aboutsummaryrefslogtreecommitdiff
path: root/experimental/viewer.cc
blob: be5053f9f5e5a7d898a4ec16bb125182a8081c30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
//
// Simple .obj viewer(vertex only)
//
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <limits>
#include <cmath>
#include <cassert>
#include <cstring>	
#include <algorithm>	

#if defined(ENABLE_ZLIB)
#include <zlib.h>
#endif

#if defined(ENABLE_ZSTD)
#include <zstd.h>
#endif

#include <GL/glew.h>

#ifdef __APPLE__
#include <OpenGL/glu.h>
#else
#include <GL/glu.h>
#endif

#include <GLFW/glfw3.h>

#include "trackball.h"

#define TINYOBJ_LOADER_OPT_IMPLEMENTATION
#include "tinyobj_loader_opt.h"

typedef struct {
  GLuint vb;    // vertex buffer
  int numTriangles;
} DrawObject;

std::vector<DrawObject> gDrawObjects;

int width = 768;
int height = 768;

double prevMouseX, prevMouseY;
bool mouseLeftPressed;
bool mouseMiddlePressed;
bool mouseRightPressed;
float curr_quat[4];
float prev_quat[4];
float eye[3], lookat[3], up[3];

GLFWwindow* window;

void CheckErrors(std::string desc) {
  GLenum e = glGetError();
  if (e != GL_NO_ERROR) {
    fprintf(stderr, "OpenGL error in \"%s\": %d (%d)\n", desc.c_str(), e, e);
    exit(20);
  }
}

void CalcNormal(float N[3], float v0[3], float v1[3], float v2[3]) {
  float v10[3];
  v10[0] = v1[0] - v0[0];
  v10[1] = v1[1] - v0[1];
  v10[2] = v1[2] - v0[2];

  float v20[3];
  v20[0] = v2[0] - v0[0];
  v20[1] = v2[1] - v0[1];
  v20[2] = v2[2] - v0[2];

  N[0] = v20[1] * v10[2] - v20[2] * v10[1];
  N[1] = v20[2] * v10[0] - v20[0] * v10[2];
  N[2] = v20[0] * v10[1] - v20[1] * v10[0];

  float len2 = N[0] * N[0] + N[1] * N[1] + N[2] * N[2];
  if (len2 > 0.0f) {
    float len = sqrtf(len2);
    
    N[0] /= len;
    N[1] /= len;
  }
}

const char *mmap_file(size_t *len, const char* filename)
{
  (*len) = 0;
#ifdef _WIN32
  HANDLE file = CreateFileA(filename, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, NULL);
  assert(file != INVALID_HANDLE_VALUE);

  HANDLE fileMapping = CreateFileMapping(file, NULL, PAGE_READONLY, 0, 0, NULL);
  assert(fileMapping != INVALID_HANDLE_VALUE);
 
  LPVOID fileMapView = MapViewOfFile(fileMapping, FILE_MAP_READ, 0, 0, 0);
  auto fileMapViewChar = (const char*)fileMapView;
  assert(fileMapView != NULL);

  LARGE_INTEGER fileSize;
  fileSize.QuadPart = 0;
  GetFileSizeEx(file, &fileSize);

  (*len) = static_cast<size_t>(fileSize.QuadPart);
  return fileMapViewChar;

#else

  FILE* f = fopen(filename, "rb" );
  if (!f) {
    fprintf(stderr, "Failed to open file : %s\n", filename);
    return nullptr;
  }
  fseek(f, 0, SEEK_END);
  long fileSize = ftell(f);
  fclose(f);

  if (fileSize < 16) {
    fprintf(stderr, "Empty or invalid .obj : %s\n", filename);
    return nullptr;
  }

  struct stat sb;
  char *p;
  int fd;

  fd = open (filename, O_RDONLY);
  if (fd == -1) {
    perror ("open");
    return nullptr;
  }

  if (fstat (fd, &sb) == -1) {
    perror ("fstat");
    return nullptr;
  }

  if (!S_ISREG (sb.st_mode)) {
    fprintf (stderr, "%s is not a file\n", "lineitem.tbl");
    return nullptr;
  }

  p = (char*)mmap (0, fileSize, PROT_READ, MAP_SHARED, fd, 0);

  if (p == MAP_FAILED) {
    perror ("mmap");
    return nullptr;
  }

  if (close (fd) == -1) {
    perror ("close");
    return nullptr;
  }

  (*len) = fileSize;

  return p;
  
#endif
}

bool gz_load(std::vector<char>* buf, const char* filename)
{
#ifdef ENABLE_ZLIB
    gzFile file;
    file = gzopen (filename, "r");
    if (! file) {
        fprintf (stderr, "gzopen of '%s' failed: %s.\n", filename,
                 strerror (errno));
        exit (EXIT_FAILURE);
        return false;
    }
    while (1) {
        int err;                    
        int bytes_read;
        unsigned char buffer[1024];
        bytes_read = gzread (file, buffer, 1024);
        buf->insert(buf->end(), buffer, buffer + 1024); 
        //printf ("%s", buffer);
        if (bytes_read < 1024) {
            if (gzeof (file)) {
                break;
            }
            else {
                const char * error_string;
                error_string = gzerror (file, & err);
                if (err) {
                    fprintf (stderr, "Error: %s.\n", error_string);
                    exit (EXIT_FAILURE);
                    return false;
                }
            }
        }
    }
    gzclose (file);
    return true;
#else
  return false;
#endif
}

#ifdef ENABLE_ZSTD
static off_t fsize_X(const char *filename)
{
    struct stat st;
    if (stat(filename, &st) == 0) return st.st_size;
    /* error */
    printf("stat: %s : %s \n", filename, strerror(errno));
    exit(1);
}

static FILE* fopen_X(const char *filename, const char *instruction)
{
    FILE* const inFile = fopen(filename, instruction);
    if (inFile) return inFile;
    /* error */
    printf("fopen: %s : %s \n", filename, strerror(errno));
    exit(2);
}

static void* malloc_X(size_t size)
{
    void* const buff = malloc(size);
    if (buff) return buff;
    /* error */
    printf("malloc: %s \n", strerror(errno));
    exit(3);
}
#endif

bool zstd_load(std::vector<char>* buf, const char* filename)
{
#ifdef ENABLE_ZSTD
    off_t const buffSize = fsize_X(filename);
    FILE* const inFile = fopen_X(filename, "rb");
    void* const buffer = malloc_X(buffSize);
    size_t const readSize = fread(buffer, 1, buffSize, inFile);
    if (readSize != (size_t)buffSize) {
        printf("fread: %s : %s \n", filename, strerror(errno));
        exit(4);
    }
    fclose(inFile);

    unsigned long long const rSize = ZSTD_getDecompressedSize(buffer, buffSize);
    if (rSize==0) {
        printf("%s : original size unknown \n", filename);
        exit(5);
    }

    buf->resize(rSize);

    size_t const dSize = ZSTD_decompress(buf->data(), rSize, buffer, buffSize);

    if (dSize != rSize) {
        printf("error decoding %s : %s \n", filename, ZSTD_getErrorName(dSize));
        exit(7);
    }

    free(buffer);

    return true;
#else
  return false;
#endif
}

const char* get_file_data(size_t *len, const char* filename)
{

  const char *ext = strrchr(filename, '.');

  size_t data_len = 0;
  const char* data = nullptr;

  if (strcmp(ext, ".gz") == 0) {
    // gzipped data.

    std::vector<char> buf;
    bool ret = gz_load(&buf, filename);

    if (ret) {
      char *p = static_cast<char*>(malloc(buf.size() + 1));  // @fixme { implement deleter }
      memcpy(p, &buf.at(0), buf.size());
      p[buf.size()] = '\0';
      data = p;
      data_len = buf.size();
    }

  } else if (strcmp(ext, ".zst") == 0) {
    printf("zstd\n");
    // Zstandard data.

    std::vector<char> buf;
    bool ret = zstd_load(&buf, filename);

    if (ret) {
      char *p = static_cast<char*>(malloc(buf.size() + 1));  // @fixme { implement deleter }
      memcpy(p, &buf.at(0), buf.size());
      p[buf.size()] = '\0';
      data = p;
      data_len = buf.size();
    }
  } else {
    
    data = mmap_file(&data_len, filename);

  }

  (*len) = data_len;
  return data;
}


bool LoadObjAndConvert(float bmin[3], float bmax[3], const char* filename, int num_threads, bool verbose)
{
  tinyobj_opt::attrib_t attrib;
  std::vector<tinyobj_opt::shape_t> shapes;
  std::vector<tinyobj_opt::material_t> materials;

  auto load_t_begin = std::chrono::high_resolution_clock::now();
  size_t data_len = 0;
  const char* data = get_file_data(&data_len, filename);
  if (data == nullptr) {
    printf("failed to load file\n");
    exit(-1);
    return false;
  }
  auto load_t_end = std::chrono::high_resolution_clock::now();
  std::chrono::duration<double, std::milli> load_ms = load_t_end - load_t_begin;
  if (verbose) {
    std::cout << "filesize: " << data_len << std::endl;
    std::cout << "load time: " << load_ms.count() << " [msecs]" << std::endl;
  }


  tinyobj_opt::LoadOption option;
  option.req_num_threads = num_threads;
  option.verbose = verbose;
  bool ret = parseObj(&attrib, &shapes, &materials, data, data_len, option);

  if (!ret) {
	  std::cerr << "Failed to parse .obj" << std::endl;
	  return false;
  }
  bmin[0] = bmin[1] = bmin[2] = std::numeric_limits<float>::max();
  bmax[0] = bmax[1] = bmax[2] = -std::numeric_limits<float>::max();

  //std::cout << "vertices.size() = " << attrib.vertices.size() << std::endl;
  //std::cout << "normals.size() = " << attrib.normals.size() << std::endl;

  {
        DrawObject o;
        std::vector<float> vb; // pos(3float), normal(3float), color(3float)
        size_t face_offset = 0;
        for (size_t v = 0; v < attrib.face_num_verts.size(); v++) {
          assert(attrib.face_num_verts[v] % 3 == 0); // assume all triangle face.
          for (size_t f = 0; f < attrib.face_num_verts[v] / 3; f++) {
            tinyobj_opt::index_t idx0 = attrib.indices[face_offset+3*f+0];
            tinyobj_opt::index_t idx1 = attrib.indices[face_offset+3*f+1];
            tinyobj_opt::index_t idx2 = attrib.indices[face_offset+3*f+2];

            float v[3][3];
            for (int k = 0; k < 3; k++) {
              int f0 = idx0.vertex_index;
              int f1 = idx1.vertex_index;
              int f2 = idx2.vertex_index;
              assert(f0 >= 0);
              assert(f1 >= 0);
              assert(f2 >= 0);

              v[0][k] = attrib.vertices[3*f0+k];
              v[1][k] = attrib.vertices[3*f1+k];
              v[2][k] = attrib.vertices[3*f2+k];
              bmin[k] = std::min(v[0][k], bmin[k]);
              bmin[k] = std::min(v[1][k], bmin[k]);
              bmin[k] = std::min(v[2][k], bmin[k]);
              bmax[k] = std::max(v[0][k], bmax[k]);
              bmax[k] = std::max(v[1][k], bmax[k]);
              bmax[k] = std::max(v[2][k], bmax[k]);
            }

            float n[3][3];

            if (attrib.normals.size() > 0) { 
              int nf0 = idx0.normal_index;
              int nf1 = idx1.normal_index;
              int nf2 = idx2.normal_index;

              if (nf0 >= 0 && nf1 >= 0 && nf2 >= 0) {
                assert(3*nf0+2 < attrib.normals.size());
                assert(3*nf1+2 < attrib.normals.size());
                assert(3*nf2+2 < attrib.normals.size());
                for (int k = 0; k < 3; k++) {
                  n[0][k] = attrib.normals[3*nf0+k];
                  n[1][k] = attrib.normals[3*nf1+k];
                  n[2][k] = attrib.normals[3*nf2+k];
                }
              } else {
                // compute geometric normal
                CalcNormal(n[0], v[0], v[1], v[2]);
                n[1][0] = n[0][0]; n[1][1] = n[0][1]; n[1][2] = n[0][2];
                n[2][0] = n[0][0]; n[2][1] = n[0][1]; n[2][2] = n[0][2];
              }
            } else {
              // compute geometric normal
              CalcNormal(n[0], v[0], v[1], v[2]);
              n[1][0] = n[0][0]; n[1][1] = n[0][1]; n[1][2] = n[0][2];
              n[2][0] = n[0][0]; n[2][1] = n[0][1]; n[2][2] = n[0][2];
            }

            for (int k = 0; k < 3; k++) {
              vb.push_back(v[k][0]);
              vb.push_back(v[k][1]);
              vb.push_back(v[k][2]);
              vb.push_back(n[k][0]);
              vb.push_back(n[k][1]);
              vb.push_back(n[k][2]);
              // Use normal as color.
              float c[3] = {n[k][0], n[k][1], n[k][2]};
              float len2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2];
              if (len2 > 1.0e-6f) {
                float len = sqrtf(len2);
                
                c[0] /= len;
                c[1] /= len;
                c[2] /= len;
              }
              vb.push_back(c[0] * 0.5 + 0.5);
              vb.push_back(c[1] * 0.5 + 0.5);
              vb.push_back(c[2] * 0.5 + 0.5);
            }
          } 
          face_offset += attrib.face_num_verts[v];
        }

        o.vb = 0;
        o.numTriangles = 0;
        if (vb.size() > 0) {
          glGenBuffers(1, &o.vb);
          glBindBuffer(GL_ARRAY_BUFFER, o.vb);
          glBufferData(GL_ARRAY_BUFFER, vb.size() * sizeof(float), &vb.at(0), GL_STATIC_DRAW);
          o.numTriangles = vb.size() / 9 / 3;
        }

        gDrawObjects.push_back(o);
  }
  
  printf("bmin = %f, %f, %f\n", bmin[0], bmin[1], bmin[2]);
  printf("bmax = %f, %f, %f\n", bmax[0], bmax[1], bmax[2]);

  return true;
}

void reshapeFunc(GLFWwindow* window, int w, int h)
{
  (void)window;
  // for retinal display.
  int fb_w, fb_h;
  glfwGetFramebufferSize(window, &fb_w, &fb_h);

  glViewport(0, 0, fb_w, fb_h);
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  gluPerspective(45.0, (float)w / (float)h, 0.01f, 100.0f);
  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

  width = w;
  height = h;
}

void keyboardFunc(GLFWwindow *window, int key, int scancode, int action, int mods) {
  (void)window;
  (void)scancode;
  (void)mods;
    if(action == GLFW_PRESS || action == GLFW_REPEAT){
        // Move camera
        float mv_x = 0, mv_y = 0, mv_z = 0;
        if(key == GLFW_KEY_K) mv_x += 1;
        else if(key == GLFW_KEY_J) mv_x += -1;
        else if(key == GLFW_KEY_L) mv_y += 1;
        else if(key == GLFW_KEY_H) mv_y += -1;
        else if(key == GLFW_KEY_P) mv_z += 1;
        else if(key == GLFW_KEY_N) mv_z += -1;
        //camera.move(mv_x * 0.05, mv_y * 0.05, mv_z * 0.05);
        // Close window
        if(key == GLFW_KEY_Q || key == GLFW_KEY_ESCAPE) glfwSetWindowShouldClose(window, GL_TRUE);

        //init_frame = true;
    }
}

void clickFunc(GLFWwindow* window, int button, int action, int mods){
  (void)window;
  (void)mods;
    if(button == GLFW_MOUSE_BUTTON_LEFT){
        if(action == GLFW_PRESS){
            mouseLeftPressed = true;
            trackball(prev_quat, 0.0, 0.0, 0.0, 0.0);
        } else if(action == GLFW_RELEASE){
            mouseLeftPressed = false;
        }
    }
    if(button == GLFW_MOUSE_BUTTON_RIGHT){
        if(action == GLFW_PRESS){
            mouseRightPressed = true;
        } else if(action == GLFW_RELEASE){
            mouseRightPressed = false;
        }
    }
    if(button == GLFW_MOUSE_BUTTON_MIDDLE){
        if(action == GLFW_PRESS){
            mouseMiddlePressed = true;
        } else if(action == GLFW_RELEASE){
            mouseMiddlePressed = false;
        }
    }
}

void motionFunc(GLFWwindow* window, double mouse_x, double mouse_y){
  (void)window;
  float rotScale = 1.0f;
  float transScale = 2.0f;

    if(mouseLeftPressed){
      trackball(prev_quat,
          rotScale * (2.0f * prevMouseX - width) / (float)width,
          rotScale * (height - 2.0f * prevMouseY) / (float)height,
          rotScale * (2.0f * mouse_x - width) / (float)width,
          rotScale * (height - 2.0f * mouse_y) / (float)height);

      add_quats(prev_quat, curr_quat, curr_quat);
    } else if (mouseMiddlePressed) {
      eye[0] -= transScale * (mouse_x - prevMouseX) / (float)width;
      lookat[0] -= transScale * (mouse_x - prevMouseX) / (float)width;
      eye[1] += transScale * (mouse_y - prevMouseY) / (float)height;
      lookat[1] += transScale * (mouse_y - prevMouseY) / (float)height;
    } else if (mouseRightPressed) {
      eye[2] += transScale * (mouse_y - prevMouseY) / (float)height;
      lookat[2] += transScale * (mouse_y - prevMouseY) / (float)height;
    }

    // Update mouse point
    prevMouseX = mouse_x;
    prevMouseY = mouse_y;
}

void Draw(const std::vector<DrawObject>& drawObjects)
{
  glPolygonMode(GL_FRONT, GL_FILL);
  glPolygonMode(GL_BACK, GL_FILL);

  glEnable(GL_POLYGON_OFFSET_FILL);
  glPolygonOffset(1.0, 1.0);
  glColor3f(1.0f, 1.0f, 1.0f);
  for (size_t i = 0; i < drawObjects.size(); i++) {
    DrawObject o = drawObjects[i];
    if (o.vb < 1) {
      continue;
    }
 
    glBindBuffer(GL_ARRAY_BUFFER, o.vb);
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);
    glEnableClientState(GL_COLOR_ARRAY);
    glVertexPointer(3, GL_FLOAT, 36, (const void*)0);
    glNormalPointer(GL_FLOAT, 36, (const void*)(sizeof(float)*3));
    glColorPointer(3, GL_FLOAT, 36, (const void*)(sizeof(float)*6));

    glDrawArrays(GL_TRIANGLES, 0, 3 * o.numTriangles);
    CheckErrors("drawarrays");
  }

  // draw wireframe
  glDisable(GL_POLYGON_OFFSET_FILL);
  glPolygonMode(GL_FRONT, GL_LINE);
  glPolygonMode(GL_BACK, GL_LINE);

  glColor3f(0.0f, 0.0f, 0.4f);
  for (size_t i = 0; i < drawObjects.size(); i++) {
    DrawObject o = drawObjects[i];
    if (o.vb < 1) {
      continue;
    }
 
    glBindBuffer(GL_ARRAY_BUFFER, o.vb);
    glEnableClientState(GL_VERTEX_ARRAY);
    glEnableClientState(GL_NORMAL_ARRAY);
    glDisableClientState(GL_COLOR_ARRAY);
    glVertexPointer(3, GL_FLOAT, 36, (const void*)0);
    glNormalPointer(GL_FLOAT, 36, (const void*)(sizeof(float)*3));

    glDrawArrays(GL_TRIANGLES, 0, 3 * o.numTriangles);
    CheckErrors("drawarrays");
  }
}

static void Init() {
  trackball(curr_quat, 0, 0, 0, 0);

  eye[0] = 0.0f;
  eye[1] = 0.0f;
  eye[2] = 3.0f;

  lookat[0] = 0.0f;
  lookat[1] = 0.0f;
  lookat[2] = 0.0f;

  up[0] = 0.0f;
  up[1] = 1.0f;
  up[2] = 0.0f;
}


int main(int argc, char **argv)
{
  if (argc < 2) {
    std::cout << "view input.obj <num_threads> <benchark_only> <verbose>" << std::endl;
    return 0;
  }

  bool benchmark_only = false;
  int num_threads = -1;
  bool verbose = false;

  if (argc > 2) {
    num_threads = atoi(argv[2]);
  }

  if (argc > 3) {
    benchmark_only = (atoi(argv[3]) > 0) ? true : false;
  }

  if (argc > 4) {
    verbose = true;
  }

  if (benchmark_only) {

    tinyobj_opt::attrib_t attrib;
    std::vector<tinyobj_opt::shape_t> shapes;
    std::vector<tinyobj_opt::material_t> materials;

    size_t data_len = 0;
    const char* data = get_file_data(&data_len, argv[1]);
    if (data == nullptr) {
      printf("failed to load file\n");
      exit(-1);
      return false;
    }

    if (data_len < 4) {
      printf("Empty file\n");
      exit(-1);
      return false;
    }
    printf("filesize: %d\n", (int)data_len);
    tinyobj_opt::LoadOption option;
    option.req_num_threads = num_threads;
    option.verbose = true;

    bool ret = parseObj(&attrib, &shapes, &materials, data, data_len, option);

    return ret;
  }

  Init();

  std::cout << "Initialize GLFW..." << std::endl;

  if(!glfwInit()){
    std::cerr << "Failed to initialize GLFW." << std::endl;
    return -1;
  }

  std::cout << "GLFW OK." << std::endl;


  window = glfwCreateWindow(width, height, "Obj viewer", NULL, NULL);
  if(window == NULL){
    std::cerr << "Failed to open GLFW window. " << std::endl;
    glfwTerminate();
    return 1;
  }

  glfwMakeContextCurrent(window);
  glfwSwapInterval(1);

  // Callback
  glfwSetWindowSizeCallback(window, reshapeFunc);
  glfwSetKeyCallback(window, keyboardFunc);
  glfwSetMouseButtonCallback(window, clickFunc);
  glfwSetCursorPosCallback(window, motionFunc);

  glewExperimental = true;
  if (glewInit() != GLEW_OK) {
    std::cerr << "Failed to initialize GLEW." << std::endl;
    return -1;
  }

  reshapeFunc(window, width, height);

  float bmin[3], bmax[3];
  if (false == LoadObjAndConvert(bmin, bmax, argv[1], num_threads, verbose)) {
    printf("failed to load & conv\n");
    return -1;
  }

  float maxExtent = 0.5f * (bmax[0] - bmin[0]);
  if (maxExtent < 0.5f * (bmax[1] - bmin[1])) {
    maxExtent = 0.5f * (bmax[1] - bmin[1]);
  }
  if (maxExtent < 0.5f * (bmax[2] - bmin[2])) {
    maxExtent = 0.5f * (bmax[2] - bmin[2]);
  }

  while(glfwWindowShouldClose(window) == GL_FALSE) {
    glfwPollEvents();
    glClearColor(0.1f, 0.2f, 0.3f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    glEnable(GL_DEPTH_TEST);

    // camera & rotate
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    GLfloat mat[4][4];
    gluLookAt(eye[0], eye[1], eye[2], lookat[0], lookat[1], lookat[2], up[0], up[1], up[2]);
    build_rotmatrix(mat, curr_quat);
    glMultMatrixf(&mat[0][0]);

    // Fit to -1, 1
    glScalef(1.0f / maxExtent, 1.0f / maxExtent, 1.0f / maxExtent);

    // Centerize object.
    glTranslatef(-0.5*(bmax[0] + bmin[0]), -0.5*(bmax[1] + bmin[1]), -0.5*(bmax[2] + bmin[2]));
  
    Draw(gDrawObjects);

    glfwSwapBuffers(window);
  }

  glfwTerminate();
}