() int {
	xSmall, xBig := x.get()
	if xBig != nil {
		return xBig.Sign()
	}
	return signum64(xSmall)
}

func (x Int) Add(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).Add(x.BigInt(), y.BigInt()))
	}
	return MakeInt64(xSmall + ySmall)
}
func (x Int) Sub(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).Sub(x.BigInt(), y.BigInt()))
	}
	return MakeInt64(xSmall - ySmall)
}
func (x Int) Mul(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).Mul(x.BigInt(), y.BigInt()))
	}
	return MakeInt64(xSmall * ySmall)
}
func (x Int) Or(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).Or(x.BigInt(), y.BigInt()))
	}
	return makeSmallInt(xSmall | ySmall)
}
func (x Int) And(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).And(x.BigInt(), y.BigInt()))
	}
	return makeSmallInt(xSmall & ySmall)
}
func (x Int) Xor(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		return MakeBigInt(new(big.Int).Xor(x.BigInt(), y.BigInt()))
	}
	return makeSmallInt(xSmall ^ ySmall)
}
func (x Int) Not() Int {
	xSmall, xBig := x.get()
	if xBig != nil {
		return MakeBigInt(new(big.Int).Not(xBig))
	}
	return makeSmallInt(^xSmall)
}
func (x Int) Lsh(y uint) Int { return MakeBigInt(new(big.Int).Lsh(x.BigInt(), y)) }
func (x Int) Rsh(y uint) Int { return MakeBigInt(new(big.Int).Rsh(x.BigInt(), y)) }

// Precondition: y is nonzero.
func (x Int) Div(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	// http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html
	if xBig != nil || yBig != nil {
		xb, yb := x.BigInt(), y.BigInt()

		var quo, rem big.Int
		quo.QuoRem(xb, yb, &rem)
		if (xb.Sign() < 0) != (yb.Sign() < 0) && rem.Sign() != 0 {
			quo.Sub(&quo, oneBig)
		}
		return MakeBigInt(&quo)
	}
	quo := xSmall / ySmall
	rem := xSmall % ySmall
	if (xSmall < 0) != (ySmall < 0) && rem != 0 {
		quo -= 1
	}
	return MakeInt64(quo)
}

// Precondition: y is nonzero.
func (x Int) Mod(y Int) Int {
	xSmall, xBig := x.get()
	ySmall, yBig := y.get()
	if xBig != nil || yBig != nil {
		xb, yb := x.BigInt(), y.BigInt()

		var quo, rem big.Int
		quo.QuoRem(xb, yb, &rem)
		if (xb.Sign() < 0) != (yb.Sign() < 0) && rem.Sign() != 0 {
			rem.Add(&rem, yb)
		}
		return MakeBigInt(&rem)
	}
	rem := xSmall % ySmall
	if (xSmall < 0) != (ySmall < 0) && rem != 0 {
		rem += ySmall
	}
	return makeSmallInt(rem)
}

func (i Int) rational() *big.Rat {
	iSmall, iBig := i.get()
	if iBig != nil {
		return new(big.Rat).SetInt(iBig)
	}
	return new(big.Rat).SetInt64(iSmall)
}

// AsInt32 returns the value of x if is representable as an int32.
func AsInt32(x Value) (int, error) {
	i, ok := x.(Int)
	if !ok {
		return 0, fmt.Errorf("got %s, want int", x.Type())
	}
	iSmall, iBig := i.get()
	if iBig != nil {
		return 0, fmt.Errorf("%s out of range", i)
	}
	return int(iSmall), nil
}

// NumberToInt converts a number x to an integer value.
// An int is returned unchanged, a float is truncated towards zero.
// NumberToInt reports an error for all other values.
func NumberToInt(x Value) (Int, error) {
	switch x := x.(type) {
	case Int:
		return x, nil
	case Float:
		f := float64(x)
		if math.IsInf(f, 0) {
			return zero, fmt.Errorf("cannot convert float infinity to integer")
		} else if math.IsNaN(f) {
			return zero, fmt.Errorf("cannot convert float NaN to integer")
		}
		return finiteFloatToInt(x), nil

	}
	return zero, fmt.Errorf("cannot convert %s to int", x.Type())
}

// finiteFloatToInt converts f to an Int, truncating towards zero.
// f must be finite.
func finiteFloatToInt(f Float) Int {
	if math.MinInt64 <= f && f <= math.MaxInt64 {
		// small values
		return MakeInt64(int64(f))
	}
	rat := f.rational()
	if rat == nil {
		panic(f) // non-finite
	}
	return MakeBigInt(new(big.Int).Div(rat.Num(), rat.Denom()))
}