aboutsummaryrefslogtreecommitdiff
path: root/python/main.cpp
blob: 4f1d0e0071a30f82921efafd657d81746b7bfb93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// python2/3 module for tinyobjloader
//
// usage:
// import tinyobjloader as tol
// model = tol.LoadObj(name)
// print(model["shapes"])
// print(model["materials"]
// note:
//   `shape.mesh.index_t` is represented as flattened array: (vertex_index, normal_index, texcoord_index) * num_faces

#include <Python.h>
#include <vector>
#include "../tiny_obj_loader.h"

typedef std::vector<double> vectd;
typedef std::vector<int> vecti;

PyObject* pyTupleFromfloat3(float array[3]) {
  int i;
  PyObject* tuple = PyTuple_New(3);

  for (i = 0; i <= 2; i++) {
    PyTuple_SetItem(tuple, i, PyFloat_FromDouble(array[i]));
  }

  return tuple;
}

extern "C" {

static PyObject* pyLoadObj(PyObject* self, PyObject* args) {
  PyObject *rtndict, *pyshapes, *pymaterials, *pymaterial_indices, *attribobj, *current, *meshobj;

  char const* current_name;
  char const* filename;
  vectd vect;
  std::vector<tinyobj::index_t> indices;
  std::vector<unsigned char> face_verts;

  tinyobj::attrib_t attrib;
  std::vector<tinyobj::shape_t> shapes;
  std::vector<tinyobj::material_t> materials;

  if (!PyArg_ParseTuple(args, "s", &filename)) return NULL;

  std::string err;
  tinyobj::LoadObj(&attrib, &shapes, &materials, &err, filename);

  pyshapes = PyDict_New();
  pymaterials = PyDict_New();
  pymaterial_indices = PyList_New(0);
  rtndict = PyDict_New();

  attribobj = PyDict_New();

  for (int i = 0; i <= 2; i++) {
    current = PyList_New(0);

    switch (i) {
      case 0:
        current_name = "vertices";
        vect = vectd(attrib.vertices.begin(), attrib.vertices.end());
        break;
      case 1:
        current_name = "normals";
        vect = vectd(attrib.normals.begin(), attrib.normals.end());
        break;
      case 2:
        current_name = "texcoords";
        vect = vectd(attrib.texcoords.begin(), attrib.texcoords.end());
        break;
    }

    for (vectd::iterator it = vect.begin(); it != vect.end(); it++) {
      PyList_Insert(current, it - vect.begin(), PyFloat_FromDouble(*it));
    }

    PyDict_SetItemString(attribobj, current_name, current);
  }

  for (std::vector<tinyobj::shape_t>::iterator shape = shapes.begin();
       shape != shapes.end(); shape++) {
    meshobj = PyDict_New();
    tinyobj::mesh_t cm = (*shape).mesh;

    {
      current = PyList_New(0);

      for (size_t i = 0; i < cm.indices.size(); i++) {
        // Flatten index array: v_idx, vn_idx, vt_idx, v_idx, vn_idx, vt_idx,
        // ...
        PyList_Insert(current, 3 * i + 0,
                      PyLong_FromLong(cm.indices[i].vertex_index));
        PyList_Insert(current, 3 * i + 1,
                      PyLong_FromLong(cm.indices[i].normal_index));
        PyList_Insert(current, 3 * i + 2,
                      PyLong_FromLong(cm.indices[i].texcoord_index));
      }

      PyDict_SetItemString(meshobj, "indices", current);
    }

    {
      current = PyList_New(0);

      for (size_t i = 0; i < cm.num_face_vertices.size(); i++) {
        // Widen data type to long.
        PyList_Insert(current, i, PyLong_FromLong(cm.num_face_vertices[i]));
      }

      PyDict_SetItemString(meshobj, "num_face_vertices", current);
    }

    {
      current = PyList_New(0);

      for (size_t i = 0; i < cm.material_ids.size(); i++) {
        PyList_Insert(current, i, PyLong_FromLong(cm.material_ids[i]));
      }

      PyDict_SetItemString(meshobj, "material_ids", current);
    }

    PyDict_SetItemString(pyshapes, (*shape).name.c_str(), meshobj);
  }

  for (std::vector<tinyobj::material_t>::iterator mat = materials.begin();
       mat != materials.end(); mat++) {
    PyObject* matobj = PyDict_New();
    PyObject* unknown_parameter = PyDict_New();

    for (std::map<std::string, std::string>::iterator p =
             mat->unknown_parameter.begin();
         p != mat->unknown_parameter.end(); ++p) {
      PyDict_SetItemString(unknown_parameter, p->first.c_str(),
                           PyUnicode_FromString(p->second.c_str()));
    }

    PyDict_SetItemString(matobj, "shininess",
                         PyFloat_FromDouble(mat->shininess));
    PyDict_SetItemString(matobj, "ior", PyFloat_FromDouble(mat->ior));
    PyDict_SetItemString(matobj, "dissolve",
                         PyFloat_FromDouble(mat->dissolve));
    PyDict_SetItemString(matobj, "illum", PyLong_FromLong(mat->illum));
    PyDict_SetItemString(matobj, "ambient_texname",
                         PyUnicode_FromString(mat->ambient_texname.c_str()));
    PyDict_SetItemString(matobj, "diffuse_texname",
                         PyUnicode_FromString(mat->diffuse_texname.c_str()));
    PyDict_SetItemString(matobj, "specular_texname",
                         PyUnicode_FromString(mat->specular_texname.c_str()));
    PyDict_SetItemString(
        matobj, "specular_highlight_texname",
        PyUnicode_FromString(mat->specular_highlight_texname.c_str()));
    PyDict_SetItemString(matobj, "bump_texname",
                         PyUnicode_FromString(mat->bump_texname.c_str()));
    PyDict_SetItemString(
        matobj, "displacement_texname",
        PyUnicode_FromString(mat->displacement_texname.c_str()));
    PyDict_SetItemString(matobj, "alpha_texname",
                         PyUnicode_FromString(mat->alpha_texname.c_str()));
    PyDict_SetItemString(matobj, "ambient", pyTupleFromfloat3(mat->ambient));
    PyDict_SetItemString(matobj, "diffuse", pyTupleFromfloat3(mat->diffuse));
    PyDict_SetItemString(matobj, "specular",
                         pyTupleFromfloat3(mat->specular));
    PyDict_SetItemString(matobj, "transmittance",
                         pyTupleFromfloat3(mat->transmittance));
    PyDict_SetItemString(matobj, "emission",
                         pyTupleFromfloat3(mat->emission));
    PyDict_SetItemString(matobj, "unknown_parameter", unknown_parameter);

    PyDict_SetItemString(pymaterials, mat->name.c_str(), matobj);
    PyList_Append(pymaterial_indices, PyUnicode_FromString(mat->name.c_str()));
  }

  PyDict_SetItemString(rtndict, "shapes", pyshapes);
  PyDict_SetItemString(rtndict, "materials", pymaterials);
  PyDict_SetItemString(rtndict, "material_indices", pymaterial_indices);
  PyDict_SetItemString(rtndict, "attribs", attribobj);

  return rtndict;
}

static PyMethodDef mMethods[] = {

    {"LoadObj", pyLoadObj, METH_VARARGS}, {NULL, NULL, 0, NULL}

};

#if PY_MAJOR_VERSION >= 3

static struct PyModuleDef moduledef = {PyModuleDef_HEAD_INIT, "tinyobjloader",
                                       NULL, -1, mMethods};

PyMODINIT_FUNC PyInit_tinyobjloader(void) {
  return PyModule_Create(&moduledef);
}

#else

PyMODINIT_FUNC inittinyobjloader(void) {
  Py_InitModule3("tinyobjloader", mMethods, NULL);
}

#endif  // PY_MAJOR_VERSION >= 3

}