aboutsummaryrefslogtreecommitdiff
path: root/src/adler32memcpy.cc
blob: c0c6a391abc02b807da79fd58548b400d8128854 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// Copyright 2008 Google Inc. All Rights Reserved.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//      http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "adler32memcpy.h"

// We are using (a modified form of) adler-32 checksum algorithm instead
// of CRC since adler-32 is faster than CRC.
// (Comparison: http://guru.multimedia.cx/crc32-vs-adler32/)
// This form of adler is bit modified, instead of treating the data in
// units of bytes, 32-bit data is taken as a unit and two 64-bit
// checksums are done (we could have one checksum but two checksums
// make the code run faster).

// Adler-32 implementation:
//   Data is treated as 1-byte numbers and,
//   there are two 16-bit numbers a and b
//   Initialize a with 1 and b with 0.
//   for each data unit 'd'
//      a += d
//      b += a
//   checksum = a<<16 + b
//   This sum should never overflow.
//
// Adler-64+64 implementation:
//   (applied in this code)
//   Data is treated as 32-bit numbers and whole data is separated into two
//   streams, and hence the two checksums a1, a2, b1 and b2.
//   Initialize a1 and a2 with 1, b1 and b2 with 0
//   add first dataunit to a1
//   add a1 to b1
//   add second dataunit to a1
//   add a1 to b1
//   add third dataunit to a2
//   add a2 to b2
//   add fourth dataunit to a2
//   add a2 to b2
//   ...
//   repeat the sequence back for next 4 dataunits
//
//   variable A = XMM6 and variable B = XMM7.
//   (a1 = lower 8 bytes of XMM6 and b1 = lower 8 bytes of XMM7)

// Assumptions
// 1. size_in_bytes is a multiple of 16.
// 2. srcmem and dstmem are 16 byte aligned.
// 3. size_in_bytes is less than 2^19 bytes.

// Assumption 3 ensures that there is no overflow when numbers are being
// added (we can remove this assumption by doing modulus with a prime
// number when it is just about to overflow but that would be a very costly
// exercise)

// Returns true if the checksums are equal.
bool AdlerChecksum::Equals(const AdlerChecksum &other) const {
  return ( (a1_ == other.a1_) && (a2_ == other.a2_) &&
           (b1_ == other.b1_) && (b2_ == other.b2_) );
}

// Returns string representation of the Adler checksum.
string AdlerChecksum::ToHexString() const {
  char buffer[128];
  snprintf(buffer, sizeof(buffer), "%016llx %016llx %016llx %016llx", a1_, a2_, b1_, b2_);
  return string(buffer);
}

// Sets components of the Adler checksum.
void AdlerChecksum::Set(uint64 a1, uint64 a2, uint64 b1, uint64 b2) {
  a1_ = a1;
  a2_ = a2;
  b1_ = b1;
  b2_ = b2;
}

// Calculates Adler checksum for supplied data.
bool CalculateAdlerChecksum(uint64 *data64, unsigned int size_in_bytes,
                            AdlerChecksum *checksum) {
  // Use this data wrapper to access memory with 64bit read/write.
  datacast_t data;
  unsigned int count = size_in_bytes / sizeof(data);

  if (count > (1U) << 19) {
    // Size is too large, must be strictly less than 512 KB.
    return false;
  }

  uint64 a1 = 1;
  uint64 a2 = 1;
  uint64 b1 = 0;
  uint64 b2 = 0;

  unsigned int i = 0;
  while (i < count) {
    // Process 64 bits at a time.
    data.l64 = data64[i];
    a1 = a1 + data.l32.l;
    b1 = b1 + a1;
    a1 = a1 + data.l32.h;
    b1 = b1 + a1;
    i++;

    data.l64 = data64[i];
    a2 = a2 + data.l32.l;
    b2 = b2 + a2;
    a2 = a2 + data.l32.h;
    b2 = b2 + a2;
    i++;
  }
  checksum->Set(a1, a2, b1, b2);
  return true;
}

// C implementation of Adler memory copy.
bool AdlerMemcpyC(uint64 *dstmem64, uint64 *srcmem64,
                  unsigned int size_in_bytes, AdlerChecksum *checksum) {
  // Use this data wrapper to access memory with 64bit read/write.
  datacast_t data;
  unsigned int count = size_in_bytes / sizeof(data);

  if (count > ((1U) << 19)) {
    // Size is too large, must be strictly less than 512 KB.
    return false;
  }

  uint64 a1 = 1;
  uint64 a2 = 1;
  uint64 b1 = 0;
  uint64 b2 = 0;

  unsigned int i = 0;
  while (i < count) {
    // Process 64 bits at a time.
    data.l64 = srcmem64[i];
    a1 = a1 + data.l32.l;
    b1 = b1 + a1;
    a1 = a1 + data.l32.h;
    b1 = b1 + a1;
    dstmem64[i] = data.l64;
    i++;

    data.l64 = srcmem64[i];
    a2 = a2 + data.l32.l;
    b2 = b2 + a2;
    a2 = a2 + data.l32.h;
    b2 = b2 + a2;
    dstmem64[i] = data.l64;
    i++;
  }
  checksum->Set(a1, a2, b1, b2);
  return true;
}

// C implementation of Adler memory copy with some float point ops,
// attempting to warm up the CPU.
bool AdlerMemcpyWarmC(uint64 *dstmem64, uint64 *srcmem64,
                      unsigned int size_in_bytes, AdlerChecksum *checksum) {
  // Use this data wrapper to access memory with 64bit read/write.
  datacast_t data;
  unsigned int count = size_in_bytes / sizeof(data);

  if (count > ((1U) << 19)) {
    // Size is too large, must be strictly less than 512 KB.
    return false;
  }

  uint64 a1 = 1;
  uint64 a2 = 1;
  uint64 b1 = 0;
  uint64 b2 = 0;

  double a = 2.0 * static_cast<double>(srcmem64[0]);
  double b = 5.0 * static_cast<double>(srcmem64[0]);
  double c = 7.0 * static_cast<double>(srcmem64[0]);
  double d = 9.0 * static_cast<double>(srcmem64[0]);

  unsigned int i = 0;
  while (i < count) {
    // Process 64 bits at a time.
    data.l64 = srcmem64[i];
    a1 = a1 + data.l32.l;
    b1 = b1 + a1;
    a1 = a1 + data.l32.h;
    b1 = b1 + a1;
    dstmem64[i] = data.l64;
    i++;

    // Warm cpu up.
    a = a * b;
    b = b + c;

    data.l64 = srcmem64[i];
    a2 = a2 + data.l32.l;
    b2 = b2 + a2;
    a2 = a2 + data.l32.h;
    b2 = b2 + a2;
    dstmem64[i] = data.l64;
    i++;

    // Warm cpu up.
    c = c * d;
    d = d + d;
  }

  // Warm cpu up.
  d = a + b + c + d;
  if (d == 1.0) {
    // Reference the result so that it can't be discarded by the compiler.
    printf("Log: This will probably never happen.\n");
  }

  checksum->Set(a1, a2, b1, b2);
  return true;
}

// x86_64 SSE2 assembly implementation of fast and stressful Adler memory copy.
bool AdlerMemcpyAsm(uint64 *dstmem64, uint64 *srcmem64,
                    unsigned int size_in_bytes, AdlerChecksum *checksum) {
// Use assembly implementation where supported.
#if defined(STRESSAPPTEST_CPU_X86_64) || defined(STRESSAPPTEST_CPU_I686)

// Pull a bit of tricky preprocessing to make the inline asm both
// 32 bit and 64 bit.
#ifdef STRESSAPPTEST_CPU_I686  // Instead of coding both, x86...
#define rAX "%%eax"
#define rCX "%%ecx"
#define rDX "%%edx"
#define rBX "%%ebx"
#define rSP "%%esp"
#define rBP "%%ebp"
#define rSI "%%esi"
#define rDI "%%edi"
#endif

#ifdef STRESSAPPTEST_CPU_X86_64  // ...and x64, we use rXX macros.
#define rAX "%%rax"
#define rCX "%%rcx"
#define rDX "%%rdx"
#define rBX "%%rbx"
#define rSP "%%rsp"
#define rBP "%%rbp"
#define rSI "%%rsi"
#define rDI "%%rdi"
#endif

  // Elements 0 to 3 are used for holding checksum terms a1, a2,
  // b1, b2 respectively. These elements are filled by asm code.
  // Elements 4 and 5 are used by asm code to for ANDing MMX data and removing
  // 2 words from each MMX register (A MMX reg has 4 words, by ANDing we are
  // setting word index 0 and word index 2 to zero).
  // Element 6 and 7 are used for setting a1 and a2 to 1.
  volatile uint64 checksum_arr[] __attribute__ ((aligned(16))) =
      {0, 0, 0, 0, 0x00000000ffffffffUL, 0x00000000ffffffffUL, 1, 1};

  if ((size_in_bytes >> 19) > 0) {
    // Size is too large. Must be less than 2^19 bytes = 512 KB.
    return false;
  }

  // Number of 32-bit words which are not added to a1/a2 in the main loop.
  uint32 remaining_words = (size_in_bytes % 48) / 4;

  // Since we are moving 48 bytes at a time number of iterations = total size/48
  // is value of counter.
  uint32 num_of_48_byte_units = size_in_bytes / 48;

  asm volatile (
      // Source address is in ESI (extended source index)
      // destination is in EDI (extended destination index)
      // and counter is already in ECX (extended counter
      // index).
      "cmp  $0, " rCX ";"   // Compare counter to zero.
      "jz END;"

      // XMM6 is initialized with 1 and XMM7 with 0.
      "prefetchnta  0(" rSI ");"
      "prefetchnta 64(" rSI ");"
      "movdqu   48(" rAX "), %%xmm6;"
      "xorps      %%xmm7, %%xmm7;"

      // Start of the loop which copies 48 bytes from source to dst each time.
      "TOP:\n"

      // Make 6 moves each of 16 bytes from srcmem to XMM registers.
      // We are using 2 words out of 4 words in each XMM register,
      // word index 0 and word index 2
      "movdqa   0(" rSI "), %%xmm0;"
      "movdqu   4(" rSI "), %%xmm1;"  // Be careful to use unaligned move here.
      "movdqa  16(" rSI "), %%xmm2;"
      "movdqu  20(" rSI "), %%xmm3;"
      "movdqa  32(" rSI "), %%xmm4;"
      "movdqu  36(" rSI "), %%xmm5;"

      // Move 3 * 16 bytes from XMM registers to dstmem.
      // Note: this copy must be performed before pinsrw instructions since
      // they will modify the XMM registers.
      "movntdq %%xmm0,  0(" rDI ");"
      "movntdq %%xmm2, 16(" rDI ");"
      "movntdq %%xmm4, 32(" rDI ");"

      // Sets the word[1] and word[3] of XMM0 to XMM5 to zero.
      "andps 32(" rAX "), %%xmm0;"
      "andps 32(" rAX "), %%xmm1;"
      "andps 32(" rAX "), %%xmm2;"
      "andps 32(" rAX "), %%xmm3;"
      "andps 32(" rAX "), %%xmm4;"
      "andps 32(" rAX "), %%xmm5;"

      // Add XMM0 to XMM6 and then add XMM6 to XMM7.
      // Repeat this for XMM1, ..., XMM5.
      // Overflow(for XMM7) can occur only if there are more
      // than 2^16 additions => more than 2^17 words => more than 2^19 bytes so
      // if size_in_bytes > 2^19 than overflow occurs.
      "paddq %%xmm0, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"
      "paddq %%xmm1, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"
      "paddq %%xmm2, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"
      "paddq %%xmm3, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"
      "paddq %%xmm4, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"
      "paddq %%xmm5, %%xmm6;"
      "paddq %%xmm6, %%xmm7;"

      // Increment ESI and EDI by 48 bytes and decrement counter by 1.
      "add $48, " rSI ";"
      "add $48, " rDI ";"
      "prefetchnta  0(" rSI ");"
      "prefetchnta 64(" rSI ");"
      "dec " rCX ";"
      "jnz TOP;"

      // Now only remaining_words 32-bit words are left.
      // make a loop, add first two words to a1 and next two to a2 (just like
      // above loop, the only extra thing we are doing is rechecking
      // rDX (=remaining_words) everytime we add a number to a1/a2.
      "REM_IS_STILL_NOT_ZERO:\n"
      // Unless remaining_words becomes less than 4 words(16 bytes)
      // there is not much issue and remaining_words will always
      // be a multiple of four by assumption.
      "cmp $4, " rDX ";"
      // In case for some weird reasons if remaining_words becomes
      // less than 4 but not zero then also break the code and go off to END.
      "jl END;"
      // Otherwise just go on and copy data in chunks of 4-words at a time till
      // whole data (<48 bytes) is copied.
      "movdqa  0(" rSI "), %%xmm0;"    // Copy next 4-words to XMM0 and to XMM1.

      "movdqa  0(" rSI "), %%xmm5;"    // Accomplish movdqu 4(%rSI) without
      "pshufd $0x39, %%xmm5, %%xmm1;"  // indexing off memory boundary.

      "movntdq %%xmm0,  0(" rDI ");"   // Copy 4-words to destination.
      "andps  32(" rAX "), %%xmm0;"
      "andps  32(" rAX "), %%xmm1;"
      "paddq     %%xmm0, %%xmm6;"
      "paddq     %%xmm6, %%xmm7;"
      "paddq     %%xmm1, %%xmm6;"
      "paddq     %%xmm6, %%xmm7;"
      "add $16, " rSI ";"
      "add $16, " rDI ";"
      "sub $4, " rDX ";"
      // Decrement %rDX by 4 since %rDX is number of 32-bit
      // words left after considering all 48-byte units.
      "jmp REM_IS_STILL_NOT_ZERO;"

      "END:\n"
      // Report checksum values A and B (both right now are two concatenated
      // 64 bit numbers and have to be converted to 64 bit numbers)
      // seems like Adler128 (since size of each part is 4 byte rather than
      // 1 byte).
      "movdqa %%xmm6,   0(" rAX ");"
      "movdqa %%xmm7,  16(" rAX ");"
      "sfence;"

      // No output registers.
      :
      // Input registers.
      : "S" (srcmem64), "D" (dstmem64), "a" (checksum_arr),
        "c" (num_of_48_byte_units), "d" (remaining_words)
  );  // asm.

  if (checksum != NULL) {
    checksum->Set(checksum_arr[0], checksum_arr[1],
                  checksum_arr[2], checksum_arr[3]);
  }

  // Everything went fine, so return true (this does not mean
  // that there is no problem with memory this just mean that data was copied
  // from src to dst and checksum was calculated successfully).
  return true;
#elif defined(STRESSAPPTEST_CPU_ARMV7A) && defined(__ARM_NEON__)
  // Elements 0 to 3 are used for holding checksum terms a1, a2,
  // b1, b2 respectively. These elements are filled by asm code.
  // Checksum is seeded with the null checksum.
  volatile uint64 checksum_arr[] __attribute__ ((aligned(16))) =
      {1, 1, 0, 0};

  if ((size_in_bytes >> 19) > 0) {
    // Size is too large. Must be less than 2^19 bytes = 512 KB.
    return false;
  }

  // Since we are moving 64 bytes at a time number of iterations = total size/64
  uint32 blocks = size_in_bytes / 64;

  uint64 *dst = dstmem64;
  uint64 *src = srcmem64;

  #define src_r "r3"
  #define dst_r "r4"
  #define blocks_r "r5"
  #define crc_r "r6"

  asm volatile (
      "mov " src_r ", %[src];	 	\n"
      "mov " dst_r ", %[dst]; 		\n"
      "mov " crc_r ", %[crc]; 		\n"
      "mov " blocks_r ", %[blocks]; 	\n"

      // Loop over block count.
      "cmp " blocks_r ", #0; 	\n"   // Compare counter to zero.
      "ble END;			\n"


      // Preload upcoming cacheline.
      "pld [" src_r ", #0x0];	\n"
      "pld [" src_r ", #0x20];	\n"

      // Init checksum
      "vldm " crc_r ", {q0};		\n"
      "vmov.i32 q1, #0;			\n"

      // Start of the loop which copies 48 bytes from source to dst each time.
      "TOP:			\n"

      // Make 3 moves each of 16 bytes from srcmem to qX registers.
      // We are using 2 words out of 4 words in each qX register,
      // word index 0 and word index 2. We'll swizzle them in a bit.
      // Copy it.
      "vldm " src_r "!, {q8, q9, q10, q11};	\n"
      "vstm " dst_r "!, {q8, q9, q10, q11};	\n"

      // Arrange it.
      "vmov.i64 q12, #0;	\n"
      "vmov.i64 q13, #0;	\n"
      "vmov.i64 q14, #0;	\n"
      "vmov.i64 q15, #0;	\n"
      // This exchenges words 1,3 in the filled registers with 
      // words 0,2 in the empty registers.
      "vtrn.32 q8, q12;		\n"
      "vtrn.32 q9, q13;		\n"
      "vtrn.32 q10, q14;	\n"
      "vtrn.32 q11, q15;	\n"

      // Sum into q0, then into q1.
      // Repeat this for q8 - q13.
      // Overflow can occur only if there are more
      // than 2^16 additions => more than 2^17 words => more than 2^19 bytes so
      // if size_in_bytes > 2^19 than overflow occurs.
      "vadd.i64 q0, q0, q8;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q12;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q9;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q13;	\n"
      "vadd.i64 q1, q1, q0;	\n"

      "vadd.i64 q0, q0, q10;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q14;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q11;	\n"
      "vadd.i64 q1, q1, q0;	\n"
      "vadd.i64 q0, q0, q15;	\n"
      "vadd.i64 q1, q1, q0;	\n"

      // Increment counter and loop.
      "sub " blocks_r ", " blocks_r ", #1;	\n"
      "cmp " blocks_r ", #0;	\n"   // Compare counter to zero.
      "bgt TOP;	\n"


      "END:\n"
      // Report checksum values A and B (both right now are two concatenated
      // 64 bit numbers and have to be converted to 64 bit numbers)
      // seems like Adler128 (since size of each part is 4 byte rather than
      // 1 byte).
      "vstm " crc_r ", {q0, q1};	\n"

      // Output registers.
      :
      // Input registers.
      : [src] "r"(src), [dst] "r"(dst), [blocks] "r"(blocks) , [crc] "r"(checksum_arr)
      : "memory", "cc", "r3", "r4", "r5", "r6", "q0", "q1", "q8","q9","q10", "q11", "q12","q13","q14","q15"
  );  // asm.

  if (checksum != NULL) {
    checksum->Set(checksum_arr[0], checksum_arr[1],
                  checksum_arr[2], checksum_arr[3]);
  }

  // Everything went fine, so return true (this does not mean
  // that there is no problem with memory this just mean that data was copied
  // from src to dst and checksum was calculated successfully).
  return true;
#else
  #warning "No vector copy defined for this architecture."
  // Fall back to C implementation for anything else.
  return AdlerMemcpyWarmC(dstmem64, srcmem64, size_in_bytes, checksum);
#endif
}