aboutsummaryrefslogtreecommitdiff
path: root/syntax/parse.go
blob: 50b808743ee4548dcfd3b52e10dabccd8cd95ab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package syntax

// This file defines a recursive-descent parser for Starlark.
// The LL(1) grammar of Starlark and the names of many productions follow Python 2.7.
//
// TODO(adonovan): use syntax.Error more systematically throughout the
// package.  Verify that error positions are correct using the
// chunkedfile mechanism.

import "log"

// Enable this flag to print the token stream and log.Fatal on the first error.
const debug = false

// A Mode value is a set of flags (or 0) that controls optional parser functionality.
type Mode uint

const (
	RetainComments Mode = 1 << iota // retain comments in AST; see Node.Comments
)

// Parse parses the input data and returns the corresponding parse tree.
//
// If src != nil, ParseFile parses the source from src and the filename
// is only used when recording position information.
// The type of the argument for the src parameter must be string,
// []byte, io.Reader, or FilePortion.
// If src == nil, ParseFile parses the file specified by filename.
func Parse(filename string, src interface{}, mode Mode) (f *File, err error) {
	in, err := newScanner(filename, src, mode&RetainComments != 0)
	if err != nil {
		return nil, err
	}
	p := parser{in: in}
	defer p.in.recover(&err)

	p.nextToken() // read first lookahead token
	f = p.parseFile()
	if f != nil {
		f.Path = filename
	}
	p.assignComments(f)
	return f, nil
}

// ParseCompoundStmt parses a single compound statement:
// a blank line, a def, for, while, or if statement, or a
// semicolon-separated list of simple statements followed
// by a newline. These are the units on which the REPL operates.
// ParseCompoundStmt does not consume any following input.
// The parser calls the readline function each
// time it needs a new line of input.
func ParseCompoundStmt(filename string, readline func() ([]byte, error)) (f *File, err error) {
	in, err := newScanner(filename, readline, false)
	if err != nil {
		return nil, err
	}

	p := parser{in: in}
	defer p.in.recover(&err)

	p.nextToken() // read first lookahead token

	var stmts []Stmt
	switch p.tok {
	case DEF, IF, FOR, WHILE:
		stmts = p.parseStmt(stmts)
	case NEWLINE:
		// blank line
	default:
		stmts = p.parseSimpleStmt(stmts, false)
		// Require but don't consume newline, to avoid blocking again.
		if p.tok != NEWLINE {
			p.in.errorf(p.in.pos, "invalid syntax")
		}
	}

	return &File{Path: filename, Stmts: stmts}, nil
}

// ParseExpr parses a Starlark expression.
// A comma-separated list of expressions is parsed as a tuple.
// See Parse for explanation of parameters.
func ParseExpr(filename string, src interface{}, mode Mode) (expr Expr, err error) {
	in, err := newScanner(filename, src, mode&RetainComments != 0)
	if err != nil {
		return nil, err
	}
	p := parser{in: in}
	defer p.in.recover(&err)

	p.nextToken() // read first lookahead token

	// Use parseExpr, not parseTest, to permit an unparenthesized tuple.
	expr = p.parseExpr(false)

	// A following newline (e.g. "f()\n") appears outside any brackets,
	// on a non-blank line, and thus results in a NEWLINE token.
	if p.tok == NEWLINE {
		p.nextToken()
	}

	if p.tok != EOF {
		p.in.errorf(p.in.pos, "got %#v after expression, want EOF", p.tok)
	}
	p.assignComments(expr)
	return expr, nil
}

type parser struct {
	in     *scanner
	tok    Token
	tokval tokenValue
}

// nextToken advances the scanner and returns the position of the
// previous token.
func (p *parser) nextToken() Position {
	oldpos := p.tokval.pos
	p.tok = p.in.nextToken(&p.tokval)
	// enable to see the token stream
	if debug {
		log.Printf("nextToken: %-20s%+v\n", p.tok, p.tokval.pos)
	}
	return oldpos
}

// file_input = (NEWLINE | stmt)* EOF
func (p *parser) parseFile() *File {
	var stmts []Stmt
	for p.tok != EOF {
		if p.tok == NEWLINE {
			p.nextToken()
			continue
		}
		stmts = p.parseStmt(stmts)
	}
	return &File{Stmts: stmts}
}

func (p *parser) parseStmt(stmts []Stmt) []Stmt {
	if p.tok == DEF {
		return append(stmts, p.parseDefStmt())
	} else if p.tok == IF {
		return append(stmts, p.parseIfStmt())
	} else if p.tok == FOR {
		return append(stmts, p.parseForStmt())
	} else if p.tok == WHILE {
		return append(stmts, p.parseWhileStmt())
	}
	return p.parseSimpleStmt(stmts, true)
}

func (p *parser) parseDefStmt() Stmt {
	defpos := p.nextToken() // consume DEF
	id := p.parseIdent()
	p.consume(LPAREN)
	params := p.parseParams()
	p.consume(RPAREN)
	p.consume(COLON)
	body := p.parseSuite()
	return &DefStmt{
		Def:    defpos,
		Name:   id,
		Params: params,
		Body:   body,
	}
}

func (p *parser) parseIfStmt() Stmt {
	ifpos := p.nextToken() // consume IF
	cond := p.parseTest()
	p.consume(COLON)
	body := p.parseSuite()
	ifStmt := &IfStmt{
		If:   ifpos,
		Cond: cond,
		True: body,
	}
	tail := ifStmt
	for p.tok == ELIF {
		elifpos := p.nextToken() // consume ELIF
		cond := p.parseTest()
		p.consume(COLON)
		body := p.parseSuite()
		elif := &IfStmt{
			If:   elifpos,
			Cond: cond,
			True: body,
		}
		tail.ElsePos = elifpos
		tail.False = []Stmt{elif}
		tail = elif
	}
	if p.tok == ELSE {
		tail.ElsePos = p.nextToken() // consume ELSE
		p.consume(COLON)
		tail.False = p.parseSuite()
	}
	return ifStmt
}

func (p *parser) parseForStmt() Stmt {
	forpos := p.nextToken() // consume FOR
	vars := p.parseForLoopVariables()
	p.consume(IN)
	x := p.parseExpr(false)
	p.consume(COLON)
	body := p.parseSuite()
	return &ForStmt{
		For:  forpos,
		Vars: vars,
		X:    x,
		Body: body,
	}
}

func (p *parser) parseWhileStmt() Stmt {
	whilepos := p.nextToken() // consume WHILE
	cond := p.parseTest()
	p.consume(COLON)
	body := p.parseSuite()
	return &WhileStmt{
		While: whilepos,
		Cond:  cond,
		Body:  body,
	}
}

// Equivalent to 'exprlist' production in Python grammar.
//
// loop_variables = primary_with_suffix (COMMA primary_with_suffix)* COMMA?
func (p *parser) parseForLoopVariables() Expr {
	// Avoid parseExpr because it would consume the IN token
	// following x in "for x in y: ...".
	v := p.parsePrimaryWithSuffix()
	if p.tok != COMMA {
		return v
	}

	list := []Expr{v}
	for p.tok == COMMA {
		p.nextToken()
		if terminatesExprList(p.tok) {
			break
		}
		list = append(list, p.parsePrimaryWithSuffix())
	}
	return &TupleExpr{List: list}
}

// simple_stmt = small_stmt (SEMI small_stmt)* SEMI? NEWLINE
// In REPL mode, it does not consume the NEWLINE.
func (p *parser) parseSimpleStmt(stmts []Stmt, consumeNL bool) []Stmt {
	for {
		stmts = append(stmts, p.parseSmallStmt())
		if p.tok != SEMI {
			break
		}
		p.nextToken() // consume SEMI
		if p.tok == NEWLINE || p.tok == EOF {
			break
		}
	}
	// EOF without NEWLINE occurs in `if x: pass`, for example.
	if p.tok != EOF && consumeNL {
		p.consume(NEWLINE)
	}

	return stmts
}

// small_stmt = RETURN expr?
//            | PASS | BREAK | CONTINUE
//            | LOAD ...
//            | expr ('=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<=' | '>>=') expr   // assign
//            | expr
func (p *parser) parseSmallStmt() Stmt {
	switch p.tok {
	case RETURN:
		pos := p.nextToken() // consume RETURN
		var result Expr
		if p.tok != EOF && p.tok != NEWLINE && p.tok != SEMI {
			result = p.parseExpr(false)
		}
		return &ReturnStmt{Return: pos, Result: result}

	case BREAK, CONTINUE, PASS:
		tok := p.tok
		pos := p.nextToken() // consume it
		return &BranchStmt{Token: tok, TokenPos: pos}

	case LOAD:
		return p.parseLoadStmt()
	}

	// Assignment
	x := p.parseExpr(false)
	switch p.tok {
	case EQ, PLUS_EQ, MINUS_EQ, STAR_EQ, SLASH_EQ, SLASHSLASH_EQ, PERCENT_EQ, AMP_EQ, PIPE_EQ, CIRCUMFLEX_EQ, LTLT_EQ, GTGT_EQ:
		op := p.tok
		pos := p.nextToken() // consume op
		rhs := p.parseExpr(false)
		return &AssignStmt{OpPos: pos, Op: op, LHS: x, RHS: rhs}
	}

	// Expression statement (e.g. function call, doc string).
	return &ExprStmt{X: x}
}

// stmt = LOAD '(' STRING {',' (IDENT '=')? STRING} [','] ')'
func (p *parser) parseLoadStmt() *LoadStmt {
	loadPos := p.nextToken() // consume LOAD
	lparen := p.consume(LPAREN)

	if p.tok != STRING {
		p.in.errorf(p.in.pos, "first operand of load statement must be a string literal")
	}
	module := p.parsePrimary().(*Literal)

	var from, to []*Ident
	for p.tok != RPAREN && p.tok != EOF {
		p.consume(COMMA)
		if p.tok == RPAREN {
			break // allow trailing comma
		}
		switch p.tok {
		case STRING:
			// load("module", "id")
			// To name is same as original.
			lit := p.parsePrimary().(*Literal)
			id := &Ident{
				NamePos: lit.TokenPos.add(`"`),
				Name:    lit.Value.(string),
			}
			to = append(to, id)
			from = append(from, id)

		case IDENT:
			// load("module", to="from")
			id := p.parseIdent()
			to = append(to, id)
			if p.tok != EQ {
				p.in.errorf(p.in.pos, `load operand must be "%[1]s" or %[1]s="originalname" (want '=' after %[1]s)`, id.Name)
			}
			p.consume(EQ)
			if p.tok != STRING {
				p.in.errorf(p.in.pos, `original name of loaded symbol must be quoted: %s="originalname"`, id.Name)
			}
			lit := p.parsePrimary().(*Literal)
			from = append(from, &Ident{
				NamePos: lit.TokenPos.add(`"`),
				Name:    lit.Value.(string),
			})

		case RPAREN:
			p.in.errorf(p.in.pos, "trailing comma in load statement")

		default:
			p.in.errorf(p.in.pos, `load operand must be "name" or localname="name" (got %#v)`, p.tok)
		}
	}
	rparen := p.consume(RPAREN)

	if len(to) == 0 {
		p.in.errorf(lparen, "load statement must import at least 1 symbol")
	}
	return &LoadStmt{
		Load:   loadPos,
		Module: module,
		To:     to,
		From:   from,
		Rparen: rparen,
	}
}

// suite is typically what follows a COLON (e.g. after DEF or FOR).
// suite = simple_stmt | NEWLINE INDENT stmt+ OUTDENT
func (p *parser) parseSuite() []Stmt {
	if p.tok == NEWLINE {
		p.nextToken() // consume NEWLINE
		p.consume(INDENT)
		var stmts []Stmt
		for p.tok != OUTDENT && p.tok != EOF {
			stmts = p.parseStmt(stmts)
		}
		p.consume(OUTDENT)
		return stmts
	}

	return p.parseSimpleStmt(nil, true)
}

func (p *parser) parseIdent() *Ident {
	if p.tok != IDENT {
		p.in.error(p.in.pos, "not an identifier")
	}
	id := &Ident{
		NamePos: p.tokval.pos,
		Name:    p.tokval.raw,
	}
	p.nextToken()
	return id
}

func (p *parser) consume(t Token) Position {
	if p.tok != t {
		p.in.errorf(p.in.pos, "got %#v, want %#v", p.tok, t)
	}
	return p.nextToken()
}

// params = (param COMMA)* param COMMA?
//        |
//
// param = IDENT
//       | IDENT EQ test
//       | STAR
//       | STAR IDENT
//       | STARSTAR IDENT
//
// parseParams parses a parameter list.  The resulting expressions are of the form:
//
//      *Ident                                          x
//      *Binary{Op: EQ, X: *Ident, Y: Expr}             x=y
//      *Unary{Op: STAR}                                *
//      *Unary{Op: STAR, X: *Ident}                     *args
//      *Unary{Op: STARSTAR, X: *Ident}                 **kwargs
func (p *parser) parseParams() []Expr {
	var params []Expr
	for p.tok != RPAREN && p.tok != COLON && p.tok != EOF {
		if len(params) > 0 {
			p.consume(COMMA)
		}
		if p.tok == RPAREN {
			break
		}

		// * or *args or **kwargs
		if p.tok == STAR || p.tok == STARSTAR {
			op := p.tok
			pos := p.nextToken()
			var x Expr
			if op == STARSTAR || p.tok == IDENT {
				x = p.parseIdent()
			}
			params = append(params, &UnaryExpr{
				OpPos: pos,
				Op:    op,
				X:     x,
			})
			continue
		}

		// IDENT
		// IDENT = test
		id := p.parseIdent()
		if p.tok == EQ { // default value
			eq := p.nextToken()
			dflt := p.parseTest()
			params = append(params, &BinaryExpr{
				X:     id,
				OpPos: eq,
				Op:    EQ,
				Y:     dflt,
			})
			continue
		}

		params = append(params, id)
	}
	return params
}

// parseExpr parses an expression, possible consisting of a
// comma-separated list of 'test' expressions.
//
// In many cases we must use parseTest to avoid ambiguity such as
// f(x, y) vs. f((x, y)).
func (p *parser) parseExpr(inParens bool) Expr {
	x := p.parseTest()
	if p.tok != COMMA {
		return x
	}

	// tuple
	exprs := p.parseExprs([]Expr{x}, inParens)
	return &TupleExpr{List: exprs}
}

// parseExprs parses a comma-separated list of expressions, starting with the comma.
// It is used to parse tuples and list elements.
// expr_list = (',' expr)* ','?
func (p *parser) parseExprs(exprs []Expr, allowTrailingComma bool) []Expr {
	for p.tok == COMMA {
		pos := p.nextToken()
		if terminatesExprList(p.tok) {
			if !allowTrailingComma {
				p.in.error(pos, "unparenthesized tuple with trailing comma")
			}
			break
		}
		exprs = append(exprs, p.parseTest())
	}
	return exprs
}

// parseTest parses a 'test', a single-component expression.
func (p *parser) parseTest() Expr {
	if p.tok == LAMBDA {
		return p.parseLambda(true)
	}

	x := p.parseTestPrec(0)

	// conditional expression (t IF cond ELSE f)
	if p.tok == IF {
		ifpos := p.nextToken()
		cond := p.parseTestPrec(0)
		if p.tok != ELSE {
			p.in.error(ifpos, "conditional expression without else clause")
		}
		elsepos := p.nextToken()
		else_ := p.parseTest()
		return &CondExpr{If: ifpos, Cond: cond, True: x, ElsePos: elsepos, False: else_}
	}

	return x
}

// parseTestNoCond parses a a single-component expression without
// consuming a trailing 'if expr else expr'.
func (p *parser) parseTestNoCond() Expr {
	if p.tok == LAMBDA {
		return p.parseLambda(false)
	}
	return p.parseTestPrec(0)
}

// parseLambda parses a lambda expression.
// The allowCond flag allows the body to be an 'a if b else c' conditional.
func (p *parser) parseLambda(allowCond bool) Expr {
	lambda := p.nextToken()
	var params []Expr
	if p.tok != COLON {
		params = p.parseParams()
	}
	p.consume(COLON)

	var body Expr
	if allowCond {
		body = p.parseTest()
	} else {
		body = p.parseTestNoCond()
	}

	return &LambdaExpr{
		Lambda: lambda,
		Params: params,
		Body:   body,
	}
}

func (p *parser) parseTestPrec(prec int) Expr {
	if prec >= len(preclevels) {
		return p.parsePrimaryWithSuffix()
	}

	// expr = NOT expr
	if p.tok == NOT && prec == int(precedence[NOT]) {
		pos := p.nextToken()
		x := p.parseTestPrec(prec)
		return &UnaryExpr{
			OpPos: pos,
			Op:    NOT,
			X:     x,
		}
	}

	return p.parseBinopExpr(prec)
}

// expr = test (OP test)*
// Uses precedence climbing; see http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm#climbing.
func (p *parser) parseBinopExpr(prec int) Expr {
	x := p.parseTestPrec(prec + 1)
	for first := true; ; first = false {
		if p.tok == NOT {
			p.nextToken() // consume NOT
			// In this context, NOT must be followed by IN.
			// Replace NOT IN by a single NOT_IN token.
			if p.tok != IN {
				p.in.errorf(p.in.pos, "got %#v, want in", p.tok)
			}
			p.tok = NOT_IN
		}

		// Binary operator of specified precedence?
		opprec := int(precedence[p.tok])
		if opprec < prec {
			return x
		}

		// Comparisons are non-associative.
		if !first && opprec == int(precedence[EQL]) {
			p.in.errorf(p.in.pos, "%s does not associate with %s (use parens)",
				x.(*BinaryExpr).Op, p.tok)
		}

		op := p.tok
		pos := p.nextToken()
		y := p.parseTestPrec(opprec + 1)
		x = &BinaryExpr{OpPos: pos, Op: op, X: x, Y: y}
	}
}

// precedence maps each operator to its precedence (0-7), or -1 for other tokens.
var precedence [maxToken]int8

// preclevels groups operators of equal precedence.
// Comparisons are nonassociative; other binary operators associate to the left.
// Unary MINUS, unary PLUS, and TILDE have higher precedence so are handled in parsePrimary.
// See https://github.com/google/starlark-go/blob/master/doc/spec.md#binary-operators
var preclevels = [...][]Token{
	{OR},                                   // or
	{AND},                                  // and
	{NOT},                                  // not (unary)
	{EQL, NEQ, LT, GT, LE, GE, IN, NOT_IN}, // == != < > <= >= in not in
	{PIPE},                                 // |
	{CIRCUMFLEX},                           // ^
	{AMP},                                  // &
	{LTLT, GTGT},                           // << >>
	{MINUS, PLUS},                          // -
	{STAR, PERCENT, SLASH, SLASHSLASH},     // * % / //
}

func init() {
	// populate precedence table
	for i := range precedence {
		precedence[i] = -1
	}
	for level, tokens := range preclevels {
		for _, tok := range tokens {
			precedence[tok] = int8(level)
		}
	}
}

// primary_with_suffix = primary
//                     | primary '.' IDENT
//                     | primary slice_suffix
//                     | primary call_suffix
func (p *parser) parsePrimaryWithSuffix() Expr {
	x := p.parsePrimary()
	for {
		switch p.tok {
		case DOT:
			dot := p.nextToken()
			id := p.parseIdent()
			x = &DotExpr{Dot: dot, X: x, Name: id}
		case LBRACK:
			x = p.parseSliceSuffix(x)
		case LPAREN:
			x = p.parseCallSuffix(x)
		default:
			return x
		}
	}
}

// slice_suffix = '[' expr? ':' expr?  ':' expr? ']'
func (p *parser) parseSliceSuffix(x Expr) Expr {
	lbrack := p.nextToken()
	var lo, hi, step Expr
	if p.tok != COLON {
		y := p.parseExpr(false)

		// index x[y]
		if p.tok == RBRACK {
			rbrack := p.nextToken()
			return &IndexExpr{X: x, Lbrack: lbrack, Y: y, Rbrack: rbrack}
		}

		lo = y
	}

	// slice or substring x[lo:hi:step]
	if p.tok == COLON {
		p.nextToken()
		if p.tok != COLON && p.tok != RBRACK {
			hi = p.parseTest()
		}
	}
	if p.tok == COLON {
		p.nextToken()
		if p.tok != RBRACK {
			step = p.parseTest()
		}
	}
	rbrack := p.consume(RBRACK)
	return &SliceExpr{X: x, Lbrack: lbrack, Lo: lo, Hi: hi, Step: step, Rbrack: rbrack}
}

// call_suffix = '(' arg_list? ')'
func (p *parser) parseCallSuffix(fn Expr) Expr {
	lparen := p.consume(LPAREN)
	var rparen Position
	var args []Expr
	if p.tok == RPAREN {
		rparen = p.nextToken()
	} else {
		args = p.parseArgs()
		rparen = p.consume(RPAREN)
	}
	return &CallExpr{Fn: fn, Lparen: lparen, Args: args, Rparen: rparen}
}

// parseArgs parses a list of actual parameter values (arguments).
// It mirrors the structure of parseParams.
// arg_list = ((arg COMMA)* arg COMMA?)?
func (p *parser) parseArgs() []Expr {
	var args []Expr
	for p.tok != RPAREN && p.tok != EOF {
		if len(args) > 0 {
			p.consume(COMMA)
		}
		if p.tok == RPAREN {
			break
		}

		// *args or **kwargs
		if p.tok == STAR || p.tok == STARSTAR {
			op := p.tok
			pos := p.nextToken()
			x := p.parseTest()
			args = append(args, &UnaryExpr{
				OpPos: pos,
				Op:    op,
				X:     x,
			})
			continue
		}

		// We use a different strategy from Bazel here to stay within LL(1).
		// Instead of looking ahead two tokens (IDENT, EQ) we parse
		// 'test = test' then check that the first was an IDENT.
		x := p.parseTest()

		if p.tok == EQ {
			// name = value
			if _, ok := x.(*Ident); !ok {
				p.in.errorf(p.in.pos, "keyword argument must have form name=expr")
			}
			eq := p.nextToken()
			y := p.parseTest()
			x = &BinaryExpr{
				X:     x,
				OpPos: eq,
				Op:    EQ,
				Y:     y,
			}
		}

		args = append(args, x)
	}
	return args
}

//  primary = IDENT
//          | INT | FLOAT
//          | STRING
//          | '[' ...                    // list literal or comprehension
//          | '{' ...                    // dict literal or comprehension
//          | '(' ...                    // tuple or parenthesized expression
//          | ('-'|'+'|'~') primary_with_suffix
func (p *parser) parsePrimary() Expr {
	switch p.tok {
	case IDENT:
		return p.parseIdent()

	case INT, FLOAT, STRING:
		var val interface{}
		tok := p.tok
		switch tok {
		case INT:
			if p.tokval.bigInt != nil {
				val = p.tokval.bigInt
			} else {
				val = p.tokval.int
			}
		case FLOAT:
			val = p.tokval.float
		case STRING:
			val = p.tokval.string
		}
		raw := p.tokval.raw
		pos := p.nextToken()
		return &Literal{Token: tok, TokenPos: pos, Raw: raw, Value: val}

	case LBRACK:
		return p.parseList()

	case LBRACE:
		return p.parseDict()

	case LPAREN:
		lparen := p.nextToken()
		if p.tok == RPAREN {
			// empty tuple
			rparen := p.nextToken()
			return &TupleExpr{Lparen: lparen, Rparen: rparen}
		}
		e := p.parseExpr(true) // allow trailing comma
		rparen := p.consume(RPAREN)
		return &ParenExpr{
			Lparen: lparen,
			X:      e,
			Rparen: rparen,
		}

	case MINUS, PLUS, TILDE: // unary
		tok := p.tok
		pos := p.nextToken()
		x := p.parsePrimaryWithSuffix()
		return &UnaryExpr{
			OpPos: pos,
			Op:    tok,
			X:     x,
		}
	}
	p.in.errorf(p.in.pos, "got %#v, want primary expression", p.tok)
	panic("unreachable")
}

// list = '[' ']'
//      | '[' expr ']'
//      | '[' expr expr_list ']'
//      | '[' expr (FOR loop_variables IN expr)+ ']'
func (p *parser) parseList() Expr {
	lbrack := p.nextToken()
	if p.tok == RBRACK {
		// empty List
		rbrack := p.nextToken()
		return &ListExpr{Lbrack: lbrack, Rbrack: rbrack}
	}

	x := p.parseTest()

	if p.tok == FOR {
		// list comprehension
		return p.parseComprehensionSuffix(lbrack, x, RBRACK)
	}

	exprs := []Expr{x}
	if p.tok == COMMA {
		// multi-item list literal
		exprs = p.parseExprs(exprs, true) // allow trailing comma
	}

	rbrack := p.consume(RBRACK)
	return &ListExpr{Lbrack: lbrack, List: exprs, Rbrack: rbrack}
}

// dict = '{' '}'
//      | '{' dict_entry_list '}'
//      | '{' dict_entry FOR loop_variables IN expr '}'
func (p *parser) parseDict() Expr {
	lbrace := p.nextToken()
	if p.tok == RBRACE {
		// empty dict
		rbrace := p.nextToken()
		return &DictExpr{Lbrace: lbrace, Rbrace: rbrace}
	}

	x := p.parseDictEntry()

	if p.tok == FOR {
		// dict comprehension
		return p.parseComprehensionSuffix(lbrace, x, RBRACE)
	}

	entries := []Expr{x}
	for p.tok == COMMA {
		p.nextToken()
		if p.tok == RBRACE {
			break
		}
		entries = append(entries, p.parseDictEntry())
	}

	rbrace := p.consume(RBRACE)
	return &DictExpr{Lbrace: lbrace, List: entries, Rbrace: rbrace}
}

// dict_entry = test ':' test
func (p *parser) parseDictEntry() *DictEntry {
	k := p.parseTest()
	colon := p.consume(COLON)
	v := p.parseTest()
	return &DictEntry{Key: k, Colon: colon, Value: v}
}

// comp_suffix = FOR loopvars IN expr comp_suffix
//             | IF expr comp_suffix
//             | ']'  or  ')'                              (end)
//
// There can be multiple FOR/IF clauses; the first is always a FOR.
func (p *parser) parseComprehensionSuffix(lbrace Position, body Expr, endBrace Token) Expr {
	var clauses []Node
	for p.tok != endBrace {
		if p.tok == FOR {
			pos := p.nextToken()
			vars := p.parseForLoopVariables()
			in := p.consume(IN)
			// Following Python 3, the operand of IN cannot be:
			// - a conditional expression ('x if y else z'),
			//   due to conflicts in Python grammar
			//  ('if' is used by the comprehension);
			// - a lambda expression
			// - an unparenthesized tuple.
			x := p.parseTestPrec(0)
			clauses = append(clauses, &ForClause{For: pos, Vars: vars, In: in, X: x})
		} else if p.tok == IF {
			pos := p.nextToken()
			cond := p.parseTestNoCond()
			clauses = append(clauses, &IfClause{If: pos, Cond: cond})
		} else {
			p.in.errorf(p.in.pos, "got %#v, want '%s', for, or if", p.tok, endBrace)
		}
	}
	rbrace := p.nextToken()

	return &Comprehension{
		Curly:   endBrace == RBRACE,
		Lbrack:  lbrace,
		Body:    body,
		Clauses: clauses,
		Rbrack:  rbrace,
	}
}

func terminatesExprList(tok Token) bool {
	switch tok {
	case EOF, NEWLINE, EQ, RBRACE, RBRACK, RPAREN, SEMI:
		return true
	}
	return false
}

// Comment assignment.
// We build two lists of all subnodes, preorder and postorder.
// The preorder list is ordered by start location, with outer nodes first.
// The postorder list is ordered by end location, with outer nodes last.
// We use the preorder list to assign each whole-line comment to the syntax
// immediately following it, and we use the postorder list to assign each
// end-of-line comment to the syntax immediately preceding it.

// flattenAST returns the list of AST nodes, both in prefix order and in postfix
// order.
func flattenAST(root Node) (pre, post []Node) {
	stack := []Node{}
	Walk(root, func(n Node) bool {
		if n != nil {
			pre = append(pre, n)
			stack = append(stack, n)
		} else {
			post = append(post, stack[len(stack)-1])
			stack = stack[:len(stack)-1]
		}
		return true
	})
	return pre, post
}

// assignComments attaches comments to nearby syntax.
func (p *parser) assignComments(n Node) {
	// Leave early if there are no comments
	if len(p.in.lineComments)+len(p.in.suffixComments) == 0 {
		return
	}

	pre, post := flattenAST(n)

	// Assign line comments to syntax immediately following.
	line := p.in.lineComments
	for _, x := range pre {
		start, _ := x.Span()

		switch x.(type) {
		case *File:
			continue
		}

		for len(line) > 0 && !start.isBefore(line[0].Start) {
			x.AllocComments()
			x.Comments().Before = append(x.Comments().Before, line[0])
			line = line[1:]
		}
	}

	// Remaining line comments go at end of file.
	if len(line) > 0 {
		n.AllocComments()
		n.Comments().After = append(n.Comments().After, line...)
	}

	// Assign suffix comments to syntax immediately before.
	suffix := p.in.suffixComments
	for i := len(post) - 1; i >= 0; i-- {
		x := post[i]

		// Do not assign suffix comments to file
		switch x.(type) {
		case *File:
			continue
		}

		_, end := x.Span()
		if len(suffix) > 0 && end.isBefore(suffix[len(suffix)-1].Start) {
			x.AllocComments()
			x.Comments().Suffix = append(x.Comments().Suffix, suffix[len(suffix)-1])
			suffix = suffix[:len(suffix)-1]
		}
	}
}