aboutsummaryrefslogtreecommitdiff
path: root/cc/subtle/aes_siv_boringssl.cc
blob: 3d9ac866b8920bc7b255cf2b69892ceb9dbf0106 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////

#include "tink/subtle/aes_siv_boringssl.h"

#include <algorithm>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <utility>

#include "absl/memory/memory.h"
#include "absl/status/status.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "openssl/aes.h"
#include "openssl/crypto.h"
#include "tink/aead/internal/aead_util.h"
#include "tink/deterministic_aead.h"
#include "tink/internal/aes_util.h"
#include "tink/subtle/subtle_util.h"
#include "tink/util/errors.h"
#include "tink/util/status.h"
#include "tink/util/statusor.h"

namespace crypto {
namespace tink {
namespace subtle {
namespace {

crypto::tink::util::StatusOr<util::SecretUniquePtr<AES_KEY>> InitializeAesKey(
    absl::Span<const uint8_t> key) {
  util::SecretUniquePtr<AES_KEY> aes_key = util::MakeSecretUniquePtr<AES_KEY>();
  if (AES_set_encrypt_key(reinterpret_cast<const uint8_t*>(key.data()),
                          8 * key.size(), aes_key.get()) != 0) {
    return util::Status(absl::StatusCode::kInternal,
                        "could not initialize aes key");
  }
  return std::move(aes_key);
}

}  // namespace

// static
crypto::tink::util::StatusOr<std::unique_ptr<DeterministicAead>>
AesSivBoringSsl::New(const util::SecretData& key) {
  auto status = internal::CheckFipsCompatibility<AesSivBoringSsl>();
  if (!status.ok()) return status;

  if (!IsValidKeySizeInBytes(key.size())) {
    return util::Status(absl::StatusCode::kInvalidArgument, "invalid key size");
  }
  auto k1_or = InitializeAesKey(absl::MakeSpan(key).subspan(0, key.size() / 2));
  if (!k1_or.ok()) {
    return k1_or.status();
  }
  util::SecretUniquePtr<AES_KEY> k1 = std::move(k1_or).value();
  auto k2_or = InitializeAesKey(absl::MakeSpan(key).subspan(key.size() / 2));
  if (!k2_or.ok()) {
    return k2_or.status();
  }

  util::SecretUniquePtr<AES_KEY> k2 = std::move(k2_or).value();
  return {absl::WrapUnique(new AesSivBoringSsl(std::move(k1), std::move(k2)))};
}

util::SecretData AesSivBoringSsl::ComputeCmacK1() const {
  util::SecretData cmac_k1(kBlockSize, 0);
  EncryptBlock(cmac_k1.data(), cmac_k1.data());
  MultiplyByX(cmac_k1.data());
  return cmac_k1;
}

util::SecretData AesSivBoringSsl::ComputeCmacK2() const {
  util::SecretData cmac_k2(cmac_k1_);
  MultiplyByX(cmac_k2.data());
  return cmac_k2;
}

void AesSivBoringSsl::EncryptBlock(const uint8_t in[kBlockSize],
                                   uint8_t out[kBlockSize]) const {
  AES_encrypt(in, out, k1_.get());
}

// static
void AesSivBoringSsl::MultiplyByX(uint8_t block[kBlockSize]) {
  // Carry over 0x87 if msb is 1 0x00 if msb is 0.
  uint8_t carry = 0x87 & -(block[0] >> 7);
  for (size_t i = 0; i < kBlockSize - 1; ++i) {
    block[i] = (block[i] << 1) | (block[i + 1] >> 7);
  }
  block[kBlockSize - 1] =
      (block[kBlockSize - 1] << 1) ^ carry;
}

// static
void AesSivBoringSsl::XorBlock(const uint8_t x[kBlockSize],
                               const uint8_t y[kBlockSize],
                               uint8_t res[kBlockSize]) {
  for (int i = 0; i < kBlockSize; ++i) {
    res[i] = x[i] ^ y[i];
  }
}

void AesSivBoringSsl::Cmac(absl::Span<const uint8_t> data,
                           uint8_t mac[kBlockSize]) const {
  const size_t blocks =
      std::max(size_t{1}, (data.size() + kBlockSize - 1) / kBlockSize);
  const size_t last_block_idx = kBlockSize * (blocks - 1);
  const size_t last_block_size = data.size() - last_block_idx;
  uint8_t block[kBlockSize];
  std::fill(std::begin(block), std::end(block), 0);
  for (size_t idx = 0; idx < last_block_idx; idx += kBlockSize) {
    XorBlock(block, &data[idx], block);
    EncryptBlock(block, block);
  }
  for (size_t j = 0; j < last_block_size; j++) {
    block[j] ^= data[last_block_idx + j];
  }
  if (last_block_size == kBlockSize) {
    XorBlock(block, cmac_k1_.data(), block);
  } else {
    block[last_block_size] ^= 0x80;
    XorBlock(block, cmac_k2_.data(), block);
  }
  EncryptBlock(block, mac);
}

// Computes Cmac(XorEnd(data, last))
void AesSivBoringSsl::CmacLong(absl::Span<const uint8_t> data,
                               const uint8_t last[kBlockSize],
                               uint8_t mac[kBlockSize]) const {
  uint8_t block[kBlockSize];
  std::copy_n(data.begin(), kBlockSize, block);
  size_t idx = kBlockSize;
  while (kBlockSize <= data.size() - idx) {
    EncryptBlock(block, block);
    XorBlock(block, &data[idx], block);
    idx += kBlockSize;
  }
  size_t remaining = data.size() - idx;
  for (int j = 0; j < kBlockSize - remaining; ++j) {
    block[remaining + j] ^= last[j];
  }
  if (remaining == 0) {
    XorBlock(block, cmac_k1_.data(), block);
  } else {
    EncryptBlock(block, block);
    for (int j = 0; j < remaining; ++j) {
      block[j] ^= last[kBlockSize - remaining + j];
      block[j] ^= data[idx + j];
    }
    block[remaining] ^= 0x80;
    XorBlock(block, cmac_k2_.data(), block);
  }
  EncryptBlock(block, mac);
}

void AesSivBoringSsl::S2v(absl::Span<const uint8_t> aad,
                          absl::Span<const uint8_t> msg,
                          uint8_t siv[kBlockSize]) const {
  // This stuff could be precomputed.
  uint8_t block[kBlockSize];
  std::fill(std::begin(block), std::end(block), 0);
  Cmac(block, block);
  MultiplyByX(block);

  uint8_t aad_mac[kBlockSize];
  Cmac(aad, aad_mac);
  XorBlock(block, aad_mac, block);

  if (msg.size() >= kBlockSize) {
    CmacLong(msg, block, siv);
  } else {
    MultiplyByX(block);
    for (size_t i = 0; i < msg.size(); ++i) {
      block[i] ^= msg[i];
    }
    block[msg.size()] ^= 0x80;
    Cmac(block, siv);
  }
}

util::Status AesSivBoringSsl::AesCtrCrypt(absl::string_view in,
                                          const uint8_t siv[kBlockSize],
                                          const AES_KEY* key,
                                          absl::Span<char> out) const {
  uint8_t iv[kBlockSize];
  std::copy_n(siv, kBlockSize, iv);
  iv[8] &= 0x7f;
  iv[12] &= 0x7f;
  return internal::AesCtr128Crypt(in, iv, key, out);
}

util::StatusOr<std::string> AesSivBoringSsl::EncryptDeterministically(
    absl::string_view plaintext, absl::string_view associated_data) const {
  uint8_t siv[kBlockSize];
  S2v(absl::MakeSpan(reinterpret_cast<const uint8_t*>(associated_data.data()),
                     associated_data.size()),
      absl::MakeSpan(reinterpret_cast<const uint8_t*>(plaintext.data()),
                     plaintext.size()),
      siv);
  size_t ciphertext_size = plaintext.size() + kBlockSize;

  std::string ciphertext;
  ResizeStringUninitialized(&ciphertext, ciphertext_size);
  std::copy(std::begin(siv), std::end(siv), ciphertext.begin());
  util::Status res =
      AesCtrCrypt(plaintext, siv, k2_.get(),
                  absl::MakeSpan(ciphertext).subspan(kBlockSize));
  if (!res.ok()) {
    return res;
  }
  return ciphertext;
}

util::StatusOr<std::string> AesSivBoringSsl::DecryptDeterministically(
    absl::string_view ciphertext, absl::string_view associated_data) const {
  if (ciphertext.size() < kBlockSize) {
    return util::Status(absl::StatusCode::kInvalidArgument,
                        "ciphertext too short");
  }
  size_t plaintext_size = ciphertext.size() - kBlockSize;
  std::string plaintext;
  ResizeStringUninitialized(&plaintext, plaintext_size);
  const uint8_t* siv = reinterpret_cast<const uint8_t*>(&ciphertext[0]);
  util::Status res = AesCtrCrypt(ciphertext.substr(kBlockSize), siv, k2_.get(),
                                 absl::MakeSpan(plaintext));
  if (!res.ok()) {
    return res;
  }

  uint8_t s2v[kBlockSize];
  S2v(absl::MakeSpan(reinterpret_cast<const uint8_t*>(associated_data.data()),
                     associated_data.size()),
      absl::MakeSpan(reinterpret_cast<const uint8_t*>(plaintext.data()),
                     plaintext_size),
      s2v);
  if (CRYPTO_memcmp(siv, s2v, kBlockSize) != 0) {
    return util::Status(absl::StatusCode::kInvalidArgument,
                        "invalid ciphertext");
  }
  return plaintext;
}

}  // namespace subtle
}  // namespace tink
}  // namespace crypto