aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSyoyo Fujita <syoyo@lighttransport.com>2021-07-29 16:55:42 +0900
committerGitHub <noreply@github.com>2021-07-29 16:55:42 +0900
commitdb7454cbcee913fa132c191ab52b920998c2d796 (patch)
tree7c2f611bc8d4a779fc8c0654e73f8eea04ce9f0e
parent662d5e54f466f4af09de31b5bff802506c81fe2a (diff)
downloadtinyobjloader-db7454cbcee913fa132c191ab52b920998c2d796.tar.gz
Integrate Mapbox earcut.hpp for robust triangluation (#298)
* Use simple triangulation rule for the quad face when triangulation. This partially solves issue no. 295. * Embed mapbox/earcut.hpp code(for robust triangulation) * Use mapbox/earcut.hpp for the polygon tessellation(for a polygon with 5 or more vertices). * Use Mapbox earcut(robust triangulation) by default for python binding. * Fix compile of Mapbox earcut code path.
-rw-r--r--README.md18
-rw-r--r--examples/viewer/viewer.cc11
-rw-r--r--python/tiny_obj_loader.cc3
-rw-r--r--tiny_obj_loader.h978
4 files changed, 992 insertions, 18 deletions
diff --git a/README.md b/README.md
index ce5ab1b..bfd902c 100644
--- a/README.md
+++ b/README.md
@@ -26,6 +26,7 @@ Old version is available as `v0.9.x` branch https://github.com/syoyo/tinyobjload
## What's new
+* 29 Jul, 2021 : Added Mapbox's earcut for robust triangulation. Also fixes triangulation bug.
* 19 Feb, 2020 : The repository has been moved to https://github.com/tinyobjloader/tinyobjloader !
* 18 May, 2019 : Python binding!(See `python` folder. Also see https://pypi.org/project/tinyobjloader/)
* 14 Apr, 2019 : Bump version v2.0.0 rc0. New C++ API and python bindings!(1.x API still exists for backward compatibility)
@@ -139,6 +140,7 @@ TinyObjLoader is licensed under MIT license.
### Third party licenses.
* pybind11 : BSD-style license.
+* mapbox earcut.hpp: ISC License.
## Usage
@@ -241,10 +243,22 @@ TinyObjLoader now use `real_t` for floating point data type.
Default is `float(32bit)`.
You can enable `double(64bit)` precision by using `TINYOBJLOADER_USE_DOUBLE` define.
+### Robust triangulation
+
+When you enable `triangulation`(default is enabled),
+TinyObjLoader triangulate polygons(faces with 4 or more vertices).
+
+Built-in trinagulation code may not work well in some polygon shape.
+
+You can define `TINYOBJLOADER_USE_MAPBOX_EARCUT` for robust triangulation using `mapbox/earcut.hpp`.
+This requires C++11 compiler though.
+
#### Example code (Deprecated API)
```c++
#define TINYOBJLOADER_IMPLEMENTATION // define this in only *one* .cc
+// Optional. define TINYOBJLOADER_USE_MAPBOX_EARCUT gives robust trinagulation. Requires C++11
+//#define TINYOBJLOADER_USE_MAPBOX_EARCUT
#include "tiny_obj_loader.h"
std::string inputfile = "cornell_box.obj";
@@ -315,6 +329,8 @@ for (size_t s = 0; s < shapes.size(); s++) {
```c++
#define TINYOBJLOADER_IMPLEMENTATION // define this in only *one* .cc
+// Optional. define TINYOBJLOADER_USE_MAPBOX_EARCUT gives robust trinagulation. Requires C++11
+//#define TINYOBJLOADER_USE_MAPBOX_EARCUT
#include "tiny_obj_loader.h"
@@ -353,7 +369,7 @@ for (size_t s = 0; s < shapes.size(); s++) {
tinyobj::real_t vx = attrib.vertices[3*size_t(idx.vertex_index)+0];
tinyobj::real_t vy = attrib.vertices[3*size_t(idx.vertex_index)+1];
tinyobj::real_t vz = attrib.vertices[3*size_t(idx.vertex_index)+2];
-
+
// Check if `normal_index` is zero or positive. negative = no normal data
if (idx.normal_index >= 0) {
tinyobj::real_t nx = attrib.normals[3*size_t(idx.normal_index)+0];
diff --git a/examples/viewer/viewer.cc b/examples/viewer/viewer.cc
index 145a140..bc959c9 100644
--- a/examples/viewer/viewer.cc
+++ b/examples/viewer/viewer.cc
@@ -23,13 +23,24 @@
#include <GLFW/glfw3.h>
#define TINYOBJLOADER_IMPLEMENTATION
+// TINYOBJLOADER_USE_MAPBOX_EARCUT: Enable better triangulation. Requires C++11
+//#define TINYOBJLOADER_USE_MAPBOX_EARCUT
#include "../../tiny_obj_loader.h"
#include "trackball.h"
+#ifdef __clang__
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Weverything"
+#endif
+
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
+#ifdef __clang__
+#pragma clang diagnostic pop
+#endif
+
#ifdef _WIN32
#ifdef __cplusplus
extern "C" {
diff --git a/python/tiny_obj_loader.cc b/python/tiny_obj_loader.cc
index 11d4986..a0b8bc6 100644
--- a/python/tiny_obj_loader.cc
+++ b/python/tiny_obj_loader.cc
@@ -2,5 +2,8 @@
// Need also define this in `binding.cc`(and all compilation units)
#define TINYOBJLOADER_USE_DOUBLE
+// Use robust triangulation by using Mapbox earcut.
+#define TINYOBJLOADER_USE_MAPBOX_EARCUT
+
#define TINYOBJLOADER_IMPLEMENTATION
#include "tiny_obj_loader.h"
diff --git a/tiny_obj_loader.h b/tiny_obj_loader.h
index 6dc7371..1a15e1d 100644
--- a/tiny_obj_loader.h
+++ b/tiny_obj_loader.h
@@ -29,6 +29,7 @@ THE SOFTWARE.
// * Support multiple search path for .mtl(v1 API).
// * Support vertex weight `vw`(as an tinyobj extension)
// * Support escaped whitespece in mtllib
+// * Add robust triangulation using Mapbox earcut(TINYOBJLOADER_USE_MAPBOX_EARCUT).
// version 1.4.0 : Modifed ParseTextureNameAndOption API
// version 1.3.1 : Make ParseTextureNameAndOption API public
// version 1.3.0 : Separate warning and error message(breaking API of LoadObj)
@@ -502,6 +503,11 @@ class MaterialStreamReader : public MaterialReader {
struct ObjReaderConfig {
bool triangulate; // triangulate polygon?
+ // Currently not used.
+ // "simple" or empty: Create triangle fan
+ // "earcut": Use the algorithm based on Ear clipping
+ std::string triangulation_method;
+
/// Parse vertex color.
/// If vertex color is not present, its filled with default value.
/// false = no vertex color
@@ -515,7 +521,8 @@ struct ObjReaderConfig {
///
std::string mtl_search_path;
- ObjReaderConfig() : triangulate(true), vertex_color(true) {}
+ ObjReaderConfig()
+ : triangulate(true), triangulation_method("simple"), vertex_color(true) {}
};
///
@@ -654,6 +661,871 @@ bool ParseTextureNameAndOption(std::string *texname, texture_option_t *texopt,
#include <sstream>
#include <utility>
+#ifdef TINYOBJLOADER_USE_MAPBOX_EARCUT
+
+#include <algorithm>
+#include <array>
+
+/*
+ISC License
+
+Copyright (c) 2015, Mapbox
+
+Permission to use, copy, modify, and/or distribute this software for any purpose
+with or without fee is hereby granted, provided that the above copyright notice
+and this permission notice appear in all copies.
+
+THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
+REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
+FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
+INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
+OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
+TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
+THIS SOFTWARE.
+*/
+
+namespace mapbox {
+
+namespace util {
+
+template <std::size_t I, typename T>
+struct nth {
+ inline static typename std::tuple_element<I, T>::type get(const T &t) {
+ return std::get<I>(t);
+ };
+};
+
+} // namespace util
+
+namespace detail {
+
+template <typename N = uint32_t>
+class Earcut {
+ public:
+ std::vector<N> indices;
+ std::size_t vertices = 0;
+
+ template <typename Polygon>
+ void operator()(const Polygon &points);
+
+ private:
+ struct Node {
+ Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
+ Node(const Node &) = delete;
+ Node &operator=(const Node &) = delete;
+ Node(Node &&) = delete;
+ Node &operator=(Node &&) = delete;
+
+ const N i;
+ const double x;
+ const double y;
+
+ // previous and next vertice nodes in a polygon ring
+ Node *prev = nullptr;
+ Node *next = nullptr;
+
+ // z-order curve value
+ int32_t z = 0;
+
+ // previous and next nodes in z-order
+ Node *prevZ = nullptr;
+ Node *nextZ = nullptr;
+
+ // indicates whether this is a steiner point
+ bool steiner = false;
+ };
+
+ template <typename Ring>
+ Node *linkedList(const Ring &points, const bool clockwise);
+ Node *filterPoints(Node *start, Node *end = nullptr);
+ void earcutLinked(Node *ear, int pass = 0);
+ bool isEar(Node *ear);
+ bool isEarHashed(Node *ear);
+ Node *cureLocalIntersections(Node *start);
+ void splitEarcut(Node *start);
+ template <typename Polygon>
+ Node *eliminateHoles(const Polygon &points, Node *outerNode);
+ void eliminateHole(Node *hole, Node *outerNode);
+ Node *findHoleBridge(Node *hole, Node *outerNode);
+ bool sectorContainsSector(const Node *m, const Node *p);
+ void indexCurve(Node *start);
+ Node *sortLinked(Node *list);
+ int32_t zOrder(const double x_, const double y_);
+ Node *getLeftmost(Node *start);
+ bool pointInTriangle(double ax, double ay, double bx, double by, double cx,
+ double cy, double px, double py) const;
+ bool isValidDiagonal(Node *a, Node *b);
+ double area(const Node *p, const Node *q, const Node *r) const;
+ bool equals(const Node *p1, const Node *p2);
+ bool intersects(const Node *p1, const Node *q1, const Node *p2,
+ const Node *q2);
+ bool onSegment(const Node *p, const Node *q, const Node *r);
+ int sign(double val);
+ bool intersectsPolygon(const Node *a, const Node *b);
+ bool locallyInside(const Node *a, const Node *b);
+ bool middleInside(const Node *a, const Node *b);
+ Node *splitPolygon(Node *a, Node *b);
+ template <typename Point>
+ Node *insertNode(std::size_t i, const Point &p, Node *last);
+ void removeNode(Node *p);
+
+ bool hashing;
+ double minX, maxX;
+ double minY, maxY;
+ double inv_size = 0;
+
+ template <typename T, typename Alloc = std::allocator<T> >
+ class ObjectPool {
+ public:
+ ObjectPool() {}
+ ObjectPool(std::size_t blockSize_) { reset(blockSize_); }
+ ~ObjectPool() { clear(); }
+ template <typename... Args>
+ T *construct(Args &&... args) {
+ if (currentIndex >= blockSize) {
+ currentBlock = alloc_traits::allocate(alloc, blockSize);
+ allocations.emplace_back(currentBlock);
+ currentIndex = 0;
+ }
+ T *object = &currentBlock[currentIndex++];
+ alloc_traits::construct(alloc, object, std::forward<Args>(args)...);
+ return object;
+ }
+ void reset(std::size_t newBlockSize) {
+ for (auto allocation : allocations) {
+ alloc_traits::deallocate(alloc, allocation, blockSize);
+ }
+ allocations.clear();
+ blockSize = std::max<std::size_t>(1, newBlockSize);
+ currentBlock = nullptr;
+ currentIndex = blockSize;
+ }
+ void clear() { reset(blockSize); }
+
+ private:
+ T *currentBlock = nullptr;
+ std::size_t currentIndex = 1;
+ std::size_t blockSize = 1;
+ std::vector<T *> allocations;
+ Alloc alloc;
+ typedef typename std::allocator_traits<Alloc> alloc_traits;
+ };
+ ObjectPool<Node> nodes;
+};
+
+template <typename N>
+template <typename Polygon>
+void Earcut<N>::operator()(const Polygon &points) {
+ // reset
+ indices.clear();
+ vertices = 0;
+
+ if (points.empty()) return;
+
+ double x;
+ double y;
+ int threshold = 80;
+ std::size_t len = 0;
+
+ for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
+ threshold -= static_cast<int>(points[i].size());
+ len += points[i].size();
+ }
+
+ // estimate size of nodes and indices
+ nodes.reset(len * 3 / 2);
+ indices.reserve(len + points[0].size());
+
+ Node *outerNode = linkedList(points[0], true);
+ if (!outerNode || outerNode->prev == outerNode->next) return;
+
+ if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
+
+ // if the shape is not too simple, we'll use z-order curve hash later;
+ // calculate polygon bbox
+ hashing = threshold < 0;
+ if (hashing) {
+ Node *p = outerNode->next;
+ minX = maxX = outerNode->x;
+ minY = maxY = outerNode->y;
+ do {
+ x = p->x;
+ y = p->y;
+ minX = std::min<double>(minX, x);
+ minY = std::min<double>(minY, y);
+ maxX = std::max<double>(maxX, x);
+ maxY = std::max<double>(maxY, y);
+ p = p->next;
+ } while (p != outerNode);
+
+ // minX, minY and size are later used to transform coords into integers for
+ // z-order calculation
+ inv_size = std::max<double>(maxX - minX, maxY - minY);
+ inv_size = inv_size != .0 ? (1. / inv_size) : .0;
+ }
+
+ earcutLinked(outerNode);
+
+ nodes.clear();
+}
+
+// create a circular doubly linked list from polygon points in the specified
+// winding order
+template <typename N>
+template <typename Ring>
+typename Earcut<N>::Node *Earcut<N>::linkedList(const Ring &points,
+ const bool clockwise) {
+ using Point = typename Ring::value_type;
+ double sum = 0;
+ const std::size_t len = points.size();
+ std::size_t i, j;
+ Node *last = nullptr;
+
+ // calculate original winding order of a polygon ring
+ for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
+ const auto &p1 = points[i];
+ const auto &p2 = points[j];
+ const double p20 = util::nth<0, Point>::get(p2);
+ const double p10 = util::nth<0, Point>::get(p1);
+ const double p11 = util::nth<1, Point>::get(p1);
+ const double p21 = util::nth<1, Point>::get(p2);
+ sum += (p20 - p10) * (p11 + p21);
+ }
+
+ // link points into circular doubly-linked list in the specified winding order
+ if (clockwise == (sum > 0)) {
+ for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
+ } else {
+ for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
+ }
+
+ if (last && equals(last, last->next)) {
+ removeNode(last);
+ last = last->next;
+ }
+
+ vertices += len;
+
+ return last;
+}
+
+// eliminate colinear or duplicate points
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::filterPoints(Node *start, Node *end) {
+ if (!end) end = start;
+
+ Node *p = start;
+ bool again;
+ do {
+ again = false;
+
+ if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
+ removeNode(p);
+ p = end = p->prev;
+
+ if (p == p->next) break;
+ again = true;
+
+ } else {
+ p = p->next;
+ }
+ } while (again || p != end);
+
+ return end;
+}
+
+// main ear slicing loop which triangulates a polygon (given as a linked list)
+template <typename N>
+void Earcut<N>::earcutLinked(Node *ear, int pass) {
+ if (!ear) return;
+
+ // interlink polygon nodes in z-order
+ if (!pass && hashing) indexCurve(ear);
+
+ Node *stop = ear;
+ Node *prev;
+ Node *next;
+
+ int iterations = 0;
+
+ // iterate through ears, slicing them one by one
+ while (ear->prev != ear->next) {
+ iterations++;
+ prev = ear->prev;
+ next = ear->next;
+
+ if (hashing ? isEarHashed(ear) : isEar(ear)) {
+ // cut off the triangle
+ indices.emplace_back(prev->i);
+ indices.emplace_back(ear->i);
+ indices.emplace_back(next->i);
+
+ removeNode(ear);
+
+ // skipping the next vertice leads to less sliver triangles
+ ear = next->next;
+ stop = next->next;
+
+ continue;
+ }
+
+ ear = next;
+
+ // if we looped through the whole remaining polygon and can't find any more
+ // ears
+ if (ear == stop) {
+ // try filtering points and slicing again
+ if (!pass) earcutLinked(filterPoints(ear), 1);
+
+ // if this didn't work, try curing all small self-intersections locally
+ else if (pass == 1) {
+ ear = cureLocalIntersections(filterPoints(ear));
+ earcutLinked(ear, 2);
+
+ // as a last resort, try splitting the remaining polygon into two
+ } else if (pass == 2)
+ splitEarcut(ear);
+
+ break;
+ }
+ }
+}
+
+// check whether a polygon node forms a valid ear with adjacent nodes
+template <typename N>
+bool Earcut<N>::isEar(Node *ear) {
+ const Node *a = ear->prev;
+ const Node *b = ear;
+ const Node *c = ear->next;
+
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+ // now make sure we don't have other points inside the potential ear
+ Node *p = ear->next->next;
+
+ while (p != ear->prev) {
+ if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0)
+ return false;
+ p = p->next;
+ }
+
+ return true;
+}
+
+template <typename N>
+bool Earcut<N>::isEarHashed(Node *ear) {
+ const Node *a = ear->prev;
+ const Node *b = ear;
+ const Node *c = ear->next;
+
+ if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
+
+ // triangle bbox; min & max are calculated like this for speed
+ const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
+ const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
+ const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
+ const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
+
+ // z-order range for the current triangle bbox;
+ const int32_t minZ = zOrder(minTX, minTY);
+ const int32_t maxZ = zOrder(maxTX, maxTY);
+
+ // first look for points inside the triangle in increasing z-order
+ Node *p = ear->nextZ;
+
+ while (p && p->z <= maxZ) {
+ if (p != ear->prev && p != ear->next &&
+ pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0)
+ return false;
+ p = p->nextZ;
+ }
+
+ // then look for points in decreasing z-order
+ p = ear->prevZ;
+
+ while (p && p->z >= minZ) {
+ if (p != ear->prev && p != ear->next &&
+ pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
+ area(p->prev, p, p->next) >= 0)
+ return false;
+ p = p->prevZ;
+ }
+
+ return true;
+}
+
+// go through all polygon nodes and cure small local self-intersections
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::cureLocalIntersections(Node *start) {
+ Node *p = start;
+ do {
+ Node *a = p->prev;
+ Node *b = p->next->next;
+
+ // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
+ if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) &&
+ locallyInside(b, a)) {
+ indices.emplace_back(a->i);
+ indices.emplace_back(p->i);
+ indices.emplace_back(b->i);
+
+ // remove two nodes involved
+ removeNode(p);
+ removeNode(p->next);
+
+ p = start = b;
+ }
+ p = p->next;
+ } while (p != start);
+
+ return filterPoints(p);
+}
+
+// try splitting polygon into two and triangulate them independently
+template <typename N>
+void Earcut<N>::splitEarcut(Node *start) {
+ // look for a valid diagonal that divides the polygon into two
+ Node *a = start;
+ do {
+ Node *b = a->next->next;
+ while (b != a->prev) {
+ if (a->i != b->i && isValidDiagonal(a, b)) {
+ // split the polygon in two by the diagonal
+ Node *c = splitPolygon(a, b);
+
+ // filter colinear points around the cuts
+ a = filterPoints(a, a->next);
+ c = filterPoints(c, c->next);
+
+ // run earcut on each half
+ earcutLinked(a);
+ earcutLinked(c);
+ return;
+ }
+ b = b->next;
+ }
+ a = a->next;
+ } while (a != start);
+}
+
+// link every hole into the outer loop, producing a single-ring polygon without
+// holes
+template <typename N>
+template <typename Polygon>
+typename Earcut<N>::Node *Earcut<N>::eliminateHoles(const Polygon &points,
+ Node *outerNode) {
+ const size_t len = points.size();
+
+ std::vector<Node *> queue;
+ for (size_t i = 1; i < len; i++) {
+ Node *list = linkedList(points[i], false);
+ if (list) {
+ if (list == list->next) list->steiner = true;
+ queue.push_back(getLeftmost(list));
+ }
+ }
+ std::sort(queue.begin(), queue.end(),
+ [](const Node *a, const Node *b) { return a->x < b->x; });
+
+ // process holes from left to right
+ for (size_t i = 0; i < queue.size(); i++) {
+ eliminateHole(queue[i], outerNode);
+ outerNode = filterPoints(outerNode, outerNode->next);
+ }
+
+ return outerNode;
+}
+
+// find a bridge between vertices that connects hole with an outer ring and and
+// link it
+template <typename N>
+void Earcut<N>::eliminateHole(Node *hole, Node *outerNode) {
+ outerNode = findHoleBridge(hole, outerNode);
+ if (outerNode) {
+ Node *b = splitPolygon(outerNode, hole);
+
+ // filter out colinear points around cuts
+ filterPoints(outerNode, outerNode->next);
+ filterPoints(b, b->next);
+ }
+}
+
+// David Eberly's algorithm for finding a bridge between hole and outer polygon
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::findHoleBridge(Node *hole,
+ Node *outerNode) {
+ Node *p = outerNode;
+ double hx = hole->x;
+ double hy = hole->y;
+ double qx = -std::numeric_limits<double>::infinity();
+ Node *m = nullptr;
+
+ // find a segment intersected by a ray from the hole's leftmost Vertex to the
+ // left; segment's endpoint with lesser x will be potential connection Vertex
+ do {
+ if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
+ double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
+ if (x <= hx && x > qx) {
+ qx = x;
+ if (x == hx) {
+ if (hy == p->y) return p;
+ if (hy == p->next->y) return p->next;
+ }
+ m = p->x < p->next->x ? p : p->next;
+ }
+ }
+ p = p->next;
+ } while (p != outerNode);
+
+ if (!m) return 0;
+
+ if (hx == qx) return m; // hole touches outer segment; pick leftmost endpoint
+
+ // look for points inside the triangle of hole Vertex, segment intersection
+ // and endpoint; if there are no points found, we have a valid connection;
+ // otherwise choose the Vertex of the minimum angle with the ray as connection
+ // Vertex
+
+ const Node *stop = m;
+ double tanMin = std::numeric_limits<double>::infinity();
+ double tanCur = 0;
+
+ p = m;
+ double mx = m->x;
+ double my = m->y;
+
+ do {
+ if (hx >= p->x && p->x >= mx && hx != p->x &&
+ pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy,
+ p->x, p->y)) {
+ tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
+
+ if (locallyInside(p, hole) &&
+ (tanCur < tanMin ||
+ (tanCur == tanMin && (p->x > m->x || sectorContainsSector(m, p))))) {
+ m = p;
+ tanMin = tanCur;
+ }
+ }
+
+ p = p->next;
+ } while (p != stop);
+
+ return m;
+}
+
+// whether sector in vertex m contains sector in vertex p in the same
+// coordinates
+template <typename N>
+bool Earcut<N>::sectorContainsSector(const Node *m, const Node *p) {
+ return area(m->prev, m, p->prev) < 0 && area(p->next, m, m->next) < 0;
+}
+
+// interlink polygon nodes in z-order
+template <typename N>
+void Earcut<N>::indexCurve(Node *start) {
+ assert(start);
+ Node *p = start;
+
+ do {
+ p->z = p->z ? p->z : zOrder(p->x, p->y);
+ p->prevZ = p->prev;
+ p->nextZ = p->next;
+ p = p->next;
+ } while (p != start);
+
+ p->prevZ->nextZ = nullptr;
+ p->prevZ = nullptr;
+
+ sortLinked(p);
+}
+
+// Simon Tatham's linked list merge sort algorithm
+// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::sortLinked(Node *list) {
+ assert(list);
+ Node *p;
+ Node *q;
+ Node *e;
+ Node *tail;
+ int i, numMerges, pSize, qSize;
+ int inSize = 1;
+
+ for (;;) {
+ p = list;
+ list = nullptr;
+ tail = nullptr;
+ numMerges = 0;
+
+ while (p) {
+ numMerges++;
+ q = p;
+ pSize = 0;
+ for (i = 0; i < inSize; i++) {
+ pSize++;
+ q = q->nextZ;
+ if (!q) break;
+ }
+
+ qSize = inSize;
+
+ while (pSize > 0 || (qSize > 0 && q)) {
+ if (pSize == 0) {
+ e = q;
+ q = q->nextZ;
+ qSize--;
+ } else if (qSize == 0 || !q) {
+ e = p;
+ p = p->nextZ;
+ pSize--;
+ } else if (p->z <= q->z) {
+ e = p;
+ p = p->nextZ;
+ pSize--;
+ } else {
+ e = q;
+ q = q->nextZ;
+ qSize--;
+ }
+
+ if (tail)
+ tail->nextZ = e;
+ else
+ list = e;
+
+ e->prevZ = tail;
+ tail = e;
+ }
+
+ p = q;
+ }
+
+ tail->nextZ = nullptr;
+
+ if (numMerges <= 1) return list;
+
+ inSize *= 2;
+ }
+}
+
+// z-order of a Vertex given coords and size of the data bounding box
+template <typename N>
+int32_t Earcut<N>::zOrder(const double x_, const double y_) {
+ // coords are transformed into non-negative 15-bit integer range
+ int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
+ int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
+
+ x = (x | (x << 8)) & 0x00FF00FF;
+ x = (x | (x << 4)) & 0x0F0F0F0F;
+ x = (x | (x << 2)) & 0x33333333;
+ x = (x | (x << 1)) & 0x55555555;
+
+ y = (y | (y << 8)) & 0x00FF00FF;
+ y = (y | (y << 4)) & 0x0F0F0F0F;
+ y = (y | (y << 2)) & 0x33333333;
+ y = (y | (y << 1)) & 0x55555555;
+
+ return x | (y << 1);
+}
+
+// find the leftmost node of a polygon ring
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::getLeftmost(Node *start) {
+ Node *p = start;
+ Node *leftmost = start;
+ do {
+ if (p->x < leftmost->x || (p->x == leftmost->x && p->y < leftmost->y))
+ leftmost = p;
+ p = p->next;
+ } while (p != start);
+
+ return leftmost;
+}
+
+// check if a point lies within a convex triangle
+template <typename N>
+bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by,
+ double cx, double cy, double px,
+ double py) const {
+ return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
+ (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
+ (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
+}
+
+// check if a diagonal between two polygon nodes is valid (lies in polygon
+// interior)
+template <typename N>
+bool Earcut<N>::isValidDiagonal(Node *a, Node *b) {
+ return a->next->i != b->i && a->prev->i != b->i &&
+ !intersectsPolygon(a, b) && // dones't intersect other edges
+ ((locallyInside(a, b) && locallyInside(b, a) &&
+ middleInside(a, b) && // locally visible
+ (area(a->prev, a, b->prev) != 0.0 ||
+ area(a, b->prev, b) !=
+ 0.0)) || // does not create opposite-facing sectors
+ (equals(a, b) && area(a->prev, a, a->next) > 0 &&
+ area(b->prev, b, b->next) > 0)); // special zero-length case
+}
+
+// signed area of a triangle
+template <typename N>
+double Earcut<N>::area(const Node *p, const Node *q, const Node *r) const {
+ return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
+}
+
+// check if two points are equal
+template <typename N>
+bool Earcut<N>::equals(const Node *p1, const Node *p2) {
+ return p1->x == p2->x && p1->y == p2->y;
+}
+
+// check if two segments intersect
+template <typename N>
+bool Earcut<N>::intersects(const Node *p1, const Node *q1, const Node *p2,
+ const Node *q2) {
+ int o1 = sign(area(p1, q1, p2));
+ int o2 = sign(area(p1, q1, q2));
+ int o3 = sign(area(p2, q2, p1));
+ int o4 = sign(area(p2, q2, q1));
+
+ if (o1 != o2 && o3 != o4) return true; // general case
+
+ if (o1 == 0 && onSegment(p1, p2, q1))
+ return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
+ if (o2 == 0 && onSegment(p1, q2, q1))
+ return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
+ if (o3 == 0 && onSegment(p2, p1, q2))
+ return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
+ if (o4 == 0 && onSegment(p2, q1, q2))
+ return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
+
+ return false;
+}
+
+// for collinear points p, q, r, check if point q lies on segment pr
+template <typename N>
+bool Earcut<N>::onSegment(const Node *p, const Node *q, const Node *r) {
+ return q->x <= std::max<double>(p->x, r->x) &&
+ q->x >= std::min<double>(p->x, r->x) &&
+ q->y <= std::max<double>(p->y, r->y) &&
+ q->y >= std::min<double>(p->y, r->y);
+}
+
+template <typename N>
+int Earcut<N>::sign(double val) {
+ return (0.0 < val) - (val < 0.0);
+}
+
+// check if a polygon diagonal intersects any polygon segments
+template <typename N>
+bool Earcut<N>::intersectsPolygon(const Node *a, const Node *b) {
+ const Node *p = a;
+ do {
+ if (p->i != a->i && p->next->i != a->i && p->i != b->i &&
+ p->next->i != b->i && intersects(p, p->next, a, b))
+ return true;
+ p = p->next;
+ } while (p != a);
+
+ return false;
+}
+
+// check if a polygon diagonal is locally inside the polygon
+template <typename N>
+bool Earcut<N>::locallyInside(const Node *a, const Node *b) {
+ return area(a->prev, a, a->next) < 0
+ ? area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0
+ : area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
+}
+
+// check if the middle Vertex of a polygon diagonal is inside the polygon
+template <typename N>
+bool Earcut<N>::middleInside(const Node *a, const Node *b) {
+ const Node *p = a;
+ bool inside = false;
+ double px = (a->x + b->x) / 2;
+ double py = (a->y + b->y) / 2;
+ do {
+ if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
+ (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
+ inside = !inside;
+ p = p->next;
+ } while (p != a);
+
+ return inside;
+}
+
+// link two polygon vertices with a bridge; if the vertices belong to the same
+// ring, it splits polygon into two; if one belongs to the outer ring and
+// another to a hole, it merges it into a single ring
+template <typename N>
+typename Earcut<N>::Node *Earcut<N>::splitPolygon(Node *a, Node *b) {
+ Node *a2 = nodes.construct(a->i, a->x, a->y);
+ Node *b2 = nodes.construct(b->i, b->x, b->y);
+ Node *an = a->next;
+ Node *bp = b->prev;
+
+ a->next = b;
+ b->prev = a;
+
+ a2->next = an;
+ an->prev = a2;
+
+ b2->next = a2;
+ a2->prev = b2;
+
+ bp->next = b2;
+ b2->prev = bp;
+
+ return b2;
+}
+
+// create a node and util::optionally link it with previous one (in a circular
+// doubly linked list)
+template <typename N>
+template <typename Point>
+typename Earcut<N>::Node *Earcut<N>::insertNode(std::size_t i, const Point &pt,
+ Node *last) {
+ Node *p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt),
+ util::nth<1, Point>::get(pt));
+
+ if (!last) {
+ p->prev = p;
+ p->next = p;
+
+ } else {
+ assert(last);
+ p->next = last->next;
+ p->prev = last;
+ last->next->prev = p;
+ last->next = p;
+ }
+ return p;
+}
+
+template <typename N>
+void Earcut<N>::removeNode(Node *p) {
+ p->next->prev = p->prev;
+ p->prev->next = p->next;
+
+ if (p->prevZ) p->prevZ->nextZ = p->nextZ;
+ if (p->nextZ) p->nextZ->prevZ = p->prevZ;
+}
+} // namespace detail
+
+template <typename N = uint32_t, typename Polygon>
+std::vector<N> earcut(const Polygon &poly) {
+ mapbox::detail::Earcut<N> earcut;
+ earcut(poly);
+ return std::move(earcut.indices);
+}
+} // namespace mapbox
+
+#endif // TINYOBJLOADER_USE_MAPBOX_EARCUT
+
namespace tinyobj {
MaterialReader::~MaterialReader() {}
@@ -1542,37 +2414,87 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
real_t cy = std::fabs(e0z * e1x - e0x * e1z);
real_t cz = std::fabs(e0x * e1y - e0y * e1x);
const real_t epsilon = std::numeric_limits<real_t>::epsilon();
+ // std::cout << "cx " << cx << ", cy " << cy << ", cz " << cz <<
+ // "\n";
if (cx > epsilon || cy > epsilon || cz > epsilon) {
+ // std::cout << "corner\n";
// found a corner
if (cx > cy && cx > cz) {
+ // std::cout << "pattern0\n";
} else {
+ // std::cout << "axes[0] = 0\n";
axes[0] = 0;
- if (cz > cx && cz > cy) axes[1] = 1;
+ if (cz > cx && cz > cy) {
+ // std::cout << "axes[1] = 1\n";
+ axes[1] = 1;
+ }
}
break;
}
}
- real_t area = 0;
- for (size_t k = 0; k < npolys; ++k) {
- i0 = face.vertex_indices[(k + 0) % npolys];
- i1 = face.vertex_indices[(k + 1) % npolys];
+#ifdef TINYOBJLOADER_USE_MAPBOX_EARCUT
+ using Point = std::array<real_t, 2>;
+
+ // first polyline define the main polygon.
+ // following polylines define holes(not used in tinyobj).
+ std::vector<std::vector<Point> > polygon;
+
+ std::vector<Point> polyline;
+
+ // Fill polygon data(facevarying vertices).
+ for (size_t k = 0; k < npolys; k++) {
+ i0 = face.vertex_indices[k];
size_t vi0 = size_t(i0.v_idx);
- size_t vi1 = size_t(i1.v_idx);
- if (((vi0 * 3 + axes[0]) >= v.size()) ||
- ((vi0 * 3 + axes[1]) >= v.size()) ||
- ((vi1 * 3 + axes[0]) >= v.size()) ||
- ((vi1 * 3 + axes[1]) >= v.size())) {
- // Invalid index.
- continue;
- }
+
+ assert(((3 * vi0 + 2) < v.size()));
+
real_t v0x = v[vi0 * 3 + axes[0]];
real_t v0y = v[vi0 * 3 + axes[1]];
- real_t v1x = v[vi1 * 3 + axes[0]];
- real_t v1y = v[vi1 * 3 + axes[1]];
- area += (v0x * v1y - v0y * v1x) * static_cast<real_t>(0.5);
+
+ polyline.push_back({v0x, v0y});
}
+ polygon.push_back(polyline);
+ std::vector<uint32_t> indices = mapbox::earcut<uint32_t>(polygon);
+ // => result = 3 * faces, clockwise
+
+ assert(indices.size() % 3 == 0);
+
+ // Reconstruct vertex_index_t
+ for (size_t k = 0; k < indices.size() / 3; k++) {
+ {
+ index_t idx0, idx1, idx2;
+ idx0.vertex_index = face.vertex_indices[indices[3 * k + 0]].v_idx;
+ idx0.normal_index =
+ face.vertex_indices[indices[3 * k + 0]].vn_idx;
+ idx0.texcoord_index =
+ face.vertex_indices[indices[3 * k + 0]].vt_idx;
+ idx1.vertex_index = face.vertex_indices[indices[3 * k + 1]].v_idx;
+ idx1.normal_index =
+ face.vertex_indices[indices[3 * k + 1]].vn_idx;
+ idx1.texcoord_index =
+ face.vertex_indices[indices[3 * k + 1]].vt_idx;
+ idx2.vertex_index = face.vertex_indices[indices[3 * k + 2]].v_idx;
+ idx2.normal_index =
+ face.vertex_indices[indices[3 * k + 2]].vn_idx;
+ idx2.texcoord_index =
+ face.vertex_indices[indices[3 * k + 2]].vt_idx;
+
+ shape->mesh.indices.push_back(idx0);
+ shape->mesh.indices.push_back(idx1);
+ shape->mesh.indices.push_back(idx2);
+
+ shape->mesh.num_face_vertices.push_back(3);
+ shape->mesh.material_ids.push_back(material_id);
+ shape->mesh.smoothing_group_ids.push_back(
+ face.smoothing_group_id);
+ }
+ }
+
+#else // Built-in ear clipping triangulation
+
+
face_t remainingFace = face; // copy
size_t guess_vert = 0;
vertex_index_t ind[3];
@@ -1587,6 +2509,9 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
while (remainingFace.vertex_indices.size() > 3 &&
remainingIterations > 0) {
+ // std::cout << "remainingIterations " << remainingIterations <<
+ // "\n";
+
npolys = remainingFace.vertex_indices.size();
if (guess_vert >= npolys) {
guess_vert -= npolys;
@@ -1615,14 +2540,26 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
vy[k] = v[vi * 3 + axes[1]];
}
}
+
+ //
+ // area is calculated per face
+ //
real_t e0x = vx[1] - vx[0];
real_t e0y = vy[1] - vy[0];
real_t e1x = vx[2] - vx[1];
real_t e1y = vy[2] - vy[1];
real_t cross = e0x * e1y - e0y * e1x;
+ // std::cout << "axes = " << axes[0] << ", " << axes[1] << "\n";
+ // std::cout << "e0x, e0y, e1x, e1y " << e0x << ", " << e0y << ", "
+ // << e1x << ", " << e1y << "\n";
+
+ real_t area = (vx[0] * vy[1] - vy[0] * vx[1]) * static_cast<real_t>(0.5);
+ // std::cout << "cross " << cross << ", area " << area << "\n";
// if an internal angle
if (cross * area < static_cast<real_t>(0.0)) {
+ // std::cout << "internal \n";
guess_vert += 1;
+ // std::cout << "guess vert : " << guess_vert << "\n";
continue;
}
@@ -1632,6 +2569,7 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
size_t idx = (guess_vert + otherVert) % npolys;
if (idx >= remainingFace.vertex_indices.size()) {
+ // std::cout << "???0\n";
// ???
continue;
}
@@ -1640,18 +2578,21 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
if (((ovi * 3 + axes[0]) >= v.size()) ||
((ovi * 3 + axes[1]) >= v.size())) {
+ // std::cout << "???1\n";
// ???
continue;
}
real_t tx = v[ovi * 3 + axes[0]];
real_t ty = v[ovi * 3 + axes[1]];
if (pnpoly(3, vx, vy, tx, ty)) {
+ // std::cout << "overlap\n";
overlap = true;
break;
}
}
if (overlap) {
+ // std::cout << "overlap2\n";
guess_vert += 1;
continue;
}
@@ -1689,6 +2630,8 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
remainingFace.vertex_indices.pop_back();
}
+ // std::cout << "remainingFace.vi.size = " <<
+ // remainingFace.vertex_indices.size() << "\n";
if (remainingFace.vertex_indices.size() == 3) {
i0 = remainingFace.vertex_indices[0];
i1 = remainingFace.vertex_indices[1];
@@ -1715,6 +2658,7 @@ static bool exportGroupsToShape(shape_t *shape, const PrimGroup &prim_group,
face.smoothing_group_id);
}
}
+#endif
} // npolys
} else {
for (size_t k = 0; k < npolys; k++) {