aboutsummaryrefslogtreecommitdiff
path: root/cc/internal/rsa_util_test.cc
blob: b86cd924f616c763d0f843b19ee8a774d9641e7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////
#include "tink/internal/rsa_util.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/status/status.h"
#include "absl/strings/escaping.h"
#include "absl/strings/string_view.h"
#include "openssl/bn.h"
#include "openssl/rsa.h"
#include "tink/internal/bn_util.h"
#include "tink/internal/ssl_unique_ptr.h"
#include "tink/subtle/random.h"
#include "tink/util/secret_data.h"
#include "tink/util/status.h"
#include "tink/util/statusor.h"
#include "tink/util/test_matchers.h"

namespace crypto {
namespace tink {
namespace internal {
namespace {

using ::crypto::tink::test::IsOk;
using ::crypto::tink::test::StatusIs;
using ::testing::IsEmpty;
using ::testing::Not;

constexpr int kSslSuccess = 1;
// 2048 bits modulus.
constexpr absl::string_view k2048BitRsaModulus =
    "b5a5651bc2e15ce31d789f0984053a2ea0cf8f964a78068c45acfdf078c57fd62d5a287c32"
    "f3baa879f5dfea27d7a3077c9d3a2a728368c3d90164690c3d82f660ffebc7f13fed454eb5"
    "103df943c10dc32ec60b0d9b6e307bfd7f9b943e0dc3901e42501765365f7286eff2f1f728"
    "774aa6a371e108a3a7dd00d7bcd4c1a186c2865d4b370ea38cc89c0b23b318dbcafbd872b4"
    "f9b833dfb2a4ca7fcc23298020044e8130bfe930adfb3e5cab8d324547adf4b2ce34d7cea4"
    "298f0b613d85f2bf1df03da44aee0784a1a20a15ee0c38a0f8e84962f1f61b18bd43781c73"
    "85f3c2b8e2aebd3c560b4faad208ad3938bad27ddda9ed9e933dba0880212dd9e28d";

// Utility function to create an RSA key pair.
util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> GetKeyPair(
    size_t modulus_size_in_bits) {
  RsaPublicKey public_key;
  RsaPrivateKey private_key;
  internal::SslUniquePtr<BIGNUM> e(BN_new());
  BN_set_word(e.get(), RSA_F4);
  util::Status res =
      NewRsaKeyPair(modulus_size_in_bits, e.get(), &private_key, &public_key);
  if (!res.ok()) {
    return res;
  }
  return {{public_key, private_key}};
}

TEST(RsaUtilTest, BasicSanityChecks) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPublicKey& public_key = keys->first;
  const RsaPrivateKey& private_key = keys->second;

  EXPECT_THAT(private_key.n, Not(IsEmpty()));
  EXPECT_THAT(private_key.e, Not(IsEmpty()));
  EXPECT_THAT(private_key.d, Not(IsEmpty()));

  EXPECT_THAT(private_key.p, Not(IsEmpty()));
  EXPECT_THAT(private_key.q, Not(IsEmpty()));
  EXPECT_THAT(private_key.dp, Not(IsEmpty()));
  EXPECT_THAT(private_key.dq, Not(IsEmpty()));
  EXPECT_THAT(private_key.crt, Not(IsEmpty()));

  EXPECT_THAT(public_key.n, Not(IsEmpty()));
  EXPECT_THAT(public_key.e, Not(IsEmpty()));

  EXPECT_EQ(public_key.n, private_key.n);
  EXPECT_EQ(public_key.e, private_key.e);
}

TEST(RsaUtilTest, FailsOnLargeE) {
  // OpenSSL requires the "e" value to be at most 32 bits.
  RsaPublicKey public_key;
  RsaPrivateKey private_key;

  internal::SslUniquePtr<BIGNUM> e(BN_new());
  BN_set_word(e.get(), 1L << 33);
  EXPECT_THAT(NewRsaKeyPair(/*modulus_size_in_bits=*/2048, e.get(),
                            &private_key, &public_key),
              StatusIs(absl::StatusCode::kInvalidArgument));
}

TEST(RsaUtilTest, KeyIsWellFormed) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPrivateKey& private_key = keys->second;

  util::StatusOr<internal::SslUniquePtr<BIGNUM>> n =
      internal::StringToBignum(private_key.n);
  ASSERT_THAT(n, IsOk());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> d =
      internal::StringToBignum(util::SecretDataAsStringView(private_key.d));
  ASSERT_THAT(d, IsOk());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> p =
      internal::StringToBignum(util::SecretDataAsStringView(private_key.p));
  ASSERT_THAT(p, IsOk());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> q =
      internal::StringToBignum(util::SecretDataAsStringView(private_key.q));
  ASSERT_THAT(q, IsOk());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> dp =
      internal::StringToBignum(util::SecretDataAsStringView(private_key.dp));
  ASSERT_THAT(dp, IsOk());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> dq =
      internal::StringToBignum(util::SecretDataAsStringView(private_key.dq));
  ASSERT_THAT(dq, IsOk());
  internal::SslUniquePtr<BN_CTX> ctx(BN_CTX_new());

  // Check n = p * q.
  {
    auto n_calc = internal::SslUniquePtr<BIGNUM>(BN_new());
    ASSERT_EQ(BN_mul(n_calc.get(), p->get(), q->get(), ctx.get()), kSslSuccess);
    EXPECT_EQ(BN_cmp(n_calc.get(), n->get()), 0);
  }

  // Check n size >= 2048 bit.
  EXPECT_GE(BN_num_bits(n->get()), 2048);

  // dp = d mod (p - 1)
  {
    auto pm1 = internal::SslUniquePtr<BIGNUM>(BN_dup(p->get()));
    ASSERT_EQ(BN_sub_word(pm1.get(), /*w=*/1), kSslSuccess);
    auto dp_calc = internal::SslUniquePtr<BIGNUM>(BN_new());
    ASSERT_EQ(BN_mod(dp_calc.get(), d->get(), pm1.get(), ctx.get()),
              kSslSuccess);
    EXPECT_EQ(BN_cmp(dp_calc.get(), dp->get()), 0);
  }

  // dq = d mod (q - 1)
  {
    auto qm1 = internal::SslUniquePtr<BIGNUM>(BN_dup(q->get()));
    ASSERT_EQ(BN_sub_word(qm1.get(), /*w=*/1), kSslSuccess);
    auto dq_calc = internal::SslUniquePtr<BIGNUM>(BN_new());
    ASSERT_EQ(BN_mod(dq_calc.get(), d->get(), qm1.get(), ctx.get()),
              kSslSuccess);
    EXPECT_EQ(BN_cmp(dq_calc.get(), dq->get()), 0);
  }
}

TEST(RsaUtilTest, GeneratesDifferentPrivateKeys) {
  RsaPublicKey public_key;
  internal::SslUniquePtr<BIGNUM> e(BN_new());
  BN_set_word(e.get(), RSA_F4);

  std::vector<RsaPrivateKey> private_keys;
  std::generate_n(std::back_inserter(private_keys), 4, [&]() {
    RsaPrivateKey private_key;
    EXPECT_THAT(NewRsaKeyPair(/*modulus_size_in_bits=*/2048, e.get(),
                              &private_key, &public_key),
                IsOk());
    return private_key;
  });

  for (int i = 0; i < private_keys.size() - 1; i++) {
    for (int j = i + 1; j < private_keys.size(); j++) {
      // The only field that should be equal.
      EXPECT_EQ(private_keys[i].e, private_keys[j].e);
      EXPECT_NE(private_keys[i].n, private_keys[j].n);
      EXPECT_NE(private_keys[i].d, private_keys[j].d);
      EXPECT_NE(private_keys[i].p, private_keys[j].p);
      EXPECT_NE(private_keys[i].q, private_keys[j].q);
      EXPECT_NE(private_keys[i].dp, private_keys[j].dp);
      EXPECT_NE(private_keys[i].dq, private_keys[j].dq);
      EXPECT_NE(private_keys[i].crt, private_keys[j].crt);
    }
  }
}

TEST(RsaUtilTest, ValidateRsaModulusSize) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  {
    const RsaPrivateKey& private_key = keys->second;

    util::StatusOr<internal::SslUniquePtr<BIGNUM>> n =
        internal::StringToBignum(private_key.n);
    EXPECT_THAT(ValidateRsaModulusSize(BN_num_bits(n->get())), IsOk());
  }
  keys = GetKeyPair(/*modulus_size_in_bits=*/1024);
  ASSERT_THAT(keys, IsOk());
  {
    const RsaPrivateKey& private_key = keys->second;

    util::StatusOr<internal::SslUniquePtr<BIGNUM>> n =
        internal::StringToBignum(private_key.n);
    EXPECT_THAT(ValidateRsaModulusSize(BN_num_bits(n->get())), Not(IsOk()));
  }
}

TEST(RsaUtilTest, ValidateRsaPublicExponent) {
  internal::SslUniquePtr<BIGNUM> e_bn(BN_new());

  // Failure scenario.
  const std::vector<BN_ULONG> invalid_exponents = {2, 3, 4, 65536, 65538};
  for (const BN_ULONG exponent : invalid_exponents) {
    BN_set_word(e_bn.get(), exponent);
    util::StatusOr<std::string> e_str =
        internal::BignumToString(e_bn.get(), BN_num_bytes(e_bn.get()));
    ASSERT_THAT(e_str, IsOk());
    EXPECT_THAT(ValidateRsaPublicExponent(*e_str), Not(IsOk()));
  }

  // Successful case.
  BN_set_word(e_bn.get(), RSA_F4);
  util::StatusOr<std::string> e_str =
      internal::BignumToString(e_bn.get(), BN_num_bytes(e_bn.get()));
  ASSERT_THAT(e_str, IsOk());
  EXPECT_THAT(ValidateRsaPublicExponent(*e_str), IsOk());
}

// Checks if a BIGNUM is equal to a string value.
void ExpectBignumEquals(const BIGNUM* bn, absl::string_view data) {
  util::StatusOr<std::string> converted =
      internal::BignumToString(bn, BN_num_bytes(bn));
  ASSERT_THAT(converted, IsOk());
  EXPECT_EQ(*converted, data);
}

// Checks if a BIGNUM is equal to a SecretData value.
void ExpectBignumEquals(const BIGNUM* bn, const util::SecretData& data) {
  internal::ExpectBignumEquals(bn, util::SecretDataAsStringView(data));
}

TEST(RsaUtilTest, GetRsaModAndExponents) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPrivateKey& private_key = keys->second;
  internal::SslUniquePtr<RSA> rsa(RSA_new());
  util::Status result = GetRsaModAndExponents(private_key, rsa.get());
  ASSERT_THAT(result, IsOk());
  const BIGNUM* n = nullptr;
  const BIGNUM* e = nullptr;
  const BIGNUM* d = nullptr;
  RSA_get0_key(rsa.get(), &n, &e, &d);
  ExpectBignumEquals(n, private_key.n);
  ExpectBignumEquals(e, private_key.e);
  ExpectBignumEquals(d, private_key.d);
}

TEST(RsaUtilTest, GetRsaPrimeFactors) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPrivateKey& private_key = keys->second;
  internal::SslUniquePtr<RSA> rsa(RSA_new());
  util::Status result = GetRsaPrimeFactors(private_key, rsa.get());
  ASSERT_THAT(result, IsOk());
  const BIGNUM* p = nullptr;
  const BIGNUM* q = nullptr;
  RSA_get0_factors(rsa.get(), &p, &q);
  ExpectBignumEquals(p, private_key.p);
  ExpectBignumEquals(q, private_key.q);
}

TEST(RsaUtilTest, GetRsaCrtParams) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPrivateKey& private_key = keys->second;
  internal::SslUniquePtr<RSA> rsa(RSA_new());
  const BIGNUM* dp = nullptr;
  const BIGNUM* dq = nullptr;
  const BIGNUM* crt = nullptr;
  util::Status result = GetRsaCrtParams(private_key, rsa.get());
  ASSERT_THAT(result, IsOk());
  RSA_get0_crt_params(rsa.get(), &dp, &dq, &crt);
  ExpectBignumEquals(dp, private_key.dp);
  ExpectBignumEquals(dq, private_key.dq);
  ExpectBignumEquals(crt, private_key.crt);
}

TEST(RsaUtilTest, CopiesRsaPrivateKey) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPrivateKey& private_key = keys->second;

  util::StatusOr<internal::SslUniquePtr<RSA>> rsa_result =
      RsaPrivateKeyToRsa(private_key);
  EXPECT_TRUE(rsa_result.ok());
  internal::SslUniquePtr<RSA> rsa = std::move(rsa_result).value();
  const BIGNUM* n = nullptr;
  const BIGNUM* e = nullptr;
  const BIGNUM* d = nullptr;
  RSA_get0_key(rsa.get(), &n, &e, &d);
  const BIGNUM* p = nullptr;
  const BIGNUM* q = nullptr;
  RSA_get0_factors(rsa.get(), &p, &q);
  ExpectBignumEquals(n, private_key.n);
  ExpectBignumEquals(e, private_key.e);
  ExpectBignumEquals(d, private_key.d);
  ExpectBignumEquals(p, private_key.p);
  ExpectBignumEquals(q, private_key.q);
}

TEST(RsaUtilTest, CopiesRsaPublicKey) {
  util::StatusOr<std::pair<RsaPublicKey, RsaPrivateKey>> keys =
      GetKeyPair(/*modulus_size_in_bits=*/2048);
  ASSERT_THAT(keys, IsOk());
  const RsaPublicKey& public_key = keys->first;

  util::StatusOr<internal::SslUniquePtr<RSA>> rsa_result =
      RsaPublicKeyToRsa(public_key);
  EXPECT_TRUE(rsa_result.ok());
  internal::SslUniquePtr<RSA> rsa = std::move(rsa_result).value();

  const BIGNUM* n = nullptr;
  const BIGNUM* e = nullptr;
  RSA_get0_key(rsa.get(), &n, &e, /*d=*/nullptr);
  ExpectBignumEquals(n, public_key.n);
  ExpectBignumEquals(e, public_key.e);
}

// Utility function that creates an RSA public key with the given modulus
// `n_hex` and exponent `exp`.
util::StatusOr<internal::SslUniquePtr<RSA>> NewRsaPublicKey(
    absl::string_view n_hex, uint64_t exp) {
  internal::SslUniquePtr<RSA> key(RSA_new());
  util::StatusOr<internal::SslUniquePtr<BIGNUM>> n_bn =
      internal::StringToBignum(absl::HexStringToBytes(n_hex));
  if (!n_bn.ok()) {
    return n_bn.status();
  }
  internal::SslUniquePtr<BIGNUM> n = *std::move(n_bn);
  internal::SslUniquePtr<BIGNUM> e(BN_new());
  BN_set_word(e.get(), exp);
  if (RSA_set0_key(key.get(), n.get(), e.get(), /*d=*/nullptr) != 1) {
    return util::Status(absl::StatusCode::kInternal, "RSA_set0_key failed");
  }
  // RSA_set0_key takes ownership of the arguments.
  n.release();
  e.release();
  return std::move(key);
}

TEST(RsaUtilTest, RsaCheckPublicKeyNullKey) {
  EXPECT_THAT(RsaCheckPublicKey(nullptr), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyMissingExponentAndModule) {
  internal::SslUniquePtr<RSA> key(RSA_new());
  EXPECT_THAT(RsaCheckPublicKey(key.get()), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyValid) {
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(k2048BitRsaModulus, RSA_F4);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), IsOk());
}

TEST(RsaUtilTest, RsaCheckPublicKeyExponentTooLarge) {
  // Invalid exponent of 34 bits.
  constexpr uint64_t kExponentTooLarge = 0x200000000;
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(k2048BitRsaModulus, kExponentTooLarge);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyExponentTooSmall) {
  constexpr uint64_t kExponentEqualsToOne = 0x1;
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(k2048BitRsaModulus, kExponentEqualsToOne);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyExponentNotOdd) {
  constexpr uint64_t kExponentNotOdd = 0x20000000;
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(k2048BitRsaModulus, kExponentNotOdd);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyModulusTooLarge) {
  // Get 1 byte more than 16384 bits (2048 bytes).
  std::string too_large_modulus = subtle::Random::GetRandomBytes(2049);
  if (too_large_modulus[0] == '\0') {
    too_large_modulus[0] = 0x01;
  }
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(absl::BytesToHexString(too_large_modulus), RSA_F4);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), Not(IsOk()));
}

TEST(RsaUtilTest, RsaCheckPublicKeyModulusSmallerThanExp) {
  constexpr absl::string_view kModulusSmallerThanExp = "1001";
  util::StatusOr<internal::SslUniquePtr<RSA>> key =
      NewRsaPublicKey(kModulusSmallerThanExp, RSA_F4);
  ASSERT_THAT(key, IsOk());
  EXPECT_THAT(RsaCheckPublicKey(key->get()), Not(IsOk()));
}

}  // namespace
}  // namespace internal
}  // namespace tink
}  // namespace crypto