/* * Copyright (c) 1991, 1992 Paul Kranenburg * Copyright (c) 1993 Branko Lankester * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey * Copyright (c) 1996-1999 Wichert Akkerman * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Linux for s390 port by D.J. Barrow * * Copyright (c) 2001-2018 The strace developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "defs.h" #include "nsig.h" #include "xstring.h" /* The libc headers do not define this constant since it should only be used by the implementation. So we define it here. */ #ifndef SA_RESTORER # ifdef ASM_SA_RESTORER # define SA_RESTORER ASM_SA_RESTORER # endif #endif /* * Some architectures define SA_RESTORER in their headers, * but do not actually have sa_restorer. * * Some architectures, otherwise, do not define SA_RESTORER in their headers, * but actually have sa_restorer. */ #ifdef HAVE_ARCH_SA_RESTORER # define HAVE_SA_RESTORER HAVE_ARCH_SA_RESTORER #else /* !HAVE_ARCH_SA_RESTORER */ # ifdef SA_RESTORER # define HAVE_SA_RESTORER 1 # else # define HAVE_SA_RESTORER 0 # endif #endif /* HAVE_ARCH_SA_RESTORER */ #include "xlat/sa_handler_values.h" #include "xlat/sigact_flags.h" #include "xlat/sigprocmaskcmds.h" /* Anonymous realtime signals. */ #ifndef ASM_SIGRTMIN /* Linux kernel >= 3.18 defines SIGRTMIN to 32 on all architectures. */ # define ASM_SIGRTMIN 32 #endif #ifndef ASM_SIGRTMAX /* Under glibc 2.1, SIGRTMAX et al are functions, but __SIGRTMAX is a constant. This is what we want. Otherwise, just use SIGRTMAX. */ # ifdef SIGRTMAX # ifndef __SIGRTMAX # define __SIGRTMAX SIGRTMAX # endif # endif # ifdef __SIGRTMAX # define ASM_SIGRTMAX __SIGRTMAX # endif #endif /* Note on the size of sigset_t: * * In glibc, sigset_t is an array with space for 1024 bits (!), * even though all arches supported by Linux have only 64 signals * except MIPS, which has 128. IOW, it is 128 bytes long. * * In-kernel sigset_t is sized correctly (it is either 64 or 128 bit long). * However, some old syscall return only 32 lower bits (one word). * Example: sys_sigpending vs sys_rt_sigpending. * * Be aware of this fact when you try to * memcpy(&tcp->u_arg[1], &something, sizeof(sigset_t)) * - sizeof(sigset_t) is much bigger than you think, * it may overflow tcp->u_arg[] array, and it may try to copy more data * than is really available in . * Similarly, * umoven(tcp, addr, sizeof(sigset_t), &sigset) * may be a bad idea: it'll try to read much more data than needed * to fetch a sigset_t. * Use NSIG_BYTES as a size instead. */ static const char * get_sa_handler_str(kernel_ulong_t handler) { return xlookup(sa_handler_values, handler); } static void print_sa_handler(kernel_ulong_t handler) { const char *sa_handler_str = get_sa_handler_str(handler); if (sa_handler_str) print_xlat_ex(handler, sa_handler_str, XLAT_STYLE_DEFAULT); else printaddr(handler); } const char * signame(const int sig) { static char buf[sizeof("SIGRT_%u") + sizeof(int)*3]; if (sig >= 0) { const unsigned int s = sig; if (s < nsignals) return signalent[s]; #ifdef ASM_SIGRTMAX if (s >= ASM_SIGRTMIN && s <= (unsigned int) ASM_SIGRTMAX) { xsprintf(buf, "SIGRT_%u", s - ASM_SIGRTMIN); return buf; } #endif } xsprintf(buf, "%d", sig); return buf; } static unsigned int popcount32(const uint32_t *a, unsigned int size) { unsigned int count = 0; for (; size; ++a, --size) { uint32_t x = *a; #ifdef HAVE___BUILTIN_POPCOUNT count += __builtin_popcount(x); #else for (; x; ++count) x &= x - 1; #endif } return count; } const char * sprintsigmask_n(const char *prefix, const void *sig_mask, unsigned int bytes) { /* * The maximum number of signal names to be printed * is NSIG_BYTES * 8 * 2 / 3. * Most of signal names have length 7, * average length of signal names is less than 7. * The length of prefix string does not exceed 16. */ static char outstr[128 + 8 * (NSIG_BYTES * 8 * 2 / 3)]; char *s; const uint32_t *mask; uint32_t inverted_mask[NSIG_BYTES / 4]; unsigned int size; int i; char sep; s = stpcpy(outstr, prefix); mask = sig_mask; /* length of signal mask in 4-byte words */ size = (bytes >= NSIG_BYTES) ? NSIG_BYTES / 4 : (bytes + 3) / 4; /* check whether 2/3 or more bits are set */ if (popcount32(mask, size) >= size * (4 * 8) * 2 / 3) { /* show those signals that are NOT in the mask */ unsigned int j; for (j = 0; j < size; ++j) inverted_mask[j] = ~mask[j]; mask = inverted_mask; *s++ = '~'; } sep = '['; for (i = 0; (i = next_set_bit(mask, i, size * (4 * 8))) >= 0; ) { ++i; *s++ = sep; if ((unsigned) i < nsignals) { s = stpcpy(s, signalent[i] + 3); } #ifdef ASM_SIGRTMAX else if (i >= ASM_SIGRTMIN && i <= ASM_SIGRTMAX) { s = xappendstr(outstr, s, "RT_%u", i - ASM_SIGRTMIN); } #endif else { s = xappendstr(outstr, s, "%u", i); } sep = ' '; } if (sep == '[') *s++ = sep; *s++ = ']'; *s = '\0'; return outstr; } #define sprintsigmask_val(prefix, mask) \ sprintsigmask_n((prefix), &(mask), sizeof(mask)) #define tprintsigmask_val(prefix, mask) \ tprints(sprintsigmask_n((prefix), &(mask), sizeof(mask))) static const char * sprint_old_sigmask_val(const char *const prefix, const unsigned long mask) { #if defined(current_wordsize) || !defined(WORDS_BIGENDIAN) return sprintsigmask_n(prefix, &mask, current_wordsize); #else /* !current_wordsize && WORDS_BIGENDIAN */ if (current_wordsize == sizeof(mask)) { return sprintsigmask_val(prefix, mask); } else { uint32_t mask32 = mask; return sprintsigmask_val(prefix, mask32); } #endif } #define tprint_old_sigmask_val(prefix, mask) \ tprints(sprint_old_sigmask_val((prefix), (mask))) void printsignal(int nr) { tprints(signame(nr)); } static void print_sigset_addr_len_limit(struct tcb *const tcp, const kernel_ulong_t addr, const kernel_ulong_t len, const unsigned int min_len) { /* * Here len is usually equal to NSIG_BYTES or current_wordsize. * But we code this defensively: */ if (len < min_len || len > NSIG_BYTES) { printaddr(addr); return; } int mask[NSIG_BYTES / sizeof(int)] = {}; if (umoven_or_printaddr(tcp, addr, len, mask)) return; tprints(sprintsigmask_n("", mask, len)); } void print_sigset_addr_len(struct tcb *const tcp, const kernel_ulong_t addr, const kernel_ulong_t len) { print_sigset_addr_len_limit(tcp, addr, len, current_wordsize); } void print_sigset_addr(struct tcb *const tcp, const kernel_ulong_t addr) { print_sigset_addr_len_limit(tcp, addr, NSIG_BYTES, NSIG_BYTES); } SYS_FUNC(ssetmask) { if (entering(tcp)) { tprint_old_sigmask_val("", (unsigned) tcp->u_arg[0]); } else if (!syserror(tcp)) { tcp->auxstr = sprint_old_sigmask_val("old mask ", (unsigned) tcp->u_rval); return RVAL_HEX | RVAL_STR; } return 0; } struct old_sigaction { /* sa_handler may be a libc #define, need to use other name: */ #if defined MIPS unsigned int sa_flags; unsigned long sa_handler__; unsigned long sa_mask; #elif defined ALPHA unsigned long sa_handler__; unsigned long sa_mask; unsigned int sa_flags; #else unsigned long sa_handler__; unsigned long sa_mask; unsigned long sa_flags; unsigned long sa_restorer; #endif } #ifdef ALPHA ATTRIBUTE_PACKED #endif ; static void decode_old_sigaction(struct tcb *const tcp, const kernel_ulong_t addr) { struct old_sigaction sa; #ifndef current_wordsize if (current_wordsize < sizeof(sa.sa_handler__)) { struct old_sigaction32 { uint32_t sa_handler__; uint32_t sa_mask; uint32_t sa_flags; uint32_t sa_restorer; } sa32; if (umove_or_printaddr(tcp, addr, &sa32)) return; memset(&sa, 0, sizeof(sa)); sa.sa_handler__ = sa32.sa_handler__; sa.sa_flags = sa32.sa_flags; sa.sa_restorer = sa32.sa_restorer; sa.sa_mask = sa32.sa_mask; } else #endif if (umove_or_printaddr(tcp, addr, &sa)) return; tprints("{sa_handler="); print_sa_handler(sa.sa_handler__); tprints(", sa_mask="); tprint_old_sigmask_val("", sa.sa_mask); tprints(", sa_flags="); printflags(sigact_flags, sa.sa_flags, "SA_???"); #if !(defined ALPHA || defined MIPS) if (sa.sa_flags & 0x04000000U) { tprints(", sa_restorer="); printaddr(sa.sa_restorer); } #endif tprints("}"); } SYS_FUNC(sigaction) { if (entering(tcp)) { int signo = tcp->u_arg[0]; #if defined SPARC || defined SPARC64 if (signo < 0) { tprints("-"); signo = -signo; } #endif printsignal(signo); tprints(", "); decode_old_sigaction(tcp, tcp->u_arg[1]); tprints(", "); } else decode_old_sigaction(tcp, tcp->u_arg[2]); return 0; } SYS_FUNC(signal) { if (entering(tcp)) { printsignal(tcp->u_arg[0]); tprints(", "); print_sa_handler(tcp->u_arg[1]); return 0; } else if (!syserror(tcp)) { tcp->auxstr = get_sa_handler_str(tcp->u_rval); return RVAL_HEX | RVAL_STR; } return 0; } SYS_FUNC(sgetmask) { if (exiting(tcp) && !syserror(tcp)) { tcp->auxstr = sprint_old_sigmask_val("mask ", tcp->u_rval); return RVAL_HEX | RVAL_STR; } return 0; } SYS_FUNC(sigsuspend) { #ifdef MIPS print_sigset_addr_len(tcp, tcp->u_arg[tcp->s_ent->nargs - 1], current_wordsize); #else tprint_old_sigmask_val("", tcp->u_arg[tcp->s_ent->nargs - 1]); #endif return RVAL_DECODED; } #ifdef ALPHA /* * The OSF/1 sigprocmask is different: it doesn't pass in two pointers, * but rather passes in the new bitmask as an argument and then returns * the old bitmask. This "works" because we only have 64 signals to worry * about. If you want more, use of the rt_sigprocmask syscall is required. * * Alpha: * old = osf_sigprocmask(how, new); * Everyone else: * ret = sigprocmask(how, &new, &old, ...); */ SYS_FUNC(osf_sigprocmask) { if (entering(tcp)) { printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); tprintsigmask_val(", ", tcp->u_arg[1]); } else if (!syserror(tcp)) { tcp->auxstr = sprintsigmask_val("old mask ", tcp->u_rval); return RVAL_HEX | RVAL_STR; } return 0; } #else /* !ALPHA */ /* "Old" sigprocmask, which operates with word-sized signal masks */ SYS_FUNC(sigprocmask) { if (entering(tcp)) { printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); tprints(", "); print_sigset_addr_len(tcp, tcp->u_arg[1], current_wordsize); tprints(", "); } else { print_sigset_addr_len(tcp, tcp->u_arg[2], current_wordsize); } return 0; } #endif /* !ALPHA */ SYS_FUNC(kill) { tprintf("%d, %s", (int) tcp->u_arg[0], signame(tcp->u_arg[1])); return RVAL_DECODED; } SYS_FUNC(tgkill) { tprintf("%d, %d, %s", (int) tcp->u_arg[0], (int) tcp->u_arg[1], signame(tcp->u_arg[2])); return RVAL_DECODED; } SYS_FUNC(sigpending) { if (exiting(tcp)) print_sigset_addr_len(tcp, tcp->u_arg[0], current_wordsize); return 0; } SYS_FUNC(rt_sigprocmask) { /* Note: arg[3] is the length of the sigset. Kernel requires NSIG_BYTES */ if (entering(tcp)) { printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???"); tprints(", "); print_sigset_addr_len(tcp, tcp->u_arg[1], tcp->u_arg[3]); tprints(", "); } else { print_sigset_addr_len(tcp, tcp->u_arg[2], tcp->u_arg[3]); tprintf(", %" PRI_klu, tcp->u_arg[3]); } return 0; } /* Structure describing the action to be taken when a signal arrives. */ struct new_sigaction { /* sa_handler may be a libc #define, need to use other name: */ #ifdef MIPS unsigned int sa_flags; unsigned long sa_handler__; #else unsigned long sa_handler__; unsigned long sa_flags; #endif /* !MIPS */ #if HAVE_SA_RESTORER unsigned long sa_restorer; #endif /* Kernel treats sa_mask as an array of longs. */ unsigned long sa_mask[NSIG / sizeof(long)]; }; /* Same for i386-on-x86_64 and similar cases */ struct new_sigaction32 { uint32_t sa_handler__; uint32_t sa_flags; #if HAVE_SA_RESTORER uint32_t sa_restorer; #endif uint32_t sa_mask[2 * (NSIG / sizeof(long))]; }; static void decode_new_sigaction(struct tcb *const tcp, const kernel_ulong_t addr) { struct new_sigaction sa; #ifndef current_wordsize if (current_wordsize < sizeof(sa.sa_handler__)) { struct new_sigaction32 sa32; if (umove_or_printaddr(tcp, addr, &sa32)) return; memset(&sa, 0, sizeof(sa)); sa.sa_handler__ = sa32.sa_handler__; sa.sa_flags = sa32.sa_flags; #if HAVE_SA_RESTORER && defined SA_RESTORER sa.sa_restorer = sa32.sa_restorer; #endif /* Kernel treats sa_mask as an array of longs. * For 32-bit process, "long" is uint32_t, thus, for example, * 32th bit in sa_mask will end up as bit 0 in sa_mask[1]. * But for (64-bit) kernel, 32th bit in sa_mask is * 32th bit in 0th (64-bit) long! * For little-endian, it's the same. * For big-endian, we swap 32-bit words. */ sa.sa_mask[0] = ULONG_LONG(sa32.sa_mask[0], sa32.sa_mask[1]); } else #endif if (umove_or_printaddr(tcp, addr, &sa)) return; tprints("{sa_handler="); print_sa_handler(sa.sa_handler__); tprints(", sa_mask="); /* * Sigset size is in tcp->u_arg[4] (SPARC) * or in tcp->u_arg[3] (all other), * but kernel won't handle sys_rt_sigaction * with wrong sigset size (just returns EINVAL instead). * We just fetch the right size, which is NSIG_BYTES. */ tprintsigmask_val("", sa.sa_mask); tprints(", sa_flags="); printflags(sigact_flags, sa.sa_flags, "SA_???"); #if HAVE_SA_RESTORER && defined SA_RESTORER if (sa.sa_flags & SA_RESTORER) { tprints(", sa_restorer="); printaddr(sa.sa_restorer); } #endif tprints("}"); } SYS_FUNC(rt_sigaction) { if (entering(tcp)) { printsignal(tcp->u_arg[0]); tprints(", "); decode_new_sigaction(tcp, tcp->u_arg[1]); tprints(", "); } else { decode_new_sigaction(tcp, tcp->u_arg[2]); #if defined(SPARC) || defined(SPARC64) tprintf(", %#" PRI_klx ", %" PRI_klu, tcp->u_arg[3], tcp->u_arg[4]); #elif defined(ALPHA) tprintf(", %" PRI_klu ", %#" PRI_klx, tcp->u_arg[3], tcp->u_arg[4]); #else tprintf(", %" PRI_klu, tcp->u_arg[3]); #endif } return 0; } SYS_FUNC(rt_sigpending) { if (exiting(tcp)) { /* * One of the few syscalls where sigset size (arg[1]) * is allowed to be <= NSIG_BYTES, not strictly ==. * This allows non-rt sigpending() syscall * to reuse rt_sigpending() code in kernel. */ print_sigset_addr_len_limit(tcp, tcp->u_arg[0], tcp->u_arg[1], 1); tprintf(", %" PRI_klu, tcp->u_arg[1]); } return 0; } SYS_FUNC(rt_sigsuspend) { /* NB: kernel requires arg[1] == NSIG_BYTES */ print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[1]); tprintf(", %" PRI_klu, tcp->u_arg[1]); return RVAL_DECODED; } static void print_sigqueueinfo(struct tcb *const tcp, const int sig, const kernel_ulong_t addr) { printsignal(sig); tprints(", "); printsiginfo_at(tcp, addr); } SYS_FUNC(rt_sigqueueinfo) { tprintf("%d, ", (int) tcp->u_arg[0]); print_sigqueueinfo(tcp, tcp->u_arg[1], tcp->u_arg[2]); return RVAL_DECODED; } SYS_FUNC(rt_tgsigqueueinfo) { tprintf("%d, %d, ", (int) tcp->u_arg[0], (int) tcp->u_arg[1]); print_sigqueueinfo(tcp, tcp->u_arg[2], tcp->u_arg[3]); return RVAL_DECODED; } SYS_FUNC(rt_sigtimedwait) { /* NB: kernel requires arg[3] == NSIG_BYTES */ if (entering(tcp)) { print_sigset_addr_len(tcp, tcp->u_arg[0], tcp->u_arg[3]); tprints(", "); if (!(tcp->u_arg[1] && verbose(tcp))) { /* * This is the only "return" parameter, * if we are not going to fetch it on exit, * decode all parameters on entry. */ printaddr(tcp->u_arg[1]); tprints(", "); print_timespec(tcp, tcp->u_arg[2]); tprintf(", %" PRI_klu, tcp->u_arg[3]); } else { char *sts = xstrdup(sprint_timespec(tcp, tcp->u_arg[2])); set_tcb_priv_data(tcp, sts, free); } } else { if (tcp->u_arg[1] && verbose(tcp)) { printsiginfo_at(tcp, tcp->u_arg[1]); tprints(", "); tprints(get_tcb_priv_data(tcp)); tprintf(", %" PRI_klu, tcp->u_arg[3]); } if (!syserror(tcp) && tcp->u_rval) { tcp->auxstr = signame(tcp->u_rval); return RVAL_STR; } } return 0; } SYS_FUNC(restart_syscall) { tprintf("<... resuming interrupted %s ...>", tcp->s_prev_ent ? tcp->s_prev_ent->sys_name : "system call"); return RVAL_DECODED; }