/* * Copyright (C) 2011 Intel Corporation; author Matt Fleming * * Wrap the ELF shared library in a PE32 (32bit) or PE32+ (64bit) suit. * * Syslinux plays some games with the ELF sections that are not easily * converted to a PE32 executable. For instance, Syslinux requires * that a symbol hash table be present (GNU hash or SysV) so that * symbols in ELF modules can be resolved at runtime but the EFI * firmware loader doesn't like that and refuses to load the file. * * We pretend that we have an EFI executable with a single .text * section so that the EFI loader will load it and jump to the entry * point. Once the Syslinux ELF shared object has control we can do * whatever we want. */ #include #include #include #include #include #include #include #include "wrapper.h" #if __SIZEOF_POINTER__ == 4 typedef Elf32_Ehdr Elf_Ehdr; typedef Elf32_Addr Elf_Addr; #elif __SIZEOF_POINTER__ == 8 typedef Elf64_Ehdr Elf_Ehdr; typedef Elf64_Addr Elf_Addr; #else #error "unsupported architecture" #endif /* * 'so_memsz' is the size of the ELF shared object once loaded. * 'data_size' is the size of initialised data in the shared object. * 'class' dictates how the header is written * For 32bit machines (class == ELFCLASS32), the optional * header includes PE32 header fields * For 64bit machines (class == ELFCLASS64), the optional * header includes PE32+header fields */ static void write_header(FILE *f, __uint32_t entry, size_t data_size, __uint32_t so_memsz, __uint8_t class) { struct optional_hdr o_hdr; struct optional_hdr_pe32p o_hdr_pe32p; struct section t_sec; struct extra_hdr e_hdr; struct extra_hdr_pe32p e_hdr_pe32p; struct coff_hdr c_hdr; struct header hdr; __uint32_t total_sz = data_size; __uint32_t hdr_sz; __uint32_t reloc_start, reloc_end; /* * The header size have to be a multiple of file_align, which currently * is 512 */ hdr_sz = 512; total_sz += hdr_sz; entry += hdr_sz; memset(&hdr, 0, sizeof(hdr)); hdr.msdos_signature = MSDOS_SIGNATURE; /* * The relocs table pointer needs to be >= 0x40 for PE files. It * informs things like file(1) that we are not an MS-DOS * executable. */ hdr.relocs_ptr = 0x40; hdr.pe_hdr = OFFSETOF(struct header, pe_signature); hdr.pe_signature = PE_SIGNATURE; fwrite(&hdr, sizeof(hdr), 1, f); memset(&c_hdr, 0, sizeof(c_hdr)); c_hdr.nr_sections = 1; c_hdr.nr_syms = 1; if (class == ELFCLASS32) { c_hdr.arch = IMAGE_FILE_MACHINE_I386; c_hdr.characteristics = IMAGE_FILE_32BIT_MACHINE | IMAGE_FILE_DEBUG_STRIPPED | IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_LINE_NUMBERS_STRIPPED; c_hdr.optional_hdr_sz = sizeof(o_hdr) + sizeof(e_hdr); fwrite(&c_hdr, sizeof(c_hdr), 1, f); memset(&o_hdr, 0, sizeof(o_hdr)); o_hdr.format = PE32_FORMAT; o_hdr.major_linker_version = 0x02; o_hdr.minor_linker_version = 0x14; o_hdr.code_sz = data_size; o_hdr.entry_point = entry; o_hdr.initialized_data_sz = data_size; fwrite(&o_hdr, sizeof(o_hdr), 1, f); memset(&e_hdr, 0, sizeof(e_hdr)); e_hdr.section_align = 4096; e_hdr.file_align = 512; e_hdr.image_sz = hdr_sz + so_memsz; e_hdr.headers_sz = hdr_sz; e_hdr.subsystem = IMAGE_SUBSYSTEM_EFI_APPLICATION; e_hdr.rva_and_sizes_nr = sizeof(e_hdr.data_directory) / sizeof(__uint64_t); fwrite(&e_hdr, sizeof(e_hdr), 1, f); } else if (class == ELFCLASS64) { c_hdr.arch = IMAGE_FILE_MACHINE_X86_64; c_hdr.characteristics = IMAGE_FILE_DEBUG_STRIPPED | IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_LINE_NUMBERS_STRIPPED; c_hdr.optional_hdr_sz = sizeof(o_hdr_pe32p) + sizeof(e_hdr_pe32p); fwrite(&c_hdr, sizeof(c_hdr), 1, f); memset(&o_hdr_pe32p, 0, sizeof(o_hdr_pe32p)); o_hdr_pe32p.format = PE32P_FORMAT; o_hdr_pe32p.major_linker_version = 0x02; o_hdr_pe32p.minor_linker_version = 0x14; o_hdr_pe32p.code_sz = data_size; o_hdr_pe32p.entry_point = entry; o_hdr.initialized_data_sz = data_size; fwrite(&o_hdr_pe32p, sizeof(o_hdr_pe32p), 1, f); memset(&e_hdr_pe32p, 0, sizeof(e_hdr_pe32p)); e_hdr_pe32p.section_align = 4096; e_hdr_pe32p.file_align = 512; e_hdr_pe32p.image_sz = hdr_sz + so_memsz; e_hdr_pe32p.headers_sz = hdr_sz; e_hdr_pe32p.subsystem = IMAGE_SUBSYSTEM_EFI_APPLICATION; e_hdr_pe32p.rva_and_sizes_nr = sizeof(e_hdr_pe32p.data_directory) / sizeof(__uint64_t); fwrite(&e_hdr_pe32p, sizeof(e_hdr_pe32p), 1, f); } memset(&t_sec, 0, sizeof(t_sec)); strcpy((char *)t_sec.name, ".text"); t_sec.virtual_sz = data_size; t_sec.virtual_address = hdr_sz; t_sec.raw_data_sz = t_sec.virtual_sz; t_sec.raw_data = t_sec.virtual_address; t_sec.characteristics = IMAGE_SCN_CNT_CODE | IMAGE_SCN_ALIGN_16BYTES | IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ; fwrite(&t_sec, sizeof(t_sec), 1, f); /* * Add some padding to align the ELF as needed */ if (ftell(f) > t_sec.virtual_address) { /* Don't rewind! hdr_sz need to be increased. */ fprintf(stderr, "PE32+ headers are too large.\n"); exit(EXIT_FAILURE); } fseek(f, t_sec.virtual_address, SEEK_SET); } static void usage(char *progname) { fprintf(stderr, "usage: %s \n", progname); } int main(int argc, char **argv) { Elf32_Ehdr e32_hdr; Elf64_Ehdr e64_hdr; __uint32_t entry; __uint8_t class; __uint64_t phoff = 0; __uint16_t phnum = 0, phentsize = 0; unsigned char *id; FILE *f_in, *f_out; void *buf; size_t datasz, memsz, rv; if (argc < 3) { usage(argv[0]); exit(0); } f_in = fopen(argv[1], "r"); if (!f_in) { perror("fopen"); exit(EXIT_FAILURE); } f_out = fopen(argv[2], "w"); if (!f_out) { perror("fopen"); exit(EXIT_FAILURE); } /* * Parse the ELF header and find the entry point. */ fread((void *)&e32_hdr, sizeof(e32_hdr), 1, f_in); if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS32) { id = e32_hdr.e_ident; class = ELFCLASS32; entry = e32_hdr.e_entry; phoff = e32_hdr.e_phoff; phnum = e32_hdr.e_phnum; phentsize = e32_hdr.e_phentsize; } else if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS64) { /* read the header again for x86_64 * note that the elf header entry point is 64bit whereas * the entry point in PE/COFF format is 32bit!*/ class = ELFCLASS64; rewind(f_in); fread((void *)&e64_hdr, sizeof(e64_hdr), 1, f_in); id = e64_hdr.e_ident; entry = e64_hdr.e_entry; phoff = e64_hdr.e_phoff; phnum = e64_hdr.e_phnum; phentsize = e64_hdr.e_phentsize; } else { fprintf(stderr, "Unsupported architecture\n"); exit(EXIT_FAILURE); } if (id[EI_MAG0] != ELFMAG0 || id[EI_MAG1] != ELFMAG1 || id[EI_MAG2] != ELFMAG2 || id[EI_MAG3] != ELFMAG3) { fprintf(stderr, "Input file not ELF shared object\n"); exit(EXIT_FAILURE); } if (!phoff || !phnum) { fprintf(stderr, "Cannot find segment table\n"); exit(EXIT_FAILURE); } /* * Find the LOAD program header. Everything in this segment * is copied verbatim to the output file. * Although there may be several LOAD program headers, only * one is currently copied. */ if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS32) { Elf32_Phdr phdr; int i; /* Find the first LOAD program header */ for (i = 0; i < phnum; i++) { fseek(f_in, phoff + i * phentsize, SEEK_SET); fread(&phdr, sizeof(phdr), 1, f_in); if (phdr.p_type == PT_LOAD) break; } datasz = phdr.p_filesz; memsz = phdr.p_memsz; } else if (e32_hdr.e_ident[EI_CLASS] == ELFCLASS64) { Elf64_Phdr phdr; int i; /* Find the first LOAD program header */ for (i = 0; i < phnum; i++) { fseek(f_in, phoff + i * phentsize, SEEK_SET); fread(&phdr, sizeof(phdr), 1, f_in); if (phdr.p_type == PT_LOAD) break; } datasz = phdr.p_filesz; memsz = phdr.p_memsz; } buf = malloc(datasz); if (!buf) { perror("malloc"); exit(EXIT_FAILURE); } write_header(f_out, entry, datasz, memsz, class); /* Write out the entire ELF shared object */ rewind(f_in); rv = fread(buf, datasz, 1, f_in); if (!rv && ferror(f_in)) { fprintf(stderr, "Failed to read all bytes from input\n"); exit(EXIT_FAILURE); } fwrite(buf, datasz, rv, f_out); free(buf); fclose(f_out); fclose(f_in); return 0; }