aboutsummaryrefslogtreecommitdiff
path: root/cros_utils/stats.py
diff options
context:
space:
mode:
Diffstat (limited to 'cros_utils/stats.py')
-rw-r--r--cros_utils/stats.py4519
1 files changed, 0 insertions, 4519 deletions
diff --git a/cros_utils/stats.py b/cros_utils/stats.py
deleted file mode 100644
index 0387a076..00000000
--- a/cros_utils/stats.py
+++ /dev/null
@@ -1,4519 +0,0 @@
-# We did not author this file nor mantain it. Skip linting it.
-#pylint: skip-file
-# Copyright (c) 1999-2008 Gary Strangman; All Rights Reserved.
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in
-# all copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
-# THE SOFTWARE.
-#
-# Comments and/or additions are welcome (send e-mail to:
-# strang@nmr.mgh.harvard.edu).
-#
-"""stats.py module
-
-(Requires pstat.py module.)
-
-#################################################
-####### Written by: Gary Strangman ###########
-####### Last modified: Oct 31, 2008 ###########
-#################################################
-
-A collection of basic statistical functions for python. The function
-names appear below.
-
-IMPORTANT: There are really *3* sets of functions. The first set has an 'l'
-prefix, which can be used with list or tuple arguments. The second set has
-an 'a' prefix, which can accept NumPy array arguments. These latter
-functions are defined only when NumPy is available on the system. The third
-type has NO prefix (i.e., has the name that appears below). Functions of
-this set are members of a "Dispatch" class, c/o David Ascher. This class
-allows different functions to be called depending on the type of the passed
-arguments. Thus, stats.mean is a member of the Dispatch class and
-stats.mean(range(20)) will call stats.lmean(range(20)) while
-stats.mean(Numeric.arange(20)) will call stats.amean(Numeric.arange(20)).
-This is a handy way to keep consistent function names when different
-argument types require different functions to be called. Having
-implementated the Dispatch class, however, means that to get info on
-a given function, you must use the REAL function name ... that is
-"print stats.lmean.__doc__" or "print stats.amean.__doc__" work fine,
-while "print stats.mean.__doc__" will print the doc for the Dispatch
-class. NUMPY FUNCTIONS ('a' prefix) generally have more argument options
-but should otherwise be consistent with the corresponding list functions.
-
-Disclaimers: The function list is obviously incomplete and, worse, the
-functions are not optimized. All functions have been tested (some more
-so than others), but they are far from bulletproof. Thus, as with any
-free software, no warranty or guarantee is expressed or implied. :-) A
-few extra functions that don't appear in the list below can be found by
-interested treasure-hunters. These functions don't necessarily have
-both list and array versions but were deemed useful
-
-CENTRAL TENDENCY: geometricmean
- harmonicmean
- mean
- median
- medianscore
- mode
-
-MOMENTS: moment
- variation
- skew
- kurtosis
- skewtest (for Numpy arrays only)
- kurtosistest (for Numpy arrays only)
- normaltest (for Numpy arrays only)
-
-ALTERED VERSIONS: tmean (for Numpy arrays only)
- tvar (for Numpy arrays only)
- tmin (for Numpy arrays only)
- tmax (for Numpy arrays only)
- tstdev (for Numpy arrays only)
- tsem (for Numpy arrays only)
- describe
-
-FREQUENCY STATS: itemfreq
- scoreatpercentile
- percentileofscore
- histogram
- cumfreq
- relfreq
-
-VARIABILITY: obrientransform
- samplevar
- samplestdev
- signaltonoise (for Numpy arrays only)
- var
- stdev
- sterr
- sem
- z
- zs
- zmap (for Numpy arrays only)
-
-TRIMMING FCNS: threshold (for Numpy arrays only)
- trimboth
- trim1
- round (round all vals to 'n' decimals; Numpy only)
-
-CORRELATION FCNS: covariance (for Numpy arrays only)
- correlation (for Numpy arrays only)
- paired
- pearsonr
- spearmanr
- pointbiserialr
- kendalltau
- linregress
-
-INFERENTIAL STATS: ttest_1samp
- ttest_ind
- ttest_rel
- chisquare
- ks_2samp
- mannwhitneyu
- ranksums
- wilcoxont
- kruskalwallish
- friedmanchisquare
-
-PROBABILITY CALCS: chisqprob
- erfcc
- zprob
- ksprob
- fprob
- betacf
- gammln
- betai
-
-ANOVA FUNCTIONS: F_oneway
- F_value
-
-SUPPORT FUNCTIONS: writecc
- incr
- sign (for Numpy arrays only)
- sum
- cumsum
- ss
- summult
- sumdiffsquared
- square_of_sums
- shellsort
- rankdata
- outputpairedstats
- findwithin
-"""
-## CHANGE LOG:
-## ===========
-## 09-07-21 ... added capability for getting the 'proportion' out of l/amannwhitneyu (but comment-disabled)
-## 08-10-31 ... fixed import LinearAlgebra bug before glm fcns
-## 07-11-26 ... conversion for numpy started
-## 07-05-16 ... added Lin's Concordance Correlation Coefficient (alincc) and acov
-## 05-08-21 ... added "Dice's coefficient"
-## 04-10-26 ... added ap2t(), an ugly fcn for converting p-vals to T-vals
-## 04-04-03 ... added amasslinregress() function to do regression on N-D arrays
-## 03-01-03 ... CHANGED VERSION TO 0.6
-## fixed atsem() to properly handle limits=None case
-## improved histogram and median functions (estbinwidth) and
-## fixed atvar() function (wrong answers for neg numbers?!?)
-## 02-11-19 ... fixed attest_ind and attest_rel for div-by-zero Overflows
-## 02-05-10 ... fixed lchisqprob indentation (failed when df=even)
-## 00-12-28 ... removed aanova() to separate module, fixed licensing to
-## match Python License, fixed doc string & imports
-## 00-04-13 ... pulled all "global" statements, except from aanova()
-## added/fixed lots of documentation, removed io.py dependency
-## changed to version 0.5
-## 99-11-13 ... added asign() function
-## 99-11-01 ... changed version to 0.4 ... enough incremental changes now
-## 99-10-25 ... added acovariance and acorrelation functions
-## 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
-## added aglm function (crude, but will be improved)
-## 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, avar, etc. to
-## all handle lists of 'dimension's and keepdims
-## REMOVED ar0, ar2, ar3, ar4 and replaced them with around
-## reinserted fixes for abetai to avoid math overflows
-## 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
-## handle multi-dimensional arrays (whew!)
-## 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
-## added anormaltest per same reference
-## re-wrote azprob to calc arrays of probs all at once
-## 99-08-22 ... edited attest_ind printing section so arrays could be rounded
-## 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
-## short/byte arrays (mean of #s btw 100-300 = -150??)
-## 99-08-09 ... fixed asum so that the None case works for Byte arrays
-## 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
-## 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
-## 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
-## 04/11/99 ... added asignaltonoise, athreshold functions, changed all
-## max/min in array section to N.maximum/N.minimum,
-## fixed square_of_sums to prevent integer overflow
-## 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
-## 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
-## 02/28/99 ... Fixed aobrientransform to return an array rather than a list
-## 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
-## 01/13/99 ... CHANGED TO VERSION 0.3
-## fixed bug in a/lmannwhitneyu p-value calculation
-## 12/31/98 ... fixed variable-name bug in ldescribe
-## 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
-## 12/16/98 ... changed amedianscore to return float (not array) for 1 score
-## 12/14/98 ... added atmin and atmax functions
-## removed umath from import line (not needed)
-## l/ageometricmean modified to reduce chance of overflows (take
-## nth root first, then multiply)
-## 12/07/98 ... added __version__variable (now 0.2)
-## removed all 'stats.' from anova() fcn
-## 12/06/98 ... changed those functions (except shellsort) that altered
-## arguments in-place ... cumsum, ranksort, ...
-## updated (and fixed some) doc-strings
-## 12/01/98 ... added anova() function (requires NumPy)
-## incorporated Dispatch class
-## 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
-## added 'asum' function (added functionality to N.add.reduce)
-## fixed both moment and amoment (two errors)
-## changed name of skewness and askewness to skew and askew
-## fixed (a)histogram (which sometimes counted points <lowerlimit)
-
-import pstat # required 3rd party module
-import math, string, copy # required python modules
-from types import *
-
-__version__ = 0.6
-
-############# DISPATCH CODE ##############
-
-
-class Dispatch:
- """
-The Dispatch class, care of David Ascher, allows different functions to
-be called depending on the argument types. This way, there can be one
-function name regardless of the argument type. To access function doc
-in stats.py module, prefix the function with an 'l' or 'a' for list or
-array arguments, respectively. That is, print stats.lmean.__doc__ or
-print stats.amean.__doc__ or whatever.
-"""
-
- def __init__(self, *tuples):
- self._dispatch = {}
- for func, types in tuples:
- for t in types:
- if t in self._dispatch.keys():
- raise ValueError, "can't have two dispatches on " + str(t)
- self._dispatch[t] = func
- self._types = self._dispatch.keys()
-
- def __call__(self, arg1, *args, **kw):
- if type(arg1) not in self._types:
- raise TypeError, "don't know how to dispatch %s arguments" % type(arg1)
- return apply(self._dispatch[type(arg1)], (arg1,) + args, kw)
-
-##########################################################################
-######################## LIST-BASED FUNCTIONS ########################
-##########################################################################
-
-### Define these regardless
-
-####################################
-####### CENTRAL TENDENCY #########
-####################################
-
-
-def lgeometricmean(inlist):
- """
-Calculates the geometric mean of the values in the passed list.
-That is: n-th root of (x1 * x2 * ... * xn). Assumes a '1D' list.
-
-Usage: lgeometricmean(inlist)
-"""
- mult = 1.0
- one_over_n = 1.0 / len(inlist)
- for item in inlist:
- mult = mult * pow(item, one_over_n)
- return mult
-
-
-def lharmonicmean(inlist):
- """
-Calculates the harmonic mean of the values in the passed list.
-That is: n / (1/x1 + 1/x2 + ... + 1/xn). Assumes a '1D' list.
-
-Usage: lharmonicmean(inlist)
-"""
- sum = 0
- for item in inlist:
- sum = sum + 1.0 / item
- return len(inlist) / sum
-
-
-def lmean(inlist):
- """
-Returns the arithematic mean of the values in the passed list.
-Assumes a '1D' list, but will function on the 1st dim of an array(!).
-
-Usage: lmean(inlist)
-"""
- sum = 0
- for item in inlist:
- sum = sum + item
- return sum / float(len(inlist))
-
-
-def lmedian(inlist, numbins=1000):
- """
-Returns the computed median value of a list of numbers, given the
-number of bins to use for the histogram (more bins brings the computed value
-closer to the median score, default number of bins = 1000). See G.W.
-Heiman's Basic Stats (1st Edition), or CRC Probability & Statistics.
-
-Usage: lmedian (inlist, numbins=1000)
-"""
- (hist, smallest, binsize, extras) = histogram(
- inlist, numbins, [min(inlist), max(inlist)]) # make histog
- cumhist = cumsum(hist) # make cumulative histogram
- for i in range(len(cumhist)): # get 1st(!) index holding 50%ile score
- if cumhist[i] >= len(inlist) / 2.0:
- cfbin = i
- break
- LRL = smallest + binsize * cfbin # get lower read limit of that bin
- cfbelow = cumhist[cfbin - 1]
- freq = float(hist[cfbin]) # frequency IN the 50%ile bin
- median = LRL + (
- (len(inlist) / 2.0 - cfbelow) / float(freq)) * binsize # median formula
- return median
-
-
-def lmedianscore(inlist):
- """
-Returns the 'middle' score of the passed list. If there is an even
-number of scores, the mean of the 2 middle scores is returned.
-
-Usage: lmedianscore(inlist)
-"""
-
- newlist = copy.deepcopy(inlist)
- newlist.sort()
- if len(newlist) % 2 == 0: # if even number of scores, average middle 2
- index = len(newlist) / 2 # integer division correct
- median = float(newlist[index] + newlist[index - 1]) / 2
- else:
- index = len(newlist) / 2 # int divsion gives mid value when count from 0
- median = newlist[index]
- return median
-
-
-def lmode(inlist):
- """
-Returns a list of the modal (most common) score(s) in the passed
-list. If there is more than one such score, all are returned. The
-bin-count for the mode(s) is also returned.
-
-Usage: lmode(inlist)
-Returns: bin-count for mode(s), a list of modal value(s)
-"""
-
- scores = pstat.unique(inlist)
- scores.sort()
- freq = []
- for item in scores:
- freq.append(inlist.count(item))
- maxfreq = max(freq)
- mode = []
- stillmore = 1
- while stillmore:
- try:
- indx = freq.index(maxfreq)
- mode.append(scores[indx])
- del freq[indx]
- del scores[indx]
- except ValueError:
- stillmore = 0
- return maxfreq, mode
-
-####################################
-############ MOMENTS #############
-####################################
-
-
-def lmoment(inlist, moment=1):
- """
-Calculates the nth moment about the mean for a sample (defaults to
-the 1st moment). Used to calculate coefficients of skewness and kurtosis.
-
-Usage: lmoment(inlist,moment=1)
-Returns: appropriate moment (r) from ... 1/n * SUM((inlist(i)-mean)**r)
-"""
- if moment == 1:
- return 0.0
- else:
- mn = mean(inlist)
- n = len(inlist)
- s = 0
- for x in inlist:
- s = s + (x - mn)**moment
- return s / float(n)
-
-
-def lvariation(inlist):
- """
-Returns the coefficient of variation, as defined in CRC Standard
-Probability and Statistics, p.6.
-
-Usage: lvariation(inlist)
-"""
- return 100.0 * samplestdev(inlist) / float(mean(inlist))
-
-
-def lskew(inlist):
- """
-Returns the skewness of a distribution, as defined in Numerical
-Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
-
-Usage: lskew(inlist)
-"""
- return moment(inlist, 3) / pow(moment(inlist, 2), 1.5)
-
-
-def lkurtosis(inlist):
- """
-Returns the kurtosis of a distribution, as defined in Numerical
-Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
-
-Usage: lkurtosis(inlist)
-"""
- return moment(inlist, 4) / pow(moment(inlist, 2), 2.0)
-
-
-def ldescribe(inlist):
- """
-Returns some descriptive statistics of the passed list (assumed to be 1D).
-
-Usage: ldescribe(inlist)
-Returns: n, mean, standard deviation, skew, kurtosis
-"""
- n = len(inlist)
- mm = (min(inlist), max(inlist))
- m = mean(inlist)
- sd = stdev(inlist)
- sk = skew(inlist)
- kurt = kurtosis(inlist)
- return n, mm, m, sd, sk, kurt
-
-####################################
-####### FREQUENCY STATS ##########
-####################################
-
-
-def litemfreq(inlist):
- """
-Returns a list of pairs. Each pair consists of one of the scores in inlist
-and it's frequency count. Assumes a 1D list is passed.
-
-Usage: litemfreq(inlist)
-Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)
-"""
- scores = pstat.unique(inlist)
- scores.sort()
- freq = []
- for item in scores:
- freq.append(inlist.count(item))
- return pstat.abut(scores, freq)
-
-
-def lscoreatpercentile(inlist, percent):
- """
-Returns the score at a given percentile relative to the distribution
-given by inlist.
-
-Usage: lscoreatpercentile(inlist,percent)
-"""
- if percent > 1:
- print '\nDividing percent>1 by 100 in lscoreatpercentile().\n'
- percent = percent / 100.0
- targetcf = percent * len(inlist)
- h, lrl, binsize, extras = histogram(inlist)
- cumhist = cumsum(copy.deepcopy(h))
- for i in range(len(cumhist)):
- if cumhist[i] >= targetcf:
- break
- score = binsize * (
- (targetcf - cumhist[i - 1]) / float(h[i])) + (lrl + binsize * i)
- return score
-
-
-def lpercentileofscore(inlist, score, histbins=10, defaultlimits=None):
- """
-Returns the percentile value of a score relative to the distribution
-given by inlist. Formula depends on the values used to histogram the data(!).
-
-Usage: lpercentileofscore(inlist,score,histbins=10,defaultlimits=None)
-"""
-
- h, lrl, binsize, extras = histogram(inlist, histbins, defaultlimits)
- cumhist = cumsum(copy.deepcopy(h))
- i = int((score - lrl) / float(binsize))
- pct = (cumhist[i - 1] + (
- (score -
- (lrl + binsize * i)) / float(binsize)) * h[i]) / float(len(inlist)) * 100
- return pct
-
-
-def lhistogram(inlist, numbins=10, defaultreallimits=None, printextras=0):
- """
-Returns (i) a list of histogram bin counts, (ii) the smallest value
-of the histogram binning, and (iii) the bin width (the last 2 are not
-necessarily integers). Default number of bins is 10. If no sequence object
-is given for defaultreallimits, the routine picks (usually non-pretty) bins
-spanning all the numbers in the inlist.
-
-Usage: lhistogram (inlist, numbins=10,
-defaultreallimits=None,suppressoutput=0)
-Returns: list of bin values, lowerreallimit, binsize, extrapoints
-"""
- if (defaultreallimits <> None):
- if type(defaultreallimits) not in [ListType, TupleType] or len(
- defaultreallimits) == 1: # only one limit given, assumed to be lower one & upper is calc'd
- lowerreallimit = defaultreallimits
- upperreallimit = 1.000001 * max(inlist)
- else: # assume both limits given
- lowerreallimit = defaultreallimits[0]
- upperreallimit = defaultreallimits[1]
- binsize = (upperreallimit - lowerreallimit) / float(numbins)
- else: # no limits given for histogram, both must be calc'd
- estbinwidth = (max(inlist) -
- min(inlist)) / float(numbins) + 1e-6 #1=>cover all
- binsize = ((max(inlist) - min(inlist) + estbinwidth)) / float(numbins)
- lowerreallimit = min(inlist) - binsize / 2 #lower real limit,1st bin
- bins = [0] * (numbins)
- extrapoints = 0
- for num in inlist:
- try:
- if (num - lowerreallimit) < 0:
- extrapoints = extrapoints + 1
- else:
- bintoincrement = int((num - lowerreallimit) / float(binsize))
- bins[bintoincrement] = bins[bintoincrement] + 1
- except:
- extrapoints = extrapoints + 1
- if (extrapoints > 0 and printextras == 1):
- print '\nPoints outside given histogram range =', extrapoints
- return (bins, lowerreallimit, binsize, extrapoints)
-
-
-def lcumfreq(inlist, numbins=10, defaultreallimits=None):
- """
-Returns a cumulative frequency histogram, using the histogram function.
-
-Usage: lcumfreq(inlist,numbins=10,defaultreallimits=None)
-Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints
-"""
- h, l, b, e = histogram(inlist, numbins, defaultreallimits)
- cumhist = cumsum(copy.deepcopy(h))
- return cumhist, l, b, e
-
-
-def lrelfreq(inlist, numbins=10, defaultreallimits=None):
- """
-Returns a relative frequency histogram, using the histogram function.
-
-Usage: lrelfreq(inlist,numbins=10,defaultreallimits=None)
-Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints
-"""
- h, l, b, e = histogram(inlist, numbins, defaultreallimits)
- for i in range(len(h)):
- h[i] = h[i] / float(len(inlist))
- return h, l, b, e
-
-####################################
-##### VARIABILITY FUNCTIONS ######
-####################################
-
-
-def lobrientransform(*args):
- """
-Computes a transform on input data (any number of columns). Used to
-test for homogeneity of variance prior to running one-way stats. From
-Maxwell and Delaney, p.112.
-
-Usage: lobrientransform(*args)
-Returns: transformed data for use in an ANOVA
-"""
- TINY = 1e-10
- k = len(args)
- n = [0.0] * k
- v = [0.0] * k
- m = [0.0] * k
- nargs = []
- for i in range(k):
- nargs.append(copy.deepcopy(args[i]))
- n[i] = float(len(nargs[i]))
- v[i] = var(nargs[i])
- m[i] = mean(nargs[i])
- for j in range(k):
- for i in range(n[j]):
- t1 = (n[j] - 1.5) * n[j] * (nargs[j][i] - m[j])**2
- t2 = 0.5 * v[j] * (n[j] - 1.0)
- t3 = (n[j] - 1.0) * (n[j] - 2.0)
- nargs[j][i] = (t1 - t2) / float(t3)
- check = 1
- for j in range(k):
- if v[j] - mean(nargs[j]) > TINY:
- check = 0
- if check <> 1:
- raise ValueError, 'Problem in obrientransform.'
- else:
- return nargs
-
-
-def lsamplevar(inlist):
- """
-Returns the variance of the values in the passed list using
-N for the denominator (i.e., DESCRIBES the sample variance only).
-
-Usage: lsamplevar(inlist)
-"""
- n = len(inlist)
- mn = mean(inlist)
- deviations = []
- for item in inlist:
- deviations.append(item - mn)
- return ss(deviations) / float(n)
-
-
-def lsamplestdev(inlist):
- """
-Returns the standard deviation of the values in the passed list using
-N for the denominator (i.e., DESCRIBES the sample stdev only).
-
-Usage: lsamplestdev(inlist)
-"""
- return math.sqrt(samplevar(inlist))
-
-
-def lcov(x, y, keepdims=0):
- """
-Returns the estimated covariance of the values in the passed
-array (i.e., N-1). Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions). Set keepdims=1 to return an array with the
-same number of dimensions as inarray.
-
-Usage: lcov(x,y,keepdims=0)
-"""
-
- n = len(x)
- xmn = mean(x)
- ymn = mean(y)
- xdeviations = [0] * len(x)
- ydeviations = [0] * len(y)
- for i in range(len(x)):
- xdeviations[i] = x[i] - xmn
- ydeviations[i] = y[i] - ymn
- ss = 0.0
- for i in range(len(xdeviations)):
- ss = ss + xdeviations[i] * ydeviations[i]
- return ss / float(n - 1)
-
-
-def lvar(inlist):
- """
-Returns the variance of the values in the passed list using N-1
-for the denominator (i.e., for estimating population variance).
-
-Usage: lvar(inlist)
-"""
- n = len(inlist)
- mn = mean(inlist)
- deviations = [0] * len(inlist)
- for i in range(len(inlist)):
- deviations[i] = inlist[i] - mn
- return ss(deviations) / float(n - 1)
-
-
-def lstdev(inlist):
- """
-Returns the standard deviation of the values in the passed list
-using N-1 in the denominator (i.e., to estimate population stdev).
-
-Usage: lstdev(inlist)
-"""
- return math.sqrt(var(inlist))
-
-
-def lsterr(inlist):
- """
-Returns the standard error of the values in the passed list using N-1
-in the denominator (i.e., to estimate population standard error).
-
-Usage: lsterr(inlist)
-"""
- return stdev(inlist) / float(math.sqrt(len(inlist)))
-
-
-def lsem(inlist):
- """
-Returns the estimated standard error of the mean (sx-bar) of the
-values in the passed list. sem = stdev / sqrt(n)
-
-Usage: lsem(inlist)
-"""
- sd = stdev(inlist)
- n = len(inlist)
- return sd / math.sqrt(n)
-
-
-def lz(inlist, score):
- """
-Returns the z-score for a given input score, given that score and the
-list from which that score came. Not appropriate for population calculations.
-
-Usage: lz(inlist, score)
-"""
- z = (score - mean(inlist)) / samplestdev(inlist)
- return z
-
-
-def lzs(inlist):
- """
-Returns a list of z-scores, one for each score in the passed list.
-
-Usage: lzs(inlist)
-"""
- zscores = []
- for item in inlist:
- zscores.append(z(inlist, item))
- return zscores
-
-####################################
-####### TRIMMING FUNCTIONS #######
-####################################
-
-
-def ltrimboth(l, proportiontocut):
- """
-Slices off the passed proportion of items from BOTH ends of the passed
-list (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost'
-10% of scores. Assumes list is sorted by magnitude. Slices off LESS if
-proportion results in a non-integer slice index (i.e., conservatively
-slices off proportiontocut).
-
-Usage: ltrimboth (l,proportiontocut)
-Returns: trimmed version of list l
-"""
- lowercut = int(proportiontocut * len(l))
- uppercut = len(l) - lowercut
- return l[lowercut:uppercut]
-
-
-def ltrim1(l, proportiontocut, tail='right'):
- """
-Slices off the passed proportion of items from ONE end of the passed
-list (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
-10% of scores). Slices off LESS if proportion results in a non-integer
-slice index (i.e., conservatively slices off proportiontocut).
-
-Usage: ltrim1 (l,proportiontocut,tail='right') or set tail='left'
-Returns: trimmed version of list l
-"""
- if tail == 'right':
- lowercut = 0
- uppercut = len(l) - int(proportiontocut * len(l))
- elif tail == 'left':
- lowercut = int(proportiontocut * len(l))
- uppercut = len(l)
- return l[lowercut:uppercut]
-
-####################################
-##### CORRELATION FUNCTIONS ######
-####################################
-
-
-def lpaired(x, y):
- """
-Interactively determines the type of data and then runs the
-appropriated statistic for paired group data.
-
-Usage: lpaired(x,y)
-Returns: appropriate statistic name, value, and probability
-"""
- samples = ''
- while samples not in ['i', 'r', 'I', 'R', 'c', 'C']:
- print '\nIndependent or related samples, or correlation (i,r,c): ',
- samples = raw_input()
-
- if samples in ['i', 'I', 'r', 'R']:
- print '\nComparing variances ...',
- # USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
- r = obrientransform(x, y)
- f, p = F_oneway(pstat.colex(r, 0), pstat.colex(r, 1))
- if p < 0.05:
- vartype = 'unequal, p=' + str(round(p, 4))
- else:
- vartype = 'equal'
- print vartype
- if samples in ['i', 'I']:
- if vartype[0] == 'e':
- t, p = ttest_ind(x, y, 0)
- print '\nIndependent samples t-test: ', round(t, 4), round(p, 4)
- else:
- if len(x) > 20 or len(y) > 20:
- z, p = ranksums(x, y)
- print '\nRank Sums test (NONparametric, n>20): ', round(z, 4), round(
- p, 4)
- else:
- u, p = mannwhitneyu(x, y)
- print '\nMann-Whitney U-test (NONparametric, ns<20): ', round(
- u, 4), round(p, 4)
-
- else: # RELATED SAMPLES
- if vartype[0] == 'e':
- t, p = ttest_rel(x, y, 0)
- print '\nRelated samples t-test: ', round(t, 4), round(p, 4)
- else:
- t, p = ranksums(x, y)
- print '\nWilcoxon T-test (NONparametric): ', round(t, 4), round(p, 4)
- else: # CORRELATION ANALYSIS
- corrtype = ''
- while corrtype not in ['c', 'C', 'r', 'R', 'd', 'D']:
- print '\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ',
- corrtype = raw_input()
- if corrtype in ['c', 'C']:
- m, b, r, p, see = linregress(x, y)
- print '\nLinear regression for continuous variables ...'
- lol = [['Slope', 'Intercept', 'r', 'Prob', 'SEestimate'],
- [round(m, 4), round(b, 4), round(r, 4), round(p, 4), round(see, 4)]
- ]
- pstat.printcc(lol)
- elif corrtype in ['r', 'R']:
- r, p = spearmanr(x, y)
- print '\nCorrelation for ranked variables ...'
- print "Spearman's r: ", round(r, 4), round(p, 4)
- else: # DICHOTOMOUS
- r, p = pointbiserialr(x, y)
- print '\nAssuming x contains a dichotomous variable ...'
- print 'Point Biserial r: ', round(r, 4), round(p, 4)
- print '\n\n'
- return None
-
-
-def lpearsonr(x, y):
- """
-Calculates a Pearson correlation coefficient and the associated
-probability value. Taken from Heiman's Basic Statistics for the Behav.
-Sci (2nd), p.195.
-
-Usage: lpearsonr(x,y) where x and y are equal-length lists
-Returns: Pearson's r value, two-tailed p-value
-"""
- TINY = 1.0e-30
- if len(x) <> len(y):
- raise ValueError, 'Input values not paired in pearsonr. Aborting.'
- n = len(x)
- x = map(float, x)
- y = map(float, y)
- xmean = mean(x)
- ymean = mean(y)
- r_num = n * (summult(x, y)) - sum(x) * sum(y)
- r_den = math.sqrt((n * ss(x) - square_of_sums(x)) *
- (n * ss(y) - square_of_sums(y)))
- r = (r_num / r_den) # denominator already a float
- df = n - 2
- t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
- prob = betai(0.5 * df, 0.5, df / float(df + t * t))
- return r, prob
-
-
-def llincc(x, y):
- """
-Calculates Lin's concordance correlation coefficient.
-
-Usage: alincc(x,y) where x, y are equal-length arrays
-Returns: Lin's CC
-"""
- covar = lcov(x, y) * (len(x) - 1) / float(len(x)) # correct denom to n
- xvar = lvar(x) * (len(x) - 1) / float(len(x)) # correct denom to n
- yvar = lvar(y) * (len(y) - 1) / float(len(y)) # correct denom to n
- lincc = (2 * covar) / ((xvar + yvar) + ((amean(x) - amean(y))**2))
- return lincc
-
-
-def lspearmanr(x, y):
- """
-Calculates a Spearman rank-order correlation coefficient. Taken
-from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.
-
-Usage: lspearmanr(x,y) where x and y are equal-length lists
-Returns: Spearman's r, two-tailed p-value
-"""
- TINY = 1e-30
- if len(x) <> len(y):
- raise ValueError, 'Input values not paired in spearmanr. Aborting.'
- n = len(x)
- rankx = rankdata(x)
- ranky = rankdata(y)
- dsq = sumdiffsquared(rankx, ranky)
- rs = 1 - 6 * dsq / float(n * (n**2 - 1))
- t = rs * math.sqrt((n - 2) / ((rs + 1.0) * (1.0 - rs)))
- df = n - 2
- probrs = betai(0.5 * df, 0.5, df / (df + t * t)) # t already a float
- # probability values for rs are from part 2 of the spearman function in
- # Numerical Recipies, p.510. They are close to tables, but not exact. (?)
- return rs, probrs
-
-
-def lpointbiserialr(x, y):
- """
-Calculates a point-biserial correlation coefficient and the associated
-probability value. Taken from Heiman's Basic Statistics for the Behav.
-Sci (1st), p.194.
-
-Usage: lpointbiserialr(x,y) where x,y are equal-length lists
-Returns: Point-biserial r, two-tailed p-value
-"""
- TINY = 1e-30
- if len(x) <> len(y):
- raise ValueError, 'INPUT VALUES NOT PAIRED IN pointbiserialr. ABORTING.'
- data = pstat.abut(x, y)
- categories = pstat.unique(x)
- if len(categories) <> 2:
- raise ValueError, 'Exactly 2 categories required for pointbiserialr().'
- else: # there are 2 categories, continue
- codemap = pstat.abut(categories, range(2))
- recoded = pstat.recode(data, codemap, 0)
- x = pstat.linexand(data, 0, categories[0])
- y = pstat.linexand(data, 0, categories[1])
- xmean = mean(pstat.colex(x, 1))
- ymean = mean(pstat.colex(y, 1))
- n = len(data)
- adjust = math.sqrt((len(x) / float(n)) * (len(y) / float(n)))
- rpb = (ymean - xmean) / samplestdev(pstat.colex(data, 1)) * adjust
- df = n - 2
- t = rpb * math.sqrt(df / ((1.0 - rpb + TINY) * (1.0 + rpb + TINY)))
- prob = betai(0.5 * df, 0.5, df / (df + t * t)) # t already a float
- return rpb, prob
-
-
-def lkendalltau(x, y):
- """
-Calculates Kendall's tau ... correlation of ordinal data. Adapted
-from function kendl1 in Numerical Recipies. Needs good test-routine.@@@
-
-Usage: lkendalltau(x,y)
-Returns: Kendall's tau, two-tailed p-value
-"""
- n1 = 0
- n2 = 0
- iss = 0
- for j in range(len(x) - 1):
- for k in range(j, len(y)):
- a1 = x[j] - x[k]
- a2 = y[j] - y[k]
- aa = a1 * a2
- if (aa): # neither list has a tie
- n1 = n1 + 1
- n2 = n2 + 1
- if aa > 0:
- iss = iss + 1
- else:
- iss = iss - 1
- else:
- if (a1):
- n1 = n1 + 1
- else:
- n2 = n2 + 1
- tau = iss / math.sqrt(n1 * n2)
- svar = (4.0 * len(x) + 10.0) / (9.0 * len(x) * (len(x) - 1))
- z = tau / math.sqrt(svar)
- prob = erfcc(abs(z) / 1.4142136)
- return tau, prob
-
-
-def llinregress(x, y):
- """
-Calculates a regression line on x,y pairs.
-
-Usage: llinregress(x,y) x,y are equal-length lists of x-y coordinates
-Returns: slope, intercept, r, two-tailed prob, sterr-of-estimate
-"""
- TINY = 1.0e-20
- if len(x) <> len(y):
- raise ValueError, 'Input values not paired in linregress. Aborting.'
- n = len(x)
- x = map(float, x)
- y = map(float, y)
- xmean = mean(x)
- ymean = mean(y)
- r_num = float(n * (summult(x, y)) - sum(x) * sum(y))
- r_den = math.sqrt((n * ss(x) - square_of_sums(x)) *
- (n * ss(y) - square_of_sums(y)))
- r = r_num / r_den
- z = 0.5 * math.log((1.0 + r + TINY) / (1.0 - r + TINY))
- df = n - 2
- t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
- prob = betai(0.5 * df, 0.5, df / (df + t * t))
- slope = r_num / float(n * ss(x) - square_of_sums(x))
- intercept = ymean - slope * xmean
- sterrest = math.sqrt(1 - r * r) * samplestdev(y)
- return slope, intercept, r, prob, sterrest
-
-####################################
-##### INFERENTIAL STATISTICS #####
-####################################
-
-
-def lttest_1samp(a, popmean, printit=0, name='Sample', writemode='a'):
- """
-Calculates the t-obtained for the independent samples T-test on ONE group
-of scores a, given a population mean. If printit=1, results are printed
-to the screen. If printit='filename', the results are output to 'filename'
-using the given writemode (default=append). Returns t-value, and prob.
-
-Usage: lttest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
-Returns: t-value, two-tailed prob
-"""
- x = mean(a)
- v = var(a)
- n = len(a)
- df = n - 1
- svar = ((n - 1) * v) / float(df)
- t = (x - popmean) / math.sqrt(svar * (1.0 / n))
- prob = betai(0.5 * df, 0.5, float(df) / (df + t * t))
-
- if printit <> 0:
- statname = 'Single-sample T-test.'
- outputpairedstats(printit, writemode, 'Population', '--', popmean, 0, 0, 0,
- name, n, x, v, min(a), max(a), statname, t, prob)
- return t, prob
-
-
-def lttest_ind(a, b, printit=0, name1='Samp1', name2='Samp2', writemode='a'):
- """
-Calculates the t-obtained T-test on TWO INDEPENDENT samples of
-scores a, and b. From Numerical Recipies, p.483. If printit=1, results
-are printed to the screen. If printit='filename', the results are output
-to 'filename' using the given writemode (default=append). Returns t-value,
-and prob.
-
-Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a')
-Returns: t-value, two-tailed prob
-"""
- x1 = mean(a)
- x2 = mean(b)
- v1 = stdev(a)**2
- v2 = stdev(b)**2
- n1 = len(a)
- n2 = len(b)
- df = n1 + n2 - 2
- svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df)
- if not svar:
- svar = 1.0e-26
- t = (x1 - x2) / math.sqrt(svar * (1.0 / n1 + 1.0 / n2))
- prob = betai(0.5 * df, 0.5, df / (df + t * t))
-
- if printit <> 0:
- statname = 'Independent samples T-test.'
- outputpairedstats(printit, writemode, name1, n1, x1, v1, min(a), max(a),
- name2, n2, x2, v2, min(b), max(b), statname, t, prob)
- return t, prob
-
-
-def lttest_rel(a,
- b,
- printit=0,
- name1='Sample1',
- name2='Sample2',
- writemode='a'):
- """
-Calculates the t-obtained T-test on TWO RELATED samples of scores,
-a and b. From Numerical Recipies, p.483. If printit=1, results are
-printed to the screen. If printit='filename', the results are output to
-'filename' using the given writemode (default=append). Returns t-value,
-and prob.
-
-Usage: lttest_rel(a,b,printit=0,name1='Sample1',name2='Sample2',writemode='a')
-Returns: t-value, two-tailed prob
-"""
- if len(a) <> len(b):
- raise ValueError, 'Unequal length lists in ttest_rel.'
- x1 = mean(a)
- x2 = mean(b)
- v1 = var(a)
- v2 = var(b)
- n = len(a)
- cov = 0
- for i in range(len(a)):
- cov = cov + (a[i] - x1) * (b[i] - x2)
- df = n - 1
- cov = cov / float(df)
- sd = math.sqrt((v1 + v2 - 2.0 * cov) / float(n))
- t = (x1 - x2) / sd
- prob = betai(0.5 * df, 0.5, df / (df + t * t))
-
- if printit <> 0:
- statname = 'Related samples T-test.'
- outputpairedstats(printit, writemode, name1, n, x1, v1, min(a), max(a),
- name2, n, x2, v2, min(b), max(b), statname, t, prob)
- return t, prob
-
-
-def lchisquare(f_obs, f_exp=None):
- """
-Calculates a one-way chi square for list of observed frequencies and returns
-the result. If no expected frequencies are given, the total N is assumed to
-be equally distributed across all groups.
-
-Usage: lchisquare(f_obs, f_exp=None) f_obs = list of observed cell freq.
-Returns: chisquare-statistic, associated p-value
-"""
- k = len(f_obs) # number of groups
- if f_exp == None:
- f_exp = [sum(f_obs) / float(k)] * len(f_obs) # create k bins with = freq.
- chisq = 0
- for i in range(len(f_obs)):
- chisq = chisq + (f_obs[i] - f_exp[i])**2 / float(f_exp[i])
- return chisq, chisqprob(chisq, k - 1)
-
-
-def lks_2samp(data1, data2):
- """
-Computes the Kolmogorov-Smirnof statistic on 2 samples. From
-Numerical Recipies in C, page 493.
-
-Usage: lks_2samp(data1,data2) data1&2 are lists of values for 2 conditions
-Returns: KS D-value, associated p-value
-"""
- j1 = 0
- j2 = 0
- fn1 = 0.0
- fn2 = 0.0
- n1 = len(data1)
- n2 = len(data2)
- en1 = n1
- en2 = n2
- d = 0.0
- data1.sort()
- data2.sort()
- while j1 < n1 and j2 < n2:
- d1 = data1[j1]
- d2 = data2[j2]
- if d1 <= d2:
- fn1 = (j1) / float(en1)
- j1 = j1 + 1
- if d2 <= d1:
- fn2 = (j2) / float(en2)
- j2 = j2 + 1
- dt = (fn2 - fn1)
- if math.fabs(dt) > math.fabs(d):
- d = dt
- try:
- en = math.sqrt(en1 * en2 / float(en1 + en2))
- prob = ksprob((en + 0.12 + 0.11 / en) * abs(d))
- except:
- prob = 1.0
- return d, prob
-
-
-def lmannwhitneyu(x, y):
- """
-Calculates a Mann-Whitney U statistic on the provided scores and
-returns the result. Use only when the n in each condition is < 20 and
-you have 2 independent samples of ranks. NOTE: Mann-Whitney U is
-significant if the u-obtained is LESS THAN or equal to the critical
-value of U found in the tables. Equivalent to Kruskal-Wallis H with
-just 2 groups.
-
-Usage: lmannwhitneyu(data)
-Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))
-"""
- n1 = len(x)
- n2 = len(y)
- ranked = rankdata(x + y)
- rankx = ranked[0:n1] # get the x-ranks
- ranky = ranked[n1:] # the rest are y-ranks
- u1 = n1 * n2 + (n1 * (n1 + 1)) / 2.0 - sum(rankx) # calc U for x
- u2 = n1 * n2 - u1 # remainder is U for y
- bigu = max(u1, u2)
- smallu = min(u1, u2)
- proportion = bigu / float(n1 * n2)
- T = math.sqrt(tiecorrect(ranked)) # correction factor for tied scores
- if T == 0:
- raise ValueError, 'All numbers are identical in lmannwhitneyu'
- sd = math.sqrt(T * n1 * n2 * (n1 + n2 + 1) / 12.0)
- z = abs((bigu - n1 * n2 / 2.0) / sd) # normal approximation for prob calc
- return smallu, 1.0 - zprob(z) #, proportion
-
-
-def ltiecorrect(rankvals):
- """
-Corrects for ties in Mann Whitney U and Kruskal Wallis H tests. See
-Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences.
-New York: McGraw-Hill. Code adapted from |Stat rankind.c code.
-
-Usage: ltiecorrect(rankvals)
-Returns: T correction factor for U or H
-"""
- sorted, posn = shellsort(rankvals)
- n = len(sorted)
- T = 0.0
- i = 0
- while (i < n - 1):
- if sorted[i] == sorted[i + 1]:
- nties = 1
- while (i < n - 1) and (sorted[i] == sorted[i + 1]):
- nties = nties + 1
- i = i + 1
- T = T + nties**3 - nties
- i = i + 1
- T = T / float(n**3 - n)
- return 1.0 - T
-
-
-def lranksums(x, y):
- """
-Calculates the rank sums statistic on the provided scores and
-returns the result. Use only when the n in each condition is > 20 and you
-have 2 independent samples of ranks.
-
-Usage: lranksums(x,y)
-Returns: a z-statistic, two-tailed p-value
-"""
- n1 = len(x)
- n2 = len(y)
- alldata = x + y
- ranked = rankdata(alldata)
- x = ranked[:n1]
- y = ranked[n1:]
- s = sum(x)
- expected = n1 * (n1 + n2 + 1) / 2.0
- z = (s - expected) / math.sqrt(n1 * n2 * (n1 + n2 + 1) / 12.0)
- prob = 2 * (1.0 - zprob(abs(z)))
- return z, prob
-
-
-def lwilcoxont(x, y):
- """
-Calculates the Wilcoxon T-test for related samples and returns the
-result. A non-parametric T-test.
-
-Usage: lwilcoxont(x,y)
-Returns: a t-statistic, two-tail probability estimate
-"""
- if len(x) <> len(y):
- raise ValueError, 'Unequal N in wilcoxont. Aborting.'
- d = []
- for i in range(len(x)):
- diff = x[i] - y[i]
- if diff <> 0:
- d.append(diff)
- count = len(d)
- absd = map(abs, d)
- absranked = rankdata(absd)
- r_plus = 0.0
- r_minus = 0.0
- for i in range(len(absd)):
- if d[i] < 0:
- r_minus = r_minus + absranked[i]
- else:
- r_plus = r_plus + absranked[i]
- wt = min(r_plus, r_minus)
- mn = count * (count + 1) * 0.25
- se = math.sqrt(count * (count + 1) * (2.0 * count + 1.0) / 24.0)
- z = math.fabs(wt - mn) / se
- prob = 2 * (1.0 - zprob(abs(z)))
- return wt, prob
-
-
-def lkruskalwallish(*args):
- """
-The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
-groups, requiring at least 5 subjects in each group. This function
-calculates the Kruskal-Wallis H-test for 3 or more independent samples
-and returns the result.
-
-Usage: lkruskalwallish(*args)
-Returns: H-statistic (corrected for ties), associated p-value
-"""
- args = list(args)
- n = [0] * len(args)
- all = []
- n = map(len, args)
- for i in range(len(args)):
- all = all + args[i]
- ranked = rankdata(all)
- T = tiecorrect(ranked)
- for i in range(len(args)):
- args[i] = ranked[0:n[i]]
- del ranked[0:n[i]]
- rsums = []
- for i in range(len(args)):
- rsums.append(sum(args[i])**2)
- rsums[i] = rsums[i] / float(n[i])
- ssbn = sum(rsums)
- totaln = sum(n)
- h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
- df = len(args) - 1
- if T == 0:
- raise ValueError, 'All numbers are identical in lkruskalwallish'
- h = h / float(T)
- return h, chisqprob(h, df)
-
-
-def lfriedmanchisquare(*args):
- """
-Friedman Chi-Square is a non-parametric, one-way within-subjects
-ANOVA. This function calculates the Friedman Chi-square test for repeated
-measures and returns the result, along with the associated probability
-value. It assumes 3 or more repeated measures. Only 3 levels requires a
-minimum of 10 subjects in the study. Four levels requires 5 subjects per
-level(??).
-
-Usage: lfriedmanchisquare(*args)
-Returns: chi-square statistic, associated p-value
-"""
- k = len(args)
- if k < 3:
- raise ValueError, 'Less than 3 levels. Friedman test not appropriate.'
- n = len(args[0])
- data = apply(pstat.abut, tuple(args))
- for i in range(len(data)):
- data[i] = rankdata(data[i])
- ssbn = 0
- for i in range(k):
- ssbn = ssbn + sum(args[i])**2
- chisq = 12.0 / (k * n * (k + 1)) * ssbn - 3 * n * (k + 1)
- return chisq, chisqprob(chisq, k - 1)
-
-####################################
-#### PROBABILITY CALCULATIONS ####
-####################################
-
-
-def lchisqprob(chisq, df):
- """
-Returns the (1-tailed) probability value associated with the provided
-chi-square value and df. Adapted from chisq.c in Gary Perlman's |Stat.
-
-Usage: lchisqprob(chisq,df)
-"""
- BIG = 20.0
-
- def ex(x):
- BIG = 20.0
- if x < -BIG:
- return 0.0
- else:
- return math.exp(x)
-
- if chisq <= 0 or df < 1:
- return 1.0
- a = 0.5 * chisq
- if df % 2 == 0:
- even = 1
- else:
- even = 0
- if df > 1:
- y = ex(-a)
- if even:
- s = y
- else:
- s = 2.0 * zprob(-math.sqrt(chisq))
- if (df > 2):
- chisq = 0.5 * (df - 1.0)
- if even:
- z = 1.0
- else:
- z = 0.5
- if a > BIG:
- if even:
- e = 0.0
- else:
- e = math.log(math.sqrt(math.pi))
- c = math.log(a)
- while (z <= chisq):
- e = math.log(z) + e
- s = s + ex(c * z - a - e)
- z = z + 1.0
- return s
- else:
- if even:
- e = 1.0
- else:
- e = 1.0 / math.sqrt(math.pi) / math.sqrt(a)
- c = 0.0
- while (z <= chisq):
- e = e * (a / float(z))
- c = c + e
- z = z + 1.0
- return (c * y + s)
- else:
- return s
-
-
-def lerfcc(x):
- """
-Returns the complementary error function erfc(x) with fractional
-error everywhere less than 1.2e-7. Adapted from Numerical Recipies.
-
-Usage: lerfcc(x)
-"""
- z = abs(x)
- t = 1.0 / (1.0 + 0.5 * z)
- ans = t * math.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
- 0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (
- -1.13520398 + t * (1.48851587 + t * (-0.82215223 + t * 0.17087277)))))
- ))))
- if x >= 0:
- return ans
- else:
- return 2.0 - ans
-
-
-def lzprob(z):
- """
-Returns the area under the normal curve 'to the left of' the given z value.
-Thus,
- for z<0, zprob(z) = 1-tail probability
- for z>0, 1.0-zprob(z) = 1-tail probability
- for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
-Adapted from z.c in Gary Perlman's |Stat.
-
-Usage: lzprob(z)
-"""
- Z_MAX = 6.0 # maximum meaningful z-value
- if z == 0.0:
- x = 0.0
- else:
- y = 0.5 * math.fabs(z)
- if y >= (Z_MAX * 0.5):
- x = 1.0
- elif (y < 1.0):
- w = y * y
- x = ((
- ((((((0.000124818987 * w - 0.001075204047) * w + 0.005198775019) * w -
- 0.019198292004) * w + 0.059054035642) * w - 0.151968751364) * w +
- 0.319152932694) * w - 0.531923007300) * w + 0.797884560593) * y * 2.0
- else:
- y = y - 2.0
- x = (((((((
- ((((((-0.000045255659 * y + 0.000152529290) * y - 0.000019538132) * y
- - 0.000676904986) * y + 0.001390604284) * y - 0.000794620820) * y
- - 0.002034254874) * y + 0.006549791214) * y - 0.010557625006) * y +
- 0.011630447319) * y - 0.009279453341) * y + 0.005353579108) * y -
- 0.002141268741) * y + 0.000535310849) * y + 0.999936657524
- if z > 0.0:
- prob = ((x + 1.0) * 0.5)
- else:
- prob = ((1.0 - x) * 0.5)
- return prob
-
-
-def lksprob(alam):
- """
-Computes a Kolmolgorov-Smirnov t-test significance level. Adapted from
-Numerical Recipies.
-
-Usage: lksprob(alam)
-"""
- fac = 2.0
- sum = 0.0
- termbf = 0.0
- a2 = -2.0 * alam * alam
- for j in range(1, 201):
- term = fac * math.exp(a2 * j * j)
- sum = sum + term
- if math.fabs(term) <= (0.001 * termbf) or math.fabs(term) < (1.0e-8 * sum):
- return sum
- fac = -fac
- termbf = math.fabs(term)
- return 1.0 # Get here only if fails to converge; was 0.0!!
-
-
-def lfprob(dfnum, dfden, F):
- """
-Returns the (1-tailed) significance level (p-value) of an F
-statistic given the degrees of freedom for the numerator (dfR-dfF) and
-the degrees of freedom for the denominator (dfF).
-
-Usage: lfprob(dfnum, dfden, F) where usually dfnum=dfbn, dfden=dfwn
-"""
- p = betai(0.5 * dfden, 0.5 * dfnum, dfden / float(dfden + dfnum * F))
- return p
-
-
-def lbetacf(a, b, x):
- """
-This function evaluates the continued fraction form of the incomplete
-Beta function, betai. (Adapted from: Numerical Recipies in C.)
-
-Usage: lbetacf(a,b,x)
-"""
- ITMAX = 200
- EPS = 3.0e-7
-
- bm = az = am = 1.0
- qab = a + b
- qap = a + 1.0
- qam = a - 1.0
- bz = 1.0 - qab * x / qap
- for i in range(ITMAX + 1):
- em = float(i + 1)
- tem = em + em
- d = em * (b - em) * x / ((qam + tem) * (a + tem))
- ap = az + d * am
- bp = bz + d * bm
- d = -(a + em) * (qab + em) * x / ((qap + tem) * (a + tem))
- app = ap + d * az
- bpp = bp + d * bz
- aold = az
- am = ap / bpp
- bm = bp / bpp
- az = app / bpp
- bz = 1.0
- if (abs(az - aold) < (EPS * abs(az))):
- return az
- print 'a or b too big, or ITMAX too small in Betacf.'
-
-
-def lgammln(xx):
- """
-Returns the gamma function of xx.
- Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
-(Adapted from: Numerical Recipies in C.)
-
-Usage: lgammln(xx)
-"""
-
- coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516, 0.120858003e-2,
- -0.536382e-5]
- x = xx - 1.0
- tmp = x + 5.5
- tmp = tmp - (x + 0.5) * math.log(tmp)
- ser = 1.0
- for j in range(len(coeff)):
- x = x + 1
- ser = ser + coeff[j] / x
- return -tmp + math.log(2.50662827465 * ser)
-
-
-def lbetai(a, b, x):
- """
-Returns the incomplete beta function:
-
- I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
-
-where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
-function of a. The continued fraction formulation is implemented here,
-using the betacf function. (Adapted from: Numerical Recipies in C.)
-
-Usage: lbetai(a,b,x)
-"""
- if (x < 0.0 or x > 1.0):
- raise ValueError, 'Bad x in lbetai'
- if (x == 0.0 or x == 1.0):
- bt = 0.0
- else:
- bt = math.exp(gammln(a + b) - gammln(a) - gammln(b) + a * math.log(x) + b *
- math.log(1.0 - x))
- if (x < (a + 1.0) / (a + b + 2.0)):
- return bt * betacf(a, b, x) / float(a)
- else:
- return 1.0 - bt * betacf(b, a, 1.0 - x) / float(b)
-
-####################################
-####### ANOVA CALCULATIONS #######
-####################################
-
-
-def lF_oneway(*lists):
- """
-Performs a 1-way ANOVA, returning an F-value and probability given
-any number of groups. From Heiman, pp.394-7.
-
-Usage: F_oneway(*lists) where *lists is any number of lists, one per
- treatment group
-Returns: F value, one-tailed p-value
-"""
- a = len(lists) # ANOVA on 'a' groups, each in it's own list
- means = [0] * a
- vars = [0] * a
- ns = [0] * a
- alldata = []
- tmp = map(N.array, lists)
- means = map(amean, tmp)
- vars = map(avar, tmp)
- ns = map(len, lists)
- for i in range(len(lists)):
- alldata = alldata + lists[i]
- alldata = N.array(alldata)
- bign = len(alldata)
- sstot = ass(alldata) - (asquare_of_sums(alldata) / float(bign))
- ssbn = 0
- for list in lists:
- ssbn = ssbn + asquare_of_sums(N.array(list)) / float(len(list))
- ssbn = ssbn - (asquare_of_sums(alldata) / float(bign))
- sswn = sstot - ssbn
- dfbn = a - 1
- dfwn = bign - a
- msb = ssbn / float(dfbn)
- msw = sswn / float(dfwn)
- f = msb / msw
- prob = fprob(dfbn, dfwn, f)
- return f, prob
-
-
-def lF_value(ER, EF, dfnum, dfden):
- """
-Returns an F-statistic given the following:
- ER = error associated with the null hypothesis (the Restricted model)
- EF = error associated with the alternate hypothesis (the Full model)
- dfR-dfF = degrees of freedom of the numerator
- dfF = degrees of freedom associated with the denominator/Full model
-
-Usage: lF_value(ER,EF,dfnum,dfden)
-"""
- return ((ER - EF) / float(dfnum) / (EF / float(dfden)))
-
-####################################
-######## SUPPORT FUNCTIONS #######
-####################################
-
-
-def writecc(listoflists, file, writetype='w', extra=2):
- """
-Writes a list of lists to a file in columns, customized by the max
-size of items within the columns (max size of items in col, +2 characters)
-to specified file. File-overwrite is the default.
-
-Usage: writecc (listoflists,file,writetype='w',extra=2)
-Returns: None
-"""
- if type(listoflists[0]) not in [ListType, TupleType]:
- listoflists = [listoflists]
- outfile = open(file, writetype)
- rowstokill = []
- list2print = copy.deepcopy(listoflists)
- for i in range(len(listoflists)):
- if listoflists[i] == [
- '\n'
- ] or listoflists[i] == '\n' or listoflists[i] == 'dashes':
- rowstokill = rowstokill + [i]
- rowstokill.reverse()
- for row in rowstokill:
- del list2print[row]
- maxsize = [0] * len(list2print[0])
- for col in range(len(list2print[0])):
- items = pstat.colex(list2print, col)
- items = map(pstat.makestr, items)
- maxsize[col] = max(map(len, items)) + extra
- for row in listoflists:
- if row == ['\n'] or row == '\n':
- outfile.write('\n')
- elif row == ['dashes'] or row == 'dashes':
- dashes = [0] * len(maxsize)
- for j in range(len(maxsize)):
- dashes[j] = '-' * (maxsize[j] - 2)
- outfile.write(pstat.lineincustcols(dashes, maxsize))
- else:
- outfile.write(pstat.lineincustcols(row, maxsize))
- outfile.write('\n')
- outfile.close()
- return None
-
-
-def lincr(l, cap): # to increment a list up to a max-list of 'cap'
- """
-Simulate a counting system from an n-dimensional list.
-
-Usage: lincr(l,cap) l=list to increment, cap=max values for each list pos'n
-Returns: next set of values for list l, OR -1 (if overflow)
-"""
- l[0] = l[0] + 1 # e.g., [0,0,0] --> [2,4,3] (=cap)
- for i in range(len(l)):
- if l[i] > cap[i] and i < len(l) - 1: # if carryover AND not done
- l[i] = 0
- l[i + 1] = l[i + 1] + 1
- elif l[i] > cap[i] and i == len(
- l) - 1: # overflow past last column, must be finished
- l = -1
- return l
-
-
-def lsum(inlist):
- """
-Returns the sum of the items in the passed list.
-
-Usage: lsum(inlist)
-"""
- s = 0
- for item in inlist:
- s = s + item
- return s
-
-
-def lcumsum(inlist):
- """
-Returns a list consisting of the cumulative sum of the items in the
-passed list.
-
-Usage: lcumsum(inlist)
-"""
- newlist = copy.deepcopy(inlist)
- for i in range(1, len(newlist)):
- newlist[i] = newlist[i] + newlist[i - 1]
- return newlist
-
-
-def lss(inlist):
- """
-Squares each value in the passed list, adds up these squares and
-returns the result.
-
-Usage: lss(inlist)
-"""
- ss = 0
- for item in inlist:
- ss = ss + item * item
- return ss
-
-
-def lsummult(list1, list2):
- """
-Multiplies elements in list1 and list2, element by element, and
-returns the sum of all resulting multiplications. Must provide equal
-length lists.
-
-Usage: lsummult(list1,list2)
-"""
- if len(list1) <> len(list2):
- raise ValueError, 'Lists not equal length in summult.'
- s = 0
- for item1, item2 in pstat.abut(list1, list2):
- s = s + item1 * item2
- return s
-
-
-def lsumdiffsquared(x, y):
- """
-Takes pairwise differences of the values in lists x and y, squares
-these differences, and returns the sum of these squares.
-
-Usage: lsumdiffsquared(x,y)
-Returns: sum[(x[i]-y[i])**2]
-"""
- sds = 0
- for i in range(len(x)):
- sds = sds + (x[i] - y[i])**2
- return sds
-
-
-def lsquare_of_sums(inlist):
- """
-Adds the values in the passed list, squares the sum, and returns
-the result.
-
-Usage: lsquare_of_sums(inlist)
-Returns: sum(inlist[i])**2
-"""
- s = sum(inlist)
- return float(s) * s
-
-
-def lshellsort(inlist):
- """
-Shellsort algorithm. Sorts a 1D-list.
-
-Usage: lshellsort(inlist)
-Returns: sorted-inlist, sorting-index-vector (for original list)
-"""
- n = len(inlist)
- svec = copy.deepcopy(inlist)
- ivec = range(n)
- gap = n / 2 # integer division needed
- while gap > 0:
- for i in range(gap, n):
- for j in range(i - gap, -1, -gap):
- while j >= 0 and svec[j] > svec[j + gap]:
- temp = svec[j]
- svec[j] = svec[j + gap]
- svec[j + gap] = temp
- itemp = ivec[j]
- ivec[j] = ivec[j + gap]
- ivec[j + gap] = itemp
- gap = gap / 2 # integer division needed
-# svec is now sorted inlist, and ivec has the order svec[i] = vec[ivec[i]]
- return svec, ivec
-
-
-def lrankdata(inlist):
- """
-Ranks the data in inlist, dealing with ties appropritely. Assumes
-a 1D inlist. Adapted from Gary Perlman's |Stat ranksort.
-
-Usage: lrankdata(inlist)
-Returns: a list of length equal to inlist, containing rank scores
-"""
- n = len(inlist)
- svec, ivec = shellsort(inlist)
- sumranks = 0
- dupcount = 0
- newlist = [0] * n
- for i in range(n):
- sumranks = sumranks + i
- dupcount = dupcount + 1
- if i == n - 1 or svec[i] <> svec[i + 1]:
- averank = sumranks / float(dupcount) + 1
- for j in range(i - dupcount + 1, i + 1):
- newlist[ivec[j]] = averank
- sumranks = 0
- dupcount = 0
- return newlist
-
-
-def outputpairedstats(fname, writemode, name1, n1, m1, se1, min1, max1, name2,
- n2, m2, se2, min2, max2, statname, stat, prob):
- """
-Prints or write to a file stats for two groups, using the name, n,
-mean, sterr, min and max for each group, as well as the statistic name,
-its value, and the associated p-value.
-
-Usage: outputpairedstats(fname,writemode,
- name1,n1,mean1,stderr1,min1,max1,
- name2,n2,mean2,stderr2,min2,max2,
- statname,stat,prob)
-Returns: None
-"""
- suffix = '' # for *s after the p-value
- try:
- x = prob.shape
- prob = prob[0]
- except:
- pass
- if prob < 0.001:
- suffix = ' ***'
- elif prob < 0.01:
- suffix = ' **'
- elif prob < 0.05:
- suffix = ' *'
- title = [['Name', 'N', 'Mean', 'SD', 'Min', 'Max']]
- lofl = title + [[name1, n1, round(m1, 3), round(
- math.sqrt(se1), 3), min1, max1], [name2, n2, round(m2, 3), round(
- math.sqrt(se2), 3), min2, max2]]
- if type(fname) <> StringType or len(fname) == 0:
- print
- print statname
- print
- pstat.printcc(lofl)
- print
- try:
- if stat.shape == ():
- stat = stat[0]
- if prob.shape == ():
- prob = prob[0]
- except:
- pass
- print 'Test statistic = ', round(stat, 3), ' p = ', round(prob, 3), suffix
- print
- else:
- file = open(fname, writemode)
- file.write('\n' + statname + '\n\n')
- file.close()
- writecc(lofl, fname, 'a')
- file = open(fname, 'a')
- try:
- if stat.shape == ():
- stat = stat[0]
- if prob.shape == ():
- prob = prob[0]
- except:
- pass
- file.write(pstat.list2string(['\nTest statistic = ', round(stat, 4),
- ' p = ', round(prob, 4), suffix, '\n\n']))
- file.close()
- return None
-
-
-def lfindwithin(data):
- """
-Returns an integer representing a binary vector, where 1=within-
-subject factor, 0=between. Input equals the entire data 2D list (i.e.,
-column 0=random factor, column -1=measured values (those two are skipped).
-Note: input data is in |Stat format ... a list of lists ("2D list") with
-one row per measured value, first column=subject identifier, last column=
-score, one in-between column per factor (these columns contain level
-designations on each factor). See also stats.anova.__doc__.
-
-Usage: lfindwithin(data) data in |Stat format
-"""
-
- numfact = len(data[0]) - 1
- withinvec = 0
- for col in range(1, numfact):
- examplelevel = pstat.unique(pstat.colex(data, col))[0]
- rows = pstat.linexand(data, col, examplelevel) # get 1 level of this factor
- factsubjs = pstat.unique(pstat.colex(rows, 0))
- allsubjs = pstat.unique(pstat.colex(data, 0))
- if len(factsubjs) == len(allsubjs): # fewer Ss than scores on this factor?
- withinvec = withinvec + (1 << col)
- return withinvec
-
-#########################################################
-#########################################################
-####### DISPATCH LISTS AND TUPLES TO ABOVE FCNS #########
-#########################################################
-#########################################################
-
-## CENTRAL TENDENCY:
-geometricmean = Dispatch((lgeometricmean, (ListType, TupleType)),)
-harmonicmean = Dispatch((lharmonicmean, (ListType, TupleType)),)
-mean = Dispatch((lmean, (ListType, TupleType)),)
-median = Dispatch((lmedian, (ListType, TupleType)),)
-medianscore = Dispatch((lmedianscore, (ListType, TupleType)),)
-mode = Dispatch((lmode, (ListType, TupleType)),)
-
-## MOMENTS:
-moment = Dispatch((lmoment, (ListType, TupleType)),)
-variation = Dispatch((lvariation, (ListType, TupleType)),)
-skew = Dispatch((lskew, (ListType, TupleType)),)
-kurtosis = Dispatch((lkurtosis, (ListType, TupleType)),)
-describe = Dispatch((ldescribe, (ListType, TupleType)),)
-
-## FREQUENCY STATISTICS:
-itemfreq = Dispatch((litemfreq, (ListType, TupleType)),)
-scoreatpercentile = Dispatch((lscoreatpercentile, (ListType, TupleType)),)
-percentileofscore = Dispatch((lpercentileofscore, (ListType, TupleType)),)
-histogram = Dispatch((lhistogram, (ListType, TupleType)),)
-cumfreq = Dispatch((lcumfreq, (ListType, TupleType)),)
-relfreq = Dispatch((lrelfreq, (ListType, TupleType)),)
-
-## VARIABILITY:
-obrientransform = Dispatch((lobrientransform, (ListType, TupleType)),)
-samplevar = Dispatch((lsamplevar, (ListType, TupleType)),)
-samplestdev = Dispatch((lsamplestdev, (ListType, TupleType)),)
-var = Dispatch((lvar, (ListType, TupleType)),)
-stdev = Dispatch((lstdev, (ListType, TupleType)),)
-sterr = Dispatch((lsterr, (ListType, TupleType)),)
-sem = Dispatch((lsem, (ListType, TupleType)),)
-z = Dispatch((lz, (ListType, TupleType)),)
-zs = Dispatch((lzs, (ListType, TupleType)),)
-
-## TRIMMING FCNS:
-trimboth = Dispatch((ltrimboth, (ListType, TupleType)),)
-trim1 = Dispatch((ltrim1, (ListType, TupleType)),)
-
-## CORRELATION FCNS:
-paired = Dispatch((lpaired, (ListType, TupleType)),)
-pearsonr = Dispatch((lpearsonr, (ListType, TupleType)),)
-spearmanr = Dispatch((lspearmanr, (ListType, TupleType)),)
-pointbiserialr = Dispatch((lpointbiserialr, (ListType, TupleType)),)
-kendalltau = Dispatch((lkendalltau, (ListType, TupleType)),)
-linregress = Dispatch((llinregress, (ListType, TupleType)),)
-
-## INFERENTIAL STATS:
-ttest_1samp = Dispatch((lttest_1samp, (ListType, TupleType)),)
-ttest_ind = Dispatch((lttest_ind, (ListType, TupleType)),)
-ttest_rel = Dispatch((lttest_rel, (ListType, TupleType)),)
-chisquare = Dispatch((lchisquare, (ListType, TupleType)),)
-ks_2samp = Dispatch((lks_2samp, (ListType, TupleType)),)
-mannwhitneyu = Dispatch((lmannwhitneyu, (ListType, TupleType)),)
-ranksums = Dispatch((lranksums, (ListType, TupleType)),)
-tiecorrect = Dispatch((ltiecorrect, (ListType, TupleType)),)
-wilcoxont = Dispatch((lwilcoxont, (ListType, TupleType)),)
-kruskalwallish = Dispatch((lkruskalwallish, (ListType, TupleType)),)
-friedmanchisquare = Dispatch((lfriedmanchisquare, (ListType, TupleType)),)
-
-## PROBABILITY CALCS:
-chisqprob = Dispatch((lchisqprob, (IntType, FloatType)),)
-zprob = Dispatch((lzprob, (IntType, FloatType)),)
-ksprob = Dispatch((lksprob, (IntType, FloatType)),)
-fprob = Dispatch((lfprob, (IntType, FloatType)),)
-betacf = Dispatch((lbetacf, (IntType, FloatType)),)
-betai = Dispatch((lbetai, (IntType, FloatType)),)
-erfcc = Dispatch((lerfcc, (IntType, FloatType)),)
-gammln = Dispatch((lgammln, (IntType, FloatType)),)
-
-## ANOVA FUNCTIONS:
-F_oneway = Dispatch((lF_oneway, (ListType, TupleType)),)
-F_value = Dispatch((lF_value, (ListType, TupleType)),)
-
-## SUPPORT FUNCTIONS:
-incr = Dispatch((lincr, (ListType, TupleType)),)
-sum = Dispatch((lsum, (ListType, TupleType)),)
-cumsum = Dispatch((lcumsum, (ListType, TupleType)),)
-ss = Dispatch((lss, (ListType, TupleType)),)
-summult = Dispatch((lsummult, (ListType, TupleType)),)
-square_of_sums = Dispatch((lsquare_of_sums, (ListType, TupleType)),)
-sumdiffsquared = Dispatch((lsumdiffsquared, (ListType, TupleType)),)
-shellsort = Dispatch((lshellsort, (ListType, TupleType)),)
-rankdata = Dispatch((lrankdata, (ListType, TupleType)),)
-findwithin = Dispatch((lfindwithin, (ListType, TupleType)),)
-
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-#============= THE ARRAY-VERSION OF THE STATS FUNCTIONS ===============
-
-try: # DEFINE THESE *ONLY* IF NUMERIC IS AVAILABLE
- import numpy as N
- import numpy.linalg as LA
-
- #####################################
- ######## ACENTRAL TENDENCY ########
- #####################################
-
-
- def ageometricmean(inarray, dimension=None, keepdims=0):
- """
-Calculates the geometric mean of the values in the passed array.
-That is: n-th root of (x1 * x2 * ... * xn). Defaults to ALL values in
-the passed array. Use dimension=None to flatten array first. REMEMBER: if
-dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
-if dimension is a sequence, it collapses over all specified dimensions. If
-keepdims is set to 1, the resulting array will have as many dimensions as
-inarray, with only 1 'level' per dim that was collapsed over.
-
-Usage: ageometricmean(inarray,dimension=None,keepdims=0)
-Returns: geometric mean computed over dim(s) listed in dimension
-"""
- inarray = N.array(inarray, N.float_)
- if dimension == None:
- inarray = N.ravel(inarray)
- size = len(inarray)
- mult = N.power(inarray, 1.0 / size)
- mult = N.multiply.reduce(mult)
- elif type(dimension) in [IntType, FloatType]:
- size = inarray.shape[dimension]
- mult = N.power(inarray, 1.0 / size)
- mult = N.multiply.reduce(mult, dimension)
- if keepdims == 1:
- shp = list(inarray.shape)
- shp[dimension] = 1
- sum = N.reshape(sum, shp)
- else: # must be a SEQUENCE of dims to average over
- dims = list(dimension)
- dims.sort()
- dims.reverse()
- size = N.array(N.multiply.reduce(N.take(inarray.shape, dims)), N.float_)
- mult = N.power(inarray, 1.0 / size)
- for dim in dims:
- mult = N.multiply.reduce(mult, dim)
- if keepdims == 1:
- shp = list(inarray.shape)
- for dim in dims:
- shp[dim] = 1
- mult = N.reshape(mult, shp)
- return mult
-
- def aharmonicmean(inarray, dimension=None, keepdims=0):
- """
-Calculates the harmonic mean of the values in the passed array.
-That is: n / (1/x1 + 1/x2 + ... + 1/xn). Defaults to ALL values in
-the passed array. Use dimension=None to flatten array first. REMEMBER: if
-dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
-if dimension is a sequence, it collapses over all specified dimensions. If
-keepdims is set to 1, the resulting array will have as many dimensions as
-inarray, with only 1 'level' per dim that was collapsed over.
-
-Usage: aharmonicmean(inarray,dimension=None,keepdims=0)
-Returns: harmonic mean computed over dim(s) in dimension
-"""
- inarray = inarray.astype(N.float_)
- if dimension == None:
- inarray = N.ravel(inarray)
- size = len(inarray)
- s = N.add.reduce(1.0 / inarray)
- elif type(dimension) in [IntType, FloatType]:
- size = float(inarray.shape[dimension])
- s = N.add.reduce(1.0 / inarray, dimension)
- if keepdims == 1:
- shp = list(inarray.shape)
- shp[dimension] = 1
- s = N.reshape(s, shp)
- else: # must be a SEQUENCE of dims to average over
- dims = list(dimension)
- dims.sort()
- nondims = []
- for i in range(len(inarray.shape)):
- if i not in dims:
- nondims.append(i)
- tinarray = N.transpose(inarray, nondims + dims) # put keep-dims first
- idx = [0] * len(nondims)
- if idx == []:
- size = len(N.ravel(inarray))
- s = asum(1.0 / inarray)
- if keepdims == 1:
- s = N.reshape([s], N.ones(len(inarray.shape)))
- else:
- idx[0] = -1
- loopcap = N.array(tinarray.shape[0:len(nondims)]) - 1
- s = N.zeros(loopcap + 1, N.float_)
- while incr(idx, loopcap) <> -1:
- s[idx] = asum(1.0 / tinarray[idx])
- size = N.multiply.reduce(N.take(inarray.shape, dims))
- if keepdims == 1:
- shp = list(inarray.shape)
- for dim in dims:
- shp[dim] = 1
- s = N.reshape(s, shp)
- return size / s
-
- def amean(inarray, dimension=None, keepdims=0):
- """
-Calculates the arithmatic mean of the values in the passed array.
-That is: 1/n * (x1 + x2 + ... + xn). Defaults to ALL values in the
-passed array. Use dimension=None to flatten array first. REMEMBER: if
-dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
-if dimension is a sequence, it collapses over all specified dimensions. If
-keepdims is set to 1, the resulting array will have as many dimensions as
-inarray, with only 1 'level' per dim that was collapsed over.
-
-Usage: amean(inarray,dimension=None,keepdims=0)
-Returns: arithematic mean calculated over dim(s) in dimension
-"""
- if inarray.dtype in [N.int_, N.short, N.ubyte]:
- inarray = inarray.astype(N.float_)
- if dimension == None:
- inarray = N.ravel(inarray)
- sum = N.add.reduce(inarray)
- denom = float(len(inarray))
- elif type(dimension) in [IntType, FloatType]:
- sum = asum(inarray, dimension)
- denom = float(inarray.shape[dimension])
- if keepdims == 1:
- shp = list(inarray.shape)
- shp[dimension] = 1
- sum = N.reshape(sum, shp)
- else: # must be a TUPLE of dims to average over
- dims = list(dimension)
- dims.sort()
- dims.reverse()
- sum = inarray * 1.0
- for dim in dims:
- sum = N.add.reduce(sum, dim)
- denom = N.array(N.multiply.reduce(N.take(inarray.shape, dims)), N.float_)
- if keepdims == 1:
- shp = list(inarray.shape)
- for dim in dims:
- shp[dim] = 1
- sum = N.reshape(sum, shp)
- return sum / denom
-
- def amedian(inarray, numbins=1000):
- """
-Calculates the COMPUTED median value of an array of numbers, given the
-number of bins to use for the histogram (more bins approaches finding the
-precise median value of the array; default number of bins = 1000). From
-G.W. Heiman's Basic Stats, or CRC Probability & Statistics.
-NOTE: THIS ROUTINE ALWAYS uses the entire passed array (flattens it first).
-
-Usage: amedian(inarray,numbins=1000)
-Returns: median calculated over ALL values in inarray
-"""
- inarray = N.ravel(inarray)
- (hist, smallest, binsize, extras) = ahistogram(inarray, numbins,
- [min(inarray), max(inarray)])
- cumhist = N.cumsum(hist) # make cumulative histogram
- otherbins = N.greater_equal(cumhist, len(inarray) / 2.0)
- otherbins = list(otherbins) # list of 0/1s, 1s start at median bin
- cfbin = otherbins.index(1) # get 1st(!) index holding 50%ile score
- LRL = smallest + binsize * cfbin # get lower read limit of that bin
- cfbelow = N.add.reduce(hist[0:cfbin]) # cum. freq. below bin
- freq = hist[cfbin] # frequency IN the 50%ile bin
- median = LRL + (
- (len(inarray) / 2.0 - cfbelow) / float(freq)) * binsize # MEDIAN
- return median
-
- def amedianscore(inarray, dimension=None):
- """
-Returns the 'middle' score of the passed array. If there is an even
-number of scores, the mean of the 2 middle scores is returned. Can function
-with 1D arrays, or on the FIRST dimension of 2D arrays (i.e., dimension can
-be None, to pre-flatten the array, or else dimension must equal 0).
-
-Usage: amedianscore(inarray,dimension=None)
-Returns: 'middle' score of the array, or the mean of the 2 middle scores
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- inarray = N.sort(inarray, dimension)
- if inarray.shape[dimension] % 2 == 0: # if even number of elements
- indx = inarray.shape[dimension] / 2 # integer division correct
- median = N.asarray(inarray[indx] + inarray[indx - 1]) / 2.0
- else:
- indx = inarray.shape[dimension] / 2 # integer division correct
- median = N.take(inarray, [indx], dimension)
- if median.shape == (1,):
- median = median[0]
- return median
-
- def amode(a, dimension=None):
- """
-Returns an array of the modal (most common) score in the passed array.
-If there is more than one such score, ONLY THE FIRST is returned.
-The bin-count for the modal values is also returned. Operates on whole
-array (dimension=None), or on a given dimension.
-
-Usage: amode(a, dimension=None)
-Returns: array of bin-counts for mode(s), array of corresponding modal values
-"""
-
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- scores = pstat.aunique(N.ravel(a)) # get ALL unique values
- testshape = list(a.shape)
- testshape[dimension] = 1
- oldmostfreq = N.zeros(testshape)
- oldcounts = N.zeros(testshape)
- for score in scores:
- template = N.equal(a, score)
- counts = asum(template, dimension, 1)
- mostfrequent = N.where(counts > oldcounts, score, oldmostfreq)
- oldcounts = N.where(counts > oldcounts, counts, oldcounts)
- oldmostfreq = mostfrequent
- return oldcounts, mostfrequent
-
- def atmean(a, limits=None, inclusive=(1, 1)):
- """
-Returns the arithmetic mean of all values in an array, ignoring values
-strictly outside the sequence passed to 'limits'. Note: either limit
-in the sequence, or the value of limits itself, can be set to None. The
-inclusive list/tuple determines whether the lower and upper limiting bounds
-(respectively) are open/exclusive (0) or closed/inclusive (1).
-
-Usage: atmean(a,limits=None,inclusive=(1,1))
-"""
- if a.dtype in [N.int_, N.short, N.ubyte]:
- a = a.astype(N.float_)
- if limits == None:
- return mean(a)
- assert type(limits) in [ListType, TupleType, N.ndarray
- ], 'Wrong type for limits in atmean'
- if inclusive[0]:
- lowerfcn = N.greater_equal
- else:
- lowerfcn = N.greater
- if inclusive[1]:
- upperfcn = N.less_equal
- else:
- upperfcn = N.less
- if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(
- N.ravel(a)):
- raise ValueError, 'No array values within given limits (atmean).'
- elif limits[0] == None and limits[1] <> None:
- mask = upperfcn(a, limits[1])
- elif limits[0] <> None and limits[1] == None:
- mask = lowerfcn(a, limits[0])
- elif limits[0] <> None and limits[1] <> None:
- mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
- s = float(N.add.reduce(N.ravel(a * mask)))
- n = float(N.add.reduce(N.ravel(mask)))
- return s / n
-
- def atvar(a, limits=None, inclusive=(1, 1)):
- """
-Returns the sample variance of values in an array, (i.e., using N-1),
-ignoring values strictly outside the sequence passed to 'limits'.
-Note: either limit in the sequence, or the value of limits itself,
-can be set to None. The inclusive list/tuple determines whether the lower
-and upper limiting bounds (respectively) are open/exclusive (0) or
-closed/inclusive (1). ASSUMES A FLAT ARRAY (OR ELSE PREFLATTENS).
-
-Usage: atvar(a,limits=None,inclusive=(1,1))
-"""
- a = a.astype(N.float_)
- if limits == None or limits == [None, None]:
- return avar(a)
- assert type(limits) in [ListType, TupleType, N.ndarray
- ], 'Wrong type for limits in atvar'
- if inclusive[0]:
- lowerfcn = N.greater_equal
- else:
- lowerfcn = N.greater
- if inclusive[1]:
- upperfcn = N.less_equal
- else:
- upperfcn = N.less
- if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(
- N.ravel(a)):
- raise ValueError, 'No array values within given limits (atvar).'
- elif limits[0] == None and limits[1] <> None:
- mask = upperfcn(a, limits[1])
- elif limits[0] <> None and limits[1] == None:
- mask = lowerfcn(a, limits[0])
- elif limits[0] <> None and limits[1] <> None:
- mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
-
- a = N.compress(mask, a) # squish out excluded values
- return avar(a)
-
- def atmin(a, lowerlimit=None, dimension=None, inclusive=1):
- """
-Returns the minimum value of a, along dimension, including only values less
-than (or equal to, if inclusive=1) lowerlimit. If the limit is set to None,
-all values in the array are used.
-
-Usage: atmin(a,lowerlimit=None,dimension=None,inclusive=1)
-"""
- if inclusive:
- lowerfcn = N.greater
- else:
- lowerfcn = N.greater_equal
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- if lowerlimit == None:
- lowerlimit = N.minimum.reduce(N.ravel(a)) - 11
- biggest = N.maximum.reduce(N.ravel(a))
- ta = N.where(lowerfcn(a, lowerlimit), a, biggest)
- return N.minimum.reduce(ta, dimension)
-
- def atmax(a, upperlimit, dimension=None, inclusive=1):
- """
-Returns the maximum value of a, along dimension, including only values greater
-than (or equal to, if inclusive=1) upperlimit. If the limit is set to None,
-a limit larger than the max value in the array is used.
-
-Usage: atmax(a,upperlimit,dimension=None,inclusive=1)
-"""
- if inclusive:
- upperfcn = N.less
- else:
- upperfcn = N.less_equal
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- if upperlimit == None:
- upperlimit = N.maximum.reduce(N.ravel(a)) + 1
- smallest = N.minimum.reduce(N.ravel(a))
- ta = N.where(upperfcn(a, upperlimit), a, smallest)
- return N.maximum.reduce(ta, dimension)
-
- def atstdev(a, limits=None, inclusive=(1, 1)):
- """
-Returns the standard deviation of all values in an array, ignoring values
-strictly outside the sequence passed to 'limits'. Note: either limit
-in the sequence, or the value of limits itself, can be set to None. The
-inclusive list/tuple determines whether the lower and upper limiting bounds
-(respectively) are open/exclusive (0) or closed/inclusive (1).
-
-Usage: atstdev(a,limits=None,inclusive=(1,1))
-"""
- return N.sqrt(tvar(a, limits, inclusive))
-
- def atsem(a, limits=None, inclusive=(1, 1)):
- """
-Returns the standard error of the mean for the values in an array,
-(i.e., using N for the denominator), ignoring values strictly outside
-the sequence passed to 'limits'. Note: either limit in the sequence,
-or the value of limits itself, can be set to None. The inclusive list/tuple
-determines whether the lower and upper limiting bounds (respectively) are
-open/exclusive (0) or closed/inclusive (1).
-
-Usage: atsem(a,limits=None,inclusive=(1,1))
-"""
- sd = tstdev(a, limits, inclusive)
- if limits == None or limits == [None, None]:
- n = float(len(N.ravel(a)))
- limits = [min(a) - 1, max(a) + 1]
- assert type(limits) in [ListType, TupleType, N.ndarray
- ], 'Wrong type for limits in atsem'
- if inclusive[0]:
- lowerfcn = N.greater_equal
- else:
- lowerfcn = N.greater
- if inclusive[1]:
- upperfcn = N.less_equal
- else:
- upperfcn = N.less
- if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(
- N.ravel(a)):
- raise ValueError, 'No array values within given limits (atsem).'
- elif limits[0] == None and limits[1] <> None:
- mask = upperfcn(a, limits[1])
- elif limits[0] <> None and limits[1] == None:
- mask = lowerfcn(a, limits[0])
- elif limits[0] <> None and limits[1] <> None:
- mask = lowerfcn(a, limits[0]) * upperfcn(a, limits[1])
- term1 = N.add.reduce(N.ravel(a * a * mask))
- n = float(N.add.reduce(N.ravel(mask)))
- return sd / math.sqrt(n)
-
-#####################################
-############ AMOMENTS #############
-#####################################
-
- def amoment(a, moment=1, dimension=None):
- """
-Calculates the nth moment about the mean for a sample (defaults to the
-1st moment). Generally used to calculate coefficients of skewness and
-kurtosis. Dimension can equal None (ravel array first), an integer
-(the dimension over which to operate), or a sequence (operate over
-multiple dimensions).
-
-Usage: amoment(a,moment=1,dimension=None)
-Returns: appropriate moment along given dimension
-"""
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- if moment == 1:
- return 0.0
- else:
- mn = amean(a, dimension, 1) # 1=keepdims
- s = N.power((a - mn), moment)
- return amean(s, dimension)
-
- def avariation(a, dimension=None):
- """
-Returns the coefficient of variation, as defined in CRC Standard
-Probability and Statistics, p.6. Dimension can equal None (ravel array
-first), an integer (the dimension over which to operate), or a
-sequence (operate over multiple dimensions).
-
-Usage: avariation(a,dimension=None)
-"""
- return 100.0 * asamplestdev(a, dimension) / amean(a, dimension)
-
- def askew(a, dimension=None):
- """
-Returns the skewness of a distribution (normal ==> 0.0; >0 means extra
-weight in left tail). Use askewtest() to see if it's close enough.
-Dimension can equal None (ravel array first), an integer (the
-dimension over which to operate), or a sequence (operate over multiple
-dimensions).
-
-Usage: askew(a, dimension=None)
-Returns: skew of vals in a along dimension, returning ZERO where all vals equal
-"""
- denom = N.power(amoment(a, 2, dimension), 1.5)
- zero = N.equal(denom, 0)
- if type(denom) == N.ndarray and asum(zero) <> 0:
- print 'Number of zeros in askew: ', asum(zero)
- denom = denom + zero # prevent divide-by-zero
- return N.where(zero, 0, amoment(a, 3, dimension) / denom)
-
- def akurtosis(a, dimension=None):
- """
-Returns the kurtosis of a distribution (normal ==> 3.0; >3 means
-heavier in the tails, and usually more peaked). Use akurtosistest()
-to see if it's close enough. Dimension can equal None (ravel array
-first), an integer (the dimension over which to operate), or a
-sequence (operate over multiple dimensions).
-
-Usage: akurtosis(a,dimension=None)
-Returns: kurtosis of values in a along dimension, and ZERO where all vals equal
-"""
- denom = N.power(amoment(a, 2, dimension), 2)
- zero = N.equal(denom, 0)
- if type(denom) == N.ndarray and asum(zero) <> 0:
- print 'Number of zeros in akurtosis: ', asum(zero)
- denom = denom + zero # prevent divide-by-zero
- return N.where(zero, 0, amoment(a, 4, dimension) / denom)
-
- def adescribe(inarray, dimension=None):
- """
-Returns several descriptive statistics of the passed array. Dimension
-can equal None (ravel array first), an integer (the dimension over
-which to operate), or a sequence (operate over multiple dimensions).
-
-Usage: adescribe(inarray,dimension=None)
-Returns: n, (min,max), mean, standard deviation, skew, kurtosis
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- n = inarray.shape[dimension]
- mm = (N.minimum.reduce(inarray), N.maximum.reduce(inarray))
- m = amean(inarray, dimension)
- sd = astdev(inarray, dimension)
- skew = askew(inarray, dimension)
- kurt = akurtosis(inarray, dimension)
- return n, mm, m, sd, skew, kurt
-
-#####################################
-######## NORMALITY TESTS ##########
-#####################################
-
- def askewtest(a, dimension=None):
- """
-Tests whether the skew is significantly different from a normal
-distribution. Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions).
-
-Usage: askewtest(a,dimension=None)
-Returns: z-score and 2-tail z-probability
-"""
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- b2 = askew(a, dimension)
- n = float(a.shape[dimension])
- y = b2 * N.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
- beta2 = (3.0 * (n * n + 27 * n - 70) * (n + 1) *
- (n + 3)) / ((n - 2.0) * (n + 5) * (n + 7) * (n + 9))
- W2 = -1 + N.sqrt(2 * (beta2 - 1))
- delta = 1 / N.sqrt(N.log(N.sqrt(W2)))
- alpha = N.sqrt(2 / (W2 - 1))
- y = N.where(y == 0, 1, y)
- Z = delta * N.log(y / alpha + N.sqrt((y / alpha)**2 + 1))
- return Z, (1.0 - zprob(Z)) * 2
-
- def akurtosistest(a, dimension=None):
- """
-Tests whether a dataset has normal kurtosis (i.e.,
-kurtosis=3(n-1)/(n+1)) Valid only for n>20. Dimension can equal None
-(ravel array first), an integer (the dimension over which to operate),
-or a sequence (operate over multiple dimensions).
-
-Usage: akurtosistest(a,dimension=None)
-Returns: z-score and 2-tail z-probability, returns 0 for bad pixels
-"""
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- n = float(a.shape[dimension])
- if n < 20:
- print 'akurtosistest only valid for n>=20 ... continuing anyway, n=', n
- b2 = akurtosis(a, dimension)
- E = 3.0 * (n - 1) / (n + 1)
- varb2 = 24.0 * n * (n - 2) * (n - 3) / ((n + 1) * (n + 1) * (n + 3) *
- (n + 5))
- x = (b2 - E) / N.sqrt(varb2)
- sqrtbeta1 = 6.0 * (n * n - 5 * n + 2) / ((n + 7) * (n + 9)) * N.sqrt(
- (6.0 * (n + 3) * (n + 5)) / (n * (n - 2) * (n - 3)))
- A = 6.0 + 8.0 / sqrtbeta1 * (2.0 / sqrtbeta1 +
- N.sqrt(1 + 4.0 / (sqrtbeta1**2)))
- term1 = 1 - 2 / (9.0 * A)
- denom = 1 + x * N.sqrt(2 / (A - 4.0))
- denom = N.where(N.less(denom, 0), 99, denom)
- term2 = N.where(
- N.equal(denom, 0), term1, N.power(
- (1 - 2.0 / A) / denom, 1 / 3.0))
- Z = (term1 - term2) / N.sqrt(2 / (9.0 * A))
- Z = N.where(N.equal(denom, 99), 0, Z)
- return Z, (1.0 - zprob(Z)) * 2
-
- def anormaltest(a, dimension=None):
- """
-Tests whether skew and/OR kurtosis of dataset differs from normal
-curve. Can operate over multiple dimensions. Dimension can equal
-None (ravel array first), an integer (the dimension over which to
-operate), or a sequence (operate over multiple dimensions).
-
-Usage: anormaltest(a,dimension=None)
-Returns: z-score and 2-tail probability
-"""
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- s, p = askewtest(a, dimension)
- k, p = akurtosistest(a, dimension)
- k2 = N.power(s, 2) + N.power(k, 2)
- return k2, achisqprob(k2, 2)
-
-#####################################
-###### AFREQUENCY FUNCTIONS #######
-#####################################
-
- def aitemfreq(a):
- """
-Returns a 2D array of item frequencies. Column 1 contains item values,
-column 2 contains their respective counts. Assumes a 1D array is passed.
-@@@sorting OK?
-
-Usage: aitemfreq(a)
-Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)
-"""
- scores = pstat.aunique(a)
- scores = N.sort(scores)
- freq = N.zeros(len(scores))
- for i in range(len(scores)):
- freq[i] = N.add.reduce(N.equal(a, scores[i]))
- return N.array(pstat.aabut(scores, freq))
-
- def ascoreatpercentile(inarray, percent):
- """
-Usage: ascoreatpercentile(inarray,percent) 0<percent<100
-Returns: score at given percentile, relative to inarray distribution
-"""
- percent = percent / 100.0
- targetcf = percent * len(inarray)
- h, lrl, binsize, extras = histogram(inarray)
- cumhist = cumsum(h * 1)
- for i in range(len(cumhist)):
- if cumhist[i] >= targetcf:
- break
- score = binsize * (
- (targetcf - cumhist[i - 1]) / float(h[i])) + (lrl + binsize * i)
- return score
-
- def apercentileofscore(inarray, score, histbins=10, defaultlimits=None):
- """
-Note: result of this function depends on the values used to histogram
-the data(!).
-
-Usage: apercentileofscore(inarray,score,histbins=10,defaultlimits=None)
-Returns: percentile-position of score (0-100) relative to inarray
-"""
- h, lrl, binsize, extras = histogram(inarray, histbins, defaultlimits)
- cumhist = cumsum(h * 1)
- i = int((score - lrl) / float(binsize))
- pct = (cumhist[i - 1] + ((score - (lrl + binsize * i)) / float(binsize)) *
- h[i]) / float(len(inarray)) * 100
- return pct
-
- def ahistogram(inarray, numbins=10, defaultlimits=None, printextras=1):
- """
-Returns (i) an array of histogram bin counts, (ii) the smallest value
-of the histogram binning, and (iii) the bin width (the last 2 are not
-necessarily integers). Default number of bins is 10. Defaultlimits
-can be None (the routine picks bins spanning all the numbers in the
-inarray) or a 2-sequence (lowerlimit, upperlimit). Returns all of the
-following: array of bin values, lowerreallimit, binsize, extrapoints.
-
-Usage: ahistogram(inarray,numbins=10,defaultlimits=None,printextras=1)
-Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)
-"""
- inarray = N.ravel(inarray) # flatten any >1D arrays
- if (defaultlimits <> None):
- lowerreallimit = defaultlimits[0]
- upperreallimit = defaultlimits[1]
- binsize = (upperreallimit - lowerreallimit) / float(numbins)
- else:
- Min = N.minimum.reduce(inarray)
- Max = N.maximum.reduce(inarray)
- estbinwidth = float(Max - Min) / float(numbins) + 1e-6
- binsize = (Max - Min + estbinwidth) / float(numbins)
- lowerreallimit = Min - binsize / 2.0 #lower real limit,1st bin
- bins = N.zeros(numbins)
- extrapoints = 0
- for num in inarray:
- try:
- if (num - lowerreallimit) < 0:
- extrapoints = extrapoints + 1
- else:
- bintoincrement = int((num - lowerreallimit) / float(binsize))
- bins[bintoincrement] = bins[bintoincrement] + 1
- except: # point outside lower/upper limits
- extrapoints = extrapoints + 1
- if (extrapoints > 0 and printextras == 1):
- print '\nPoints outside given histogram range =', extrapoints
- return (bins, lowerreallimit, binsize, extrapoints)
-
- def acumfreq(a, numbins=10, defaultreallimits=None):
- """
-Returns a cumulative frequency histogram, using the histogram function.
-Defaultreallimits can be None (use all data), or a 2-sequence containing
-lower and upper limits on values to include.
-
-Usage: acumfreq(a,numbins=10,defaultreallimits=None)
-Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
-"""
- h, l, b, e = histogram(a, numbins, defaultreallimits)
- cumhist = cumsum(h * 1)
- return cumhist, l, b, e
-
- def arelfreq(a, numbins=10, defaultreallimits=None):
- """
-Returns a relative frequency histogram, using the histogram function.
-Defaultreallimits can be None (use all data), or a 2-sequence containing
-lower and upper limits on values to include.
-
-Usage: arelfreq(a,numbins=10,defaultreallimits=None)
-Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
-"""
- h, l, b, e = histogram(a, numbins, defaultreallimits)
- h = N.array(h / float(a.shape[0]))
- return h, l, b, e
-
-#####################################
-###### AVARIABILITY FUNCTIONS #####
-#####################################
-
- def aobrientransform(*args):
- """
-Computes a transform on input data (any number of columns). Used to
-test for homogeneity of variance prior to running one-way stats. Each
-array in *args is one level of a factor. If an F_oneway() run on the
-transformed data and found significant, variances are unequal. From
-Maxwell and Delaney, p.112.
-
-Usage: aobrientransform(*args) *args = 1D arrays, one per level of factor
-Returns: transformed data for use in an ANOVA
-"""
- TINY = 1e-10
- k = len(args)
- n = N.zeros(k, N.float_)
- v = N.zeros(k, N.float_)
- m = N.zeros(k, N.float_)
- nargs = []
- for i in range(k):
- nargs.append(args[i].astype(N.float_))
- n[i] = float(len(nargs[i]))
- v[i] = var(nargs[i])
- m[i] = mean(nargs[i])
- for j in range(k):
- for i in range(n[j]):
- t1 = (n[j] - 1.5) * n[j] * (nargs[j][i] - m[j])**2
- t2 = 0.5 * v[j] * (n[j] - 1.0)
- t3 = (n[j] - 1.0) * (n[j] - 2.0)
- nargs[j][i] = (t1 - t2) / float(t3)
- check = 1
- for j in range(k):
- if v[j] - mean(nargs[j]) > TINY:
- check = 0
- if check <> 1:
- raise ValueError, 'Lack of convergence in obrientransform.'
- else:
- return N.array(nargs)
-
- def asamplevar(inarray, dimension=None, keepdims=0):
- """
-Returns the sample standard deviation of the values in the passed
-array (i.e., using N). Dimension can equal None (ravel array first),
-an integer (the dimension over which to operate), or a sequence
-(operate over multiple dimensions). Set keepdims=1 to return an array
-with the same number of dimensions as inarray.
-
-Usage: asamplevar(inarray,dimension=None,keepdims=0)
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- if dimension == 1:
- mn = amean(inarray, dimension)[:, N.NewAxis]
- else:
- mn = amean(inarray, dimension, keepdims=1)
- deviations = inarray - mn
- if type(dimension) == ListType:
- n = 1
- for d in dimension:
- n = n * inarray.shape[d]
- else:
- n = inarray.shape[dimension]
- svar = ass(deviations, dimension, keepdims) / float(n)
- return svar
-
- def asamplestdev(inarray, dimension=None, keepdims=0):
- """
-Returns the sample standard deviation of the values in the passed
-array (i.e., using N). Dimension can equal None (ravel array first),
-an integer (the dimension over which to operate), or a sequence
-(operate over multiple dimensions). Set keepdims=1 to return an array
-with the same number of dimensions as inarray.
-
-Usage: asamplestdev(inarray,dimension=None,keepdims=0)
-"""
- return N.sqrt(asamplevar(inarray, dimension, keepdims))
-
- def asignaltonoise(instack, dimension=0):
- """
-Calculates signal-to-noise. Dimension can equal None (ravel array
-first), an integer (the dimension over which to operate), or a
-sequence (operate over multiple dimensions).
-
-Usage: asignaltonoise(instack,dimension=0):
-Returns: array containing the value of (mean/stdev) along dimension,
- or 0 when stdev=0
-"""
- m = mean(instack, dimension)
- sd = stdev(instack, dimension)
- return N.where(sd == 0, 0, m / sd)
-
- def acov(x, y, dimension=None, keepdims=0):
- """
-Returns the estimated covariance of the values in the passed
-array (i.e., N-1). Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions). Set keepdims=1 to return an array with the
-same number of dimensions as inarray.
-
-Usage: acov(x,y,dimension=None,keepdims=0)
-"""
- if dimension == None:
- x = N.ravel(x)
- y = N.ravel(y)
- dimension = 0
- xmn = amean(x, dimension, 1) # keepdims
- xdeviations = x - xmn
- ymn = amean(y, dimension, 1) # keepdims
- ydeviations = y - ymn
- if type(dimension) == ListType:
- n = 1
- for d in dimension:
- n = n * x.shape[d]
- else:
- n = x.shape[dimension]
- covar = N.sum(xdeviations * ydeviations) / float(n - 1)
- return covar
-
- def avar(inarray, dimension=None, keepdims=0):
- """
-Returns the estimated population variance of the values in the passed
-array (i.e., N-1). Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions). Set keepdims=1 to return an array with the
-same number of dimensions as inarray.
-
-Usage: avar(inarray,dimension=None,keepdims=0)
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- mn = amean(inarray, dimension, 1)
- deviations = inarray - mn
- if type(dimension) == ListType:
- n = 1
- for d in dimension:
- n = n * inarray.shape[d]
- else:
- n = inarray.shape[dimension]
- var = ass(deviations, dimension, keepdims) / float(n - 1)
- return var
-
- def astdev(inarray, dimension=None, keepdims=0):
- """
-Returns the estimated population standard deviation of the values in
-the passed array (i.e., N-1). Dimension can equal None (ravel array
-first), an integer (the dimension over which to operate), or a
-sequence (operate over multiple dimensions). Set keepdims=1 to return
-an array with the same number of dimensions as inarray.
-
-Usage: astdev(inarray,dimension=None,keepdims=0)
-"""
- return N.sqrt(avar(inarray, dimension, keepdims))
-
- def asterr(inarray, dimension=None, keepdims=0):
- """
-Returns the estimated population standard error of the values in the
-passed array (i.e., N-1). Dimension can equal None (ravel array
-first), an integer (the dimension over which to operate), or a
-sequence (operate over multiple dimensions). Set keepdims=1 to return
-an array with the same number of dimensions as inarray.
-
-Usage: asterr(inarray,dimension=None,keepdims=0)
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- return astdev(inarray, dimension,
- keepdims) / float(N.sqrt(inarray.shape[dimension]))
-
- def asem(inarray, dimension=None, keepdims=0):
- """
-Returns the standard error of the mean (i.e., using N) of the values
-in the passed array. Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions). Set keepdims=1 to return an array with the
-same number of dimensions as inarray.
-
-Usage: asem(inarray,dimension=None, keepdims=0)
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- if type(dimension) == ListType:
- n = 1
- for d in dimension:
- n = n * inarray.shape[d]
- else:
- n = inarray.shape[dimension]
- s = asamplestdev(inarray, dimension, keepdims) / N.sqrt(n - 1)
- return s
-
- def az(a, score):
- """
-Returns the z-score of a given input score, given thearray from which
-that score came. Not appropriate for population calculations, nor for
-arrays > 1D.
-
-Usage: az(a, score)
-"""
- z = (score - amean(a)) / asamplestdev(a)
- return z
-
- def azs(a):
- """
-Returns a 1D array of z-scores, one for each score in the passed array,
-computed relative to the passed array.
-
-Usage: azs(a)
-"""
- zscores = []
- for item in a:
- zscores.append(z(a, item))
- return N.array(zscores)
-
- def azmap(scores, compare, dimension=0):
- """
-Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to
-array passed to compare (e.g., [time,x,y]). Assumes collapsing over dim 0
-of the compare array.
-
-Usage: azs(scores, compare, dimension=0)
-"""
- mns = amean(compare, dimension)
- sstd = asamplestdev(compare, 0)
- return (scores - mns) / sstd
-
-#####################################
-####### ATRIMMING FUNCTIONS #######
-#####################################
-
-## deleted around() as it's in numpy now
-
- def athreshold(a, threshmin=None, threshmax=None, newval=0):
- """
-Like Numeric.clip() except that values <threshmid or >threshmax are replaced
-by newval instead of by threshmin/threshmax (respectively).
-
-Usage: athreshold(a,threshmin=None,threshmax=None,newval=0)
-Returns: a, with values <threshmin or >threshmax replaced with newval
-"""
- mask = N.zeros(a.shape)
- if threshmin <> None:
- mask = mask + N.where(a < threshmin, 1, 0)
- if threshmax <> None:
- mask = mask + N.where(a > threshmax, 1, 0)
- mask = N.clip(mask, 0, 1)
- return N.where(mask, newval, a)
-
- def atrimboth(a, proportiontocut):
- """
-Slices off the passed proportion of items from BOTH ends of the passed
-array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND
-'rightmost' 10% of scores. You must pre-sort the array if you want
-"proper" trimming. Slices off LESS if proportion results in a
-non-integer slice index (i.e., conservatively slices off
-proportiontocut).
-
-Usage: atrimboth (a,proportiontocut)
-Returns: trimmed version of array a
-"""
- lowercut = int(proportiontocut * len(a))
- uppercut = len(a) - lowercut
- return a[lowercut:uppercut]
-
- def atrim1(a, proportiontocut, tail='right'):
- """
-Slices off the passed proportion of items from ONE end of the passed
-array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
-10% of scores). Slices off LESS if proportion results in a non-integer
-slice index (i.e., conservatively slices off proportiontocut).
-
-Usage: atrim1(a,proportiontocut,tail='right') or set tail='left'
-Returns: trimmed version of array a
-"""
- if string.lower(tail) == 'right':
- lowercut = 0
- uppercut = len(a) - int(proportiontocut * len(a))
- elif string.lower(tail) == 'left':
- lowercut = int(proportiontocut * len(a))
- uppercut = len(a)
- return a[lowercut:uppercut]
-
-#####################################
-##### ACORRELATION FUNCTIONS ######
-#####################################
-
- def acovariance(X):
- """
-Computes the covariance matrix of a matrix X. Requires a 2D matrix input.
-
-Usage: acovariance(X)
-Returns: covariance matrix of X
-"""
- if len(X.shape) <> 2:
- raise TypeError, 'acovariance requires 2D matrices'
- n = X.shape[0]
- mX = amean(X, 0)
- return N.dot(N.transpose(X), X) / float(n) - N.multiply.outer(mX, mX)
-
- def acorrelation(X):
- """
-Computes the correlation matrix of a matrix X. Requires a 2D matrix input.
-
-Usage: acorrelation(X)
-Returns: correlation matrix of X
-"""
- C = acovariance(X)
- V = N.diagonal(C)
- return C / N.sqrt(N.multiply.outer(V, V))
-
- def apaired(x, y):
- """
-Interactively determines the type of data in x and y, and then runs the
-appropriated statistic for paired group data.
-
-Usage: apaired(x,y) x,y = the two arrays of values to be compared
-Returns: appropriate statistic name, value, and probability
-"""
- samples = ''
- while samples not in ['i', 'r', 'I', 'R', 'c', 'C']:
- print '\nIndependent or related samples, or correlation (i,r,c): ',
- samples = raw_input()
-
- if samples in ['i', 'I', 'r', 'R']:
- print '\nComparing variances ...',
- # USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
- r = obrientransform(x, y)
- f, p = F_oneway(pstat.colex(r, 0), pstat.colex(r, 1))
- if p < 0.05:
- vartype = 'unequal, p=' + str(round(p, 4))
- else:
- vartype = 'equal'
- print vartype
- if samples in ['i', 'I']:
- if vartype[0] == 'e':
- t, p = ttest_ind(x, y, None, 0)
- print '\nIndependent samples t-test: ', round(t, 4), round(p, 4)
- else:
- if len(x) > 20 or len(y) > 20:
- z, p = ranksums(x, y)
- print '\nRank Sums test (NONparametric, n>20): ', round(
- z, 4), round(p, 4)
- else:
- u, p = mannwhitneyu(x, y)
- print '\nMann-Whitney U-test (NONparametric, ns<20): ', round(
- u, 4), round(p, 4)
-
- else: # RELATED SAMPLES
- if vartype[0] == 'e':
- t, p = ttest_rel(x, y, 0)
- print '\nRelated samples t-test: ', round(t, 4), round(p, 4)
- else:
- t, p = ranksums(x, y)
- print '\nWilcoxon T-test (NONparametric): ', round(t, 4), round(p, 4)
- else: # CORRELATION ANALYSIS
- corrtype = ''
- while corrtype not in ['c', 'C', 'r', 'R', 'd', 'D']:
- print '\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ',
- corrtype = raw_input()
- if corrtype in ['c', 'C']:
- m, b, r, p, see = linregress(x, y)
- print '\nLinear regression for continuous variables ...'
- lol = [
- ['Slope', 'Intercept', 'r', 'Prob', 'SEestimate'],
- [round(m, 4), round(b, 4), round(r, 4), round(p, 4), round(see, 4)]
- ]
- pstat.printcc(lol)
- elif corrtype in ['r', 'R']:
- r, p = spearmanr(x, y)
- print '\nCorrelation for ranked variables ...'
- print "Spearman's r: ", round(r, 4), round(p, 4)
- else: # DICHOTOMOUS
- r, p = pointbiserialr(x, y)
- print '\nAssuming x contains a dichotomous variable ...'
- print 'Point Biserial r: ', round(r, 4), round(p, 4)
- print '\n\n'
- return None
-
- def dices(x, y):
- """
-Calculates Dice's coefficient ... (2*number of common terms)/(number of terms in
-x +
-number of terms in y). Returns a value between 0 (orthogonal) and 1.
-
-Usage: dices(x,y)
-"""
- import sets
- x = sets.Set(x)
- y = sets.Set(y)
- common = len(x.intersection(y))
- total = float(len(x) + len(y))
- return 2 * common / total
-
- def icc(x, y=None, verbose=0):
- """
-Calculates intraclass correlation coefficients using simple, Type I sums of
-squares.
-If only one variable is passed, assumed it's an Nx2 matrix
-
-Usage: icc(x,y=None,verbose=0)
-Returns: icc rho, prob ####PROB IS A GUESS BASED ON PEARSON
-"""
- TINY = 1.0e-20
- if y:
- all = N.concatenate([x, y], 0)
- else:
- all = x + 0
- x = all[:, 0]
- y = all[:, 1]
- totalss = ass(all - mean(all))
- pairmeans = (x + y) / 2.
- withinss = ass(x - pairmeans) + ass(y - pairmeans)
- withindf = float(len(x))
- betwdf = float(len(x) - 1)
- withinms = withinss / withindf
- betweenms = (totalss - withinss) / betwdf
- rho = (betweenms - withinms) / (withinms + betweenms)
- t = rho * math.sqrt(betwdf / ((1.0 - rho + TINY) * (1.0 + rho + TINY)))
- prob = abetai(0.5 * betwdf, 0.5, betwdf / (betwdf + t * t), verbose)
- return rho, prob
-
- def alincc(x, y):
- """
-Calculates Lin's concordance correlation coefficient.
-
-Usage: alincc(x,y) where x, y are equal-length arrays
-Returns: Lin's CC
-"""
- x = N.ravel(x)
- y = N.ravel(y)
- covar = acov(x, y) * (len(x) - 1) / float(len(x)) # correct denom to n
- xvar = avar(x) * (len(x) - 1) / float(len(x)) # correct denom to n
- yvar = avar(y) * (len(y) - 1) / float(len(y)) # correct denom to n
- lincc = (2 * covar) / ((xvar + yvar) + ((amean(x) - amean(y))**2))
- return lincc
-
- def apearsonr(x, y, verbose=1):
- """
-Calculates a Pearson correlation coefficient and returns p. Taken
-from Heiman's Basic Statistics for the Behav. Sci (2nd), p.195.
-
-Usage: apearsonr(x,y,verbose=1) where x,y are equal length arrays
-Returns: Pearson's r, two-tailed p-value
-"""
- TINY = 1.0e-20
- n = len(x)
- xmean = amean(x)
- ymean = amean(y)
- r_num = n * (N.add.reduce(x * y)) - N.add.reduce(x) * N.add.reduce(y)
- r_den = math.sqrt((n * ass(x) - asquare_of_sums(x)) *
- (n * ass(y) - asquare_of_sums(y)))
- r = (r_num / r_den)
- df = n - 2
- t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
- prob = abetai(0.5 * df, 0.5, df / (df + t * t), verbose)
- return r, prob
-
- def aspearmanr(x, y):
- """
-Calculates a Spearman rank-order correlation coefficient. Taken
-from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.
-
-Usage: aspearmanr(x,y) where x,y are equal-length arrays
-Returns: Spearman's r, two-tailed p-value
-"""
- TINY = 1e-30
- n = len(x)
- rankx = rankdata(x)
- ranky = rankdata(y)
- dsq = N.add.reduce((rankx - ranky)**2)
- rs = 1 - 6 * dsq / float(n * (n**2 - 1))
- t = rs * math.sqrt((n - 2) / ((rs + 1.0) * (1.0 - rs)))
- df = n - 2
- probrs = abetai(0.5 * df, 0.5, df / (df + t * t))
- # probability values for rs are from part 2 of the spearman function in
- # Numerical Recipies, p.510. They close to tables, but not exact.(?)
- return rs, probrs
-
- def apointbiserialr(x, y):
- """
-Calculates a point-biserial correlation coefficient and the associated
-probability value. Taken from Heiman's Basic Statistics for the Behav.
-Sci (1st), p.194.
-
-Usage: apointbiserialr(x,y) where x,y are equal length arrays
-Returns: Point-biserial r, two-tailed p-value
-"""
- TINY = 1e-30
- categories = pstat.aunique(x)
- data = pstat.aabut(x, y)
- if len(categories) <> 2:
- raise ValueError, ('Exactly 2 categories required (in x) for '
- 'pointbiserialr().')
- else: # there are 2 categories, continue
- codemap = pstat.aabut(categories, N.arange(2))
- recoded = pstat.arecode(data, codemap, 0)
- x = pstat.alinexand(data, 0, categories[0])
- y = pstat.alinexand(data, 0, categories[1])
- xmean = amean(pstat.acolex(x, 1))
- ymean = amean(pstat.acolex(y, 1))
- n = len(data)
- adjust = math.sqrt((len(x) / float(n)) * (len(y) / float(n)))
- rpb = (ymean - xmean) / asamplestdev(pstat.acolex(data, 1)) * adjust
- df = n - 2
- t = rpb * math.sqrt(df / ((1.0 - rpb + TINY) * (1.0 + rpb + TINY)))
- prob = abetai(0.5 * df, 0.5, df / (df + t * t))
- return rpb, prob
-
- def akendalltau(x, y):
- """
-Calculates Kendall's tau ... correlation of ordinal data. Adapted
-from function kendl1 in Numerical Recipies. Needs good test-cases.@@@
-
-Usage: akendalltau(x,y)
-Returns: Kendall's tau, two-tailed p-value
-"""
- n1 = 0
- n2 = 0
- iss = 0
- for j in range(len(x) - 1):
- for k in range(j, len(y)):
- a1 = x[j] - x[k]
- a2 = y[j] - y[k]
- aa = a1 * a2
- if (aa): # neither array has a tie
- n1 = n1 + 1
- n2 = n2 + 1
- if aa > 0:
- iss = iss + 1
- else:
- iss = iss - 1
- else:
- if (a1):
- n1 = n1 + 1
- else:
- n2 = n2 + 1
- tau = iss / math.sqrt(n1 * n2)
- svar = (4.0 * len(x) + 10.0) / (9.0 * len(x) * (len(x) - 1))
- z = tau / math.sqrt(svar)
- prob = erfcc(abs(z) / 1.4142136)
- return tau, prob
-
- def alinregress(*args):
- """
-Calculates a regression line on two arrays, x and y, corresponding to x,y
-pairs. If a single 2D array is passed, alinregress finds dim with 2 levels
-and splits data into x,y pairs along that dim.
-
-Usage: alinregress(*args) args=2 equal-length arrays, or one 2D array
-Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate, n
-"""
- TINY = 1.0e-20
- if len(args) == 1: # more than 1D array?
- args = args[0]
- if len(args) == 2:
- x = args[0]
- y = args[1]
- else:
- x = args[:, 0]
- y = args[:, 1]
- else:
- x = args[0]
- y = args[1]
- n = len(x)
- xmean = amean(x)
- ymean = amean(y)
- r_num = n * (N.add.reduce(x * y)) - N.add.reduce(x) * N.add.reduce(y)
- r_den = math.sqrt((n * ass(x) - asquare_of_sums(x)) *
- (n * ass(y) - asquare_of_sums(y)))
- r = r_num / r_den
- z = 0.5 * math.log((1.0 + r + TINY) / (1.0 - r + TINY))
- df = n - 2
- t = r * math.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
- prob = abetai(0.5 * df, 0.5, df / (df + t * t))
- slope = r_num / (float(n) * ass(x) - asquare_of_sums(x))
- intercept = ymean - slope * xmean
- sterrest = math.sqrt(1 - r * r) * asamplestdev(y)
- return slope, intercept, r, prob, sterrest, n
-
- def amasslinregress(*args):
- """
-Calculates a regression line on one 1D array (x) and one N-D array (y).
-
-Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate, n
-"""
- TINY = 1.0e-20
- if len(args) == 1: # more than 1D array?
- args = args[0]
- if len(args) == 2:
- x = N.ravel(args[0])
- y = args[1]
- else:
- x = N.ravel(args[:, 0])
- y = args[:, 1]
- else:
- x = args[0]
- y = args[1]
- x = x.astype(N.float_)
- y = y.astype(N.float_)
- n = len(x)
- xmean = amean(x)
- ymean = amean(y, 0)
- shp = N.ones(len(y.shape))
- shp[0] = len(x)
- x.shape = shp
- print x.shape, y.shape
- r_num = n * (N.add.reduce(x * y, 0)) - N.add.reduce(x) * N.add.reduce(y, 0)
- r_den = N.sqrt((n * ass(x) - asquare_of_sums(x)) *
- (n * ass(y, 0) - asquare_of_sums(y, 0)))
- zerodivproblem = N.equal(r_den, 0)
- r_den = N.where(zerodivproblem, 1, r_den
- ) # avoid zero-division in 1st place
- r = r_num / r_den # need to do this nicely for matrix division
- r = N.where(zerodivproblem, 0.0, r)
- z = 0.5 * N.log((1.0 + r + TINY) / (1.0 - r + TINY))
- df = n - 2
- t = r * N.sqrt(df / ((1.0 - r + TINY) * (1.0 + r + TINY)))
- prob = abetai(0.5 * df, 0.5, df / (df + t * t))
-
- ss = float(n) * ass(x) - asquare_of_sums(x)
- s_den = N.where(ss == 0, 1, ss) # avoid zero-division in 1st place
- slope = r_num / s_den
- intercept = ymean - slope * xmean
- sterrest = N.sqrt(1 - r * r) * asamplestdev(y, 0)
- return slope, intercept, r, prob, sterrest, n
-
-#####################################
-##### AINFERENTIAL STATISTICS #####
-#####################################
-
- def attest_1samp(a, popmean, printit=0, name='Sample', writemode='a'):
- """
-Calculates the t-obtained for the independent samples T-test on ONE group
-of scores a, given a population mean. If printit=1, results are printed
-to the screen. If printit='filename', the results are output to 'filename'
-using the given writemode (default=append). Returns t-value, and prob.
-
-Usage: attest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
-Returns: t-value, two-tailed prob
-"""
- if type(a) != N.ndarray:
- a = N.array(a)
- x = amean(a)
- v = avar(a)
- n = len(a)
- df = n - 1
- svar = ((n - 1) * v) / float(df)
- t = (x - popmean) / math.sqrt(svar * (1.0 / n))
- prob = abetai(0.5 * df, 0.5, df / (df + t * t))
-
- if printit <> 0:
- statname = 'Single-sample T-test.'
- outputpairedstats(printit, writemode, 'Population', '--', popmean, 0, 0,
- 0, name, n, x, v, N.minimum.reduce(N.ravel(a)),
- N.maximum.reduce(N.ravel(a)), statname, t, prob)
- return t, prob
-
- def attest_ind(a,
- b,
- dimension=None,
- printit=0,
- name1='Samp1',
- name2='Samp2',
- writemode='a'):
- """
-Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores
-a, and b. From Numerical Recipies, p.483. If printit=1, results are
-printed to the screen. If printit='filename', the results are output
-to 'filename' using the given writemode (default=append). Dimension
-can equal None (ravel array first), or an integer (the dimension over
-which to operate on a and b).
-
-Usage: attest_ind (a,b,dimension=None,printit=0,
- Name1='Samp1',Name2='Samp2',writemode='a')
-Returns: t-value, two-tailed p-value
-"""
- if dimension == None:
- a = N.ravel(a)
- b = N.ravel(b)
- dimension = 0
- x1 = amean(a, dimension)
- x2 = amean(b, dimension)
- v1 = avar(a, dimension)
- v2 = avar(b, dimension)
- n1 = a.shape[dimension]
- n2 = b.shape[dimension]
- df = n1 + n2 - 2
- svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / float(df)
- zerodivproblem = N.equal(svar, 0)
- svar = N.where(zerodivproblem, 1, svar) # avoid zero-division in 1st place
- t = (x1 - x2) / N.sqrt(svar *
- (1.0 / n1 + 1.0 / n2)) # N-D COMPUTATION HERE!!!!!!
- t = N.where(zerodivproblem, 1.0, t) # replace NaN/wrong t-values with 1.0
- probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
-
- if type(t) == N.ndarray:
- probs = N.reshape(probs, t.shape)
- if probs.shape == (1,):
- probs = probs[0]
-
- if printit <> 0:
- if type(t) == N.ndarray:
- t = t[0]
- if type(probs) == N.ndarray:
- probs = probs[0]
- statname = 'Independent samples T-test.'
- outputpairedstats(printit, writemode, name1, n1, x1, v1,
- N.minimum.reduce(N.ravel(a)),
- N.maximum.reduce(N.ravel(a)), name2, n2, x2, v2,
- N.minimum.reduce(N.ravel(b)),
- N.maximum.reduce(N.ravel(b)), statname, t, probs)
- return
- return t, probs
-
- def ap2t(pval, df):
- """
-Tries to compute a t-value from a p-value (or pval array) and associated df.
-SLOW for large numbers of elements(!) as it re-computes p-values 20 times
-(smaller step-sizes) at which point it decides it's done. Keeps the signs
-of the input array. Returns 1000 (or -1000) if t>100.
-
-Usage: ap2t(pval,df)
-Returns: an array of t-values with the shape of pval
- """
- pval = N.array(pval)
- signs = N.sign(pval)
- pval = abs(pval)
- t = N.ones(pval.shape, N.float_) * 50
- step = N.ones(pval.shape, N.float_) * 25
- print 'Initial ap2t() prob calc'
- prob = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
- print 'ap2t() iter: ',
- for i in range(10):
- print i, ' ',
- t = N.where(pval < prob, t + step, t - step)
- prob = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
- step = step / 2
- print
- # since this is an ugly hack, we get ugly boundaries
- t = N.where(t > 99.9, 1000, t) # hit upper-boundary
- t = t + signs
- return t #, prob, pval
-
- def attest_rel(a,
- b,
- dimension=None,
- printit=0,
- name1='Samp1',
- name2='Samp2',
- writemode='a'):
- """
-Calculates the t-obtained T-test on TWO RELATED samples of scores, a
-and b. From Numerical Recipies, p.483. If printit=1, results are
-printed to the screen. If printit='filename', the results are output
-to 'filename' using the given writemode (default=append). Dimension
-can equal None (ravel array first), or an integer (the dimension over
-which to operate on a and b).
-
-Usage: attest_rel(a,b,dimension=None,printit=0,
- name1='Samp1',name2='Samp2',writemode='a')
-Returns: t-value, two-tailed p-value
-"""
- if dimension == None:
- a = N.ravel(a)
- b = N.ravel(b)
- dimension = 0
- if len(a) <> len(b):
- raise ValueError, 'Unequal length arrays.'
- x1 = amean(a, dimension)
- x2 = amean(b, dimension)
- v1 = avar(a, dimension)
- v2 = avar(b, dimension)
- n = a.shape[dimension]
- df = float(n - 1)
- d = (a - b).astype('d')
-
- denom = N.sqrt(
- (n * N.add.reduce(d * d, dimension) - N.add.reduce(d, dimension)**2) /
- df)
- zerodivproblem = N.equal(denom, 0)
- denom = N.where(zerodivproblem, 1, denom
- ) # avoid zero-division in 1st place
- t = N.add.reduce(d, dimension) / denom # N-D COMPUTATION HERE!!!!!!
- t = N.where(zerodivproblem, 1.0, t) # replace NaN/wrong t-values with 1.0
- probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
- if type(t) == N.ndarray:
- probs = N.reshape(probs, t.shape)
- if probs.shape == (1,):
- probs = probs[0]
-
- if printit <> 0:
- statname = 'Related samples T-test.'
- outputpairedstats(printit, writemode, name1, n, x1, v1,
- N.minimum.reduce(N.ravel(a)),
- N.maximum.reduce(N.ravel(a)), name2, n, x2, v2,
- N.minimum.reduce(N.ravel(b)),
- N.maximum.reduce(N.ravel(b)), statname, t, probs)
- return
- return t, probs
-
- def achisquare(f_obs, f_exp=None):
- """
-Calculates a one-way chi square for array of observed frequencies and returns
-the result. If no expected frequencies are given, the total N is assumed to
-be equally distributed across all groups.
-@@@NOT RIGHT??
-
-Usage: achisquare(f_obs, f_exp=None) f_obs = array of observed cell freq.
-Returns: chisquare-statistic, associated p-value
-"""
-
- k = len(f_obs)
- if f_exp == None:
- f_exp = N.array([sum(f_obs) / float(k)] * len(f_obs), N.float_)
- f_exp = f_exp.astype(N.float_)
- chisq = N.add.reduce((f_obs - f_exp)**2 / f_exp)
- return chisq, achisqprob(chisq, k - 1)
-
- def aks_2samp(data1, data2):
- """
-Computes the Kolmogorov-Smirnof statistic on 2 samples. Modified from
-Numerical Recipies in C, page 493. Returns KS D-value, prob. Not ufunc-
-like.
-
-Usage: aks_2samp(data1,data2) where data1 and data2 are 1D arrays
-Returns: KS D-value, p-value
-"""
- j1 = 0 # N.zeros(data1.shape[1:]) TRIED TO MAKE THIS UFUNC-LIKE
- j2 = 0 # N.zeros(data2.shape[1:])
- fn1 = 0.0 # N.zeros(data1.shape[1:],N.float_)
- fn2 = 0.0 # N.zeros(data2.shape[1:],N.float_)
- n1 = data1.shape[0]
- n2 = data2.shape[0]
- en1 = n1 * 1
- en2 = n2 * 1
- d = N.zeros(data1.shape[1:], N.float_)
- data1 = N.sort(data1, 0)
- data2 = N.sort(data2, 0)
- while j1 < n1 and j2 < n2:
- d1 = data1[j1]
- d2 = data2[j2]
- if d1 <= d2:
- fn1 = (j1) / float(en1)
- j1 = j1 + 1
- if d2 <= d1:
- fn2 = (j2) / float(en2)
- j2 = j2 + 1
- dt = (fn2 - fn1)
- if abs(dt) > abs(d):
- d = dt
-# try:
- en = math.sqrt(en1 * en2 / float(en1 + en2))
- prob = aksprob((en + 0.12 + 0.11 / en) * N.fabs(d))
- # except:
- # prob = 1.0
- return d, prob
-
- def amannwhitneyu(x, y):
- """
-Calculates a Mann-Whitney U statistic on the provided scores and
-returns the result. Use only when the n in each condition is < 20 and
-you have 2 independent samples of ranks. REMEMBER: Mann-Whitney U is
-significant if the u-obtained is LESS THAN or equal to the critical
-value of U.
-
-Usage: amannwhitneyu(x,y) where x,y are arrays of values for 2 conditions
-Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))
-"""
- n1 = len(x)
- n2 = len(y)
- ranked = rankdata(N.concatenate((x, y)))
- rankx = ranked[0:n1] # get the x-ranks
- ranky = ranked[n1:] # the rest are y-ranks
- u1 = n1 * n2 + (n1 * (n1 + 1)) / 2.0 - sum(rankx) # calc U for x
- u2 = n1 * n2 - u1 # remainder is U for y
- bigu = max(u1, u2)
- smallu = min(u1, u2)
- proportion = bigu / float(n1 * n2)
- T = math.sqrt(tiecorrect(ranked)) # correction factor for tied scores
- if T == 0:
- raise ValueError, 'All numbers are identical in amannwhitneyu'
- sd = math.sqrt(T * n1 * n2 * (n1 + n2 + 1) / 12.0)
- z = abs((bigu - n1 * n2 / 2.0) / sd) # normal approximation for prob calc
- return smallu, 1.0 - azprob(z), proportion
-
- def atiecorrect(rankvals):
- """
-Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
-See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
-Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c
-code.
-
-Usage: atiecorrect(rankvals)
-Returns: T correction factor for U or H
-"""
- sorted, posn = ashellsort(N.array(rankvals))
- n = len(sorted)
- T = 0.0
- i = 0
- while (i < n - 1):
- if sorted[i] == sorted[i + 1]:
- nties = 1
- while (i < n - 1) and (sorted[i] == sorted[i + 1]):
- nties = nties + 1
- i = i + 1
- T = T + nties**3 - nties
- i = i + 1
- T = T / float(n**3 - n)
- return 1.0 - T
-
- def aranksums(x, y):
- """
-Calculates the rank sums statistic on the provided scores and returns
-the result.
-
-Usage: aranksums(x,y) where x,y are arrays of values for 2 conditions
-Returns: z-statistic, two-tailed p-value
-"""
- n1 = len(x)
- n2 = len(y)
- alldata = N.concatenate((x, y))
- ranked = arankdata(alldata)
- x = ranked[:n1]
- y = ranked[n1:]
- s = sum(x)
- expected = n1 * (n1 + n2 + 1) / 2.0
- z = (s - expected) / math.sqrt(n1 * n2 * (n1 + n2 + 1) / 12.0)
- prob = 2 * (1.0 - azprob(abs(z)))
- return z, prob
-
- def awilcoxont(x, y):
- """
-Calculates the Wilcoxon T-test for related samples and returns the
-result. A non-parametric T-test.
-
-Usage: awilcoxont(x,y) where x,y are equal-length arrays for 2 conditions
-Returns: t-statistic, two-tailed p-value
-"""
- if len(x) <> len(y):
- raise ValueError, 'Unequal N in awilcoxont. Aborting.'
- d = x - y
- d = N.compress(N.not_equal(d, 0), d) # Keep all non-zero differences
- count = len(d)
- absd = abs(d)
- absranked = arankdata(absd)
- r_plus = 0.0
- r_minus = 0.0
- for i in range(len(absd)):
- if d[i] < 0:
- r_minus = r_minus + absranked[i]
- else:
- r_plus = r_plus + absranked[i]
- wt = min(r_plus, r_minus)
- mn = count * (count + 1) * 0.25
- se = math.sqrt(count * (count + 1) * (2.0 * count + 1.0) / 24.0)
- z = math.fabs(wt - mn) / se
- z = math.fabs(wt - mn) / se
- prob = 2 * (1.0 - zprob(abs(z)))
- return wt, prob
-
- def akruskalwallish(*args):
- """
-The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
-groups, requiring at least 5 subjects in each group. This function
-calculates the Kruskal-Wallis H and associated p-value for 3 or more
-independent samples.
-
-Usage: akruskalwallish(*args) args are separate arrays for 3+ conditions
-Returns: H-statistic (corrected for ties), associated p-value
-"""
- assert len(args) == 3, 'Need at least 3 groups in stats.akruskalwallish()'
- args = list(args)
- n = [0] * len(args)
- n = map(len, args)
- all = []
- for i in range(len(args)):
- all = all + args[i].tolist()
- ranked = rankdata(all)
- T = tiecorrect(ranked)
- for i in range(len(args)):
- args[i] = ranked[0:n[i]]
- del ranked[0:n[i]]
- rsums = []
- for i in range(len(args)):
- rsums.append(sum(args[i])**2)
- rsums[i] = rsums[i] / float(n[i])
- ssbn = sum(rsums)
- totaln = sum(n)
- h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
- df = len(args) - 1
- if T == 0:
- raise ValueError, 'All numbers are identical in akruskalwallish'
- h = h / float(T)
- return h, chisqprob(h, df)
-
- def afriedmanchisquare(*args):
- """
-Friedman Chi-Square is a non-parametric, one-way within-subjects
-ANOVA. This function calculates the Friedman Chi-square test for
-repeated measures and returns the result, along with the associated
-probability value. It assumes 3 or more repeated measures. Only 3
-levels requires a minimum of 10 subjects in the study. Four levels
-requires 5 subjects per level(??).
-
-Usage: afriedmanchisquare(*args) args are separate arrays for 2+ conditions
-Returns: chi-square statistic, associated p-value
-"""
- k = len(args)
- if k < 3:
- raise ValueError, ('\nLess than 3 levels. Friedman test not '
- 'appropriate.\n')
- n = len(args[0])
- data = apply(pstat.aabut, args)
- data = data.astype(N.float_)
- for i in range(len(data)):
- data[i] = arankdata(data[i])
- ssbn = asum(asum(args, 1)**2)
- chisq = 12.0 / (k * n * (k + 1)) * ssbn - 3 * n * (k + 1)
- return chisq, achisqprob(chisq, k - 1)
-
-#####################################
-#### APROBABILITY CALCULATIONS ####
-#####################################
-
- def achisqprob(chisq, df):
- """
-Returns the (1-tail) probability value associated with the provided chi-square
-value and df. Heavily modified from chisq.c in Gary Perlman's |Stat. Can
-handle multiple dimensions.
-
-Usage: achisqprob(chisq,df) chisq=chisquare stat., df=degrees of freedom
-"""
- BIG = 200.0
-
- def ex(x):
- BIG = 200.0
- exponents = N.where(N.less(x, -BIG), -BIG, x)
- return N.exp(exponents)
-
- if type(chisq) == N.ndarray:
- arrayflag = 1
- else:
- arrayflag = 0
- chisq = N.array([chisq])
- if df < 1:
- return N.ones(chisq.shape, N.float)
- probs = N.zeros(chisq.shape, N.float_)
- probs = N.where(
- N.less_equal(chisq, 0), 1.0, probs) # set prob=1 for chisq<0
- a = 0.5 * chisq
- if df > 1:
- y = ex(-a)
- if df % 2 == 0:
- even = 1
- s = y * 1
- s2 = s * 1
- else:
- even = 0
- s = 2.0 * azprob(-N.sqrt(chisq))
- s2 = s * 1
- if (df > 2):
- chisq = 0.5 * (df - 1.0)
- if even:
- z = N.ones(probs.shape, N.float_)
- else:
- z = 0.5 * N.ones(probs.shape, N.float_)
- if even:
- e = N.zeros(probs.shape, N.float_)
- else:
- e = N.log(N.sqrt(N.pi)) * N.ones(probs.shape, N.float_)
- c = N.log(a)
- mask = N.zeros(probs.shape)
- a_big = N.greater(a, BIG)
- a_big_frozen = -1 * N.ones(probs.shape, N.float_)
- totalelements = N.multiply.reduce(N.array(probs.shape))
- while asum(mask) <> totalelements:
- e = N.log(z) + e
- s = s + ex(c * z - a - e)
- z = z + 1.0
- # print z, e, s
- newmask = N.greater(z, chisq)
- a_big_frozen = N.where(newmask * N.equal(mask, 0) * a_big, s,
- a_big_frozen)
- mask = N.clip(newmask + mask, 0, 1)
- if even:
- z = N.ones(probs.shape, N.float_)
- e = N.ones(probs.shape, N.float_)
- else:
- z = 0.5 * N.ones(probs.shape, N.float_)
- e = 1.0 / N.sqrt(N.pi) / N.sqrt(a) * N.ones(probs.shape, N.float_)
- c = 0.0
- mask = N.zeros(probs.shape)
- a_notbig_frozen = -1 * N.ones(probs.shape, N.float_)
- while asum(mask) <> totalelements:
- e = e * (a / z.astype(N.float_))
- c = c + e
- z = z + 1.0
- # print '#2', z, e, c, s, c*y+s2
- newmask = N.greater(z, chisq)
- a_notbig_frozen = N.where(newmask * N.equal(mask, 0) * (1 - a_big),
- c * y + s2, a_notbig_frozen)
- mask = N.clip(newmask + mask, 0, 1)
- probs = N.where(
- N.equal(probs, 1), 1, N.where(
- N.greater(a, BIG), a_big_frozen, a_notbig_frozen))
- return probs
- else:
- return s
-
- def aerfcc(x):
- """
-Returns the complementary error function erfc(x) with fractional error
-everywhere less than 1.2e-7. Adapted from Numerical Recipies. Can
-handle multiple dimensions.
-
-Usage: aerfcc(x)
-"""
- z = abs(x)
- t = 1.0 / (1.0 + 0.5 * z)
- ans = t * N.exp(-z * z - 1.26551223 + t * (1.00002368 + t * (
- 0.37409196 + t * (0.09678418 + t * (-0.18628806 + t * (
- 0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (
- -0.82215223 + t * 0.17087277)))))))))
- return N.where(N.greater_equal(x, 0), ans, 2.0 - ans)
-
- def azprob(z):
- """
-Returns the area under the normal curve 'to the left of' the given z value.
-Thus,
- for z<0, zprob(z) = 1-tail probability
- for z>0, 1.0-zprob(z) = 1-tail probability
- for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
-Adapted from z.c in Gary Perlman's |Stat. Can handle multiple dimensions.
-
-Usage: azprob(z) where z is a z-value
-"""
-
- def yfunc(y):
- x = (((((((
- ((((((-0.000045255659 * y + 0.000152529290) * y - 0.000019538132) * y
- - 0.000676904986) * y + 0.001390604284) * y - 0.000794620820) * y
- - 0.002034254874) * y + 0.006549791214) * y - 0.010557625006) * y +
- 0.011630447319) * y - 0.009279453341) * y + 0.005353579108) * y -
- 0.002141268741) * y + 0.000535310849) * y + 0.999936657524
- return x
-
- def wfunc(w):
- x = ((((((((0.000124818987 * w - 0.001075204047) * w + 0.005198775019) * w
- - 0.019198292004) * w + 0.059054035642) * w - 0.151968751364) *
- w + 0.319152932694) * w - 0.531923007300) * w +
- 0.797884560593) * N.sqrt(w) * 2.0
- return x
-
- Z_MAX = 6.0 # maximum meaningful z-value
- x = N.zeros(z.shape, N.float_) # initialize
- y = 0.5 * N.fabs(z)
- x = N.where(N.less(y, 1.0), wfunc(y * y), yfunc(y - 2.0)) # get x's
- x = N.where(N.greater(y, Z_MAX * 0.5), 1.0, x) # kill those with big Z
- prob = N.where(N.greater(z, 0), (x + 1) * 0.5, (1 - x) * 0.5)
- return prob
-
- def aksprob(alam):
- """
-Returns the probability value for a K-S statistic computed via ks_2samp.
-Adapted from Numerical Recipies. Can handle multiple dimensions.
-
-Usage: aksprob(alam)
-"""
- if type(alam) == N.ndarray:
- frozen = -1 * N.ones(alam.shape, N.float64)
- alam = alam.astype(N.float64)
- arrayflag = 1
- else:
- frozen = N.array(-1.)
- alam = N.array(alam, N.float64)
- arrayflag = 1
- mask = N.zeros(alam.shape)
- fac = 2.0 * N.ones(alam.shape, N.float_)
- sum = N.zeros(alam.shape, N.float_)
- termbf = N.zeros(alam.shape, N.float_)
- a2 = N.array(-2.0 * alam * alam, N.float64)
- totalelements = N.multiply.reduce(N.array(mask.shape))
- for j in range(1, 201):
- if asum(mask) == totalelements:
- break
- exponents = (a2 * j * j)
- overflowmask = N.less(exponents, -746)
- frozen = N.where(overflowmask, 0, frozen)
- mask = mask + overflowmask
- term = fac * N.exp(exponents)
- sum = sum + term
- newmask = N.where(
- N.less_equal(
- abs(term), (0.001 * termbf)) + N.less(
- abs(term), 1.0e-8 * sum), 1, 0)
- frozen = N.where(newmask * N.equal(mask, 0), sum, frozen)
- mask = N.clip(mask + newmask, 0, 1)
- fac = -fac
- termbf = abs(term)
- if arrayflag:
- return N.where(
- N.equal(frozen, -1), 1.0, frozen) # 1.0 if doesn't converge
- else:
- return N.where(
- N.equal(frozen, -1), 1.0, frozen)[0] # 1.0 if doesn't converge
-
- def afprob(dfnum, dfden, F):
- """
-Returns the 1-tailed significance level (p-value) of an F statistic
-given the degrees of freedom for the numerator (dfR-dfF) and the degrees
-of freedom for the denominator (dfF). Can handle multiple dims for F.
-
-Usage: afprob(dfnum, dfden, F) where usually dfnum=dfbn, dfden=dfwn
-"""
- if type(F) == N.ndarray:
- return abetai(0.5 * dfden, 0.5 * dfnum, dfden / (1.0 * dfden + dfnum * F))
- else:
- return abetai(0.5 * dfden, 0.5 * dfnum, dfden / float(dfden + dfnum * F))
-
- def abetacf(a, b, x, verbose=1):
- """
-Evaluates the continued fraction form of the incomplete Beta function,
-betai. (Adapted from: Numerical Recipies in C.) Can handle multiple
-dimensions for x.
-
-Usage: abetacf(a,b,x,verbose=1)
-"""
- ITMAX = 200
- EPS = 3.0e-7
-
- arrayflag = 1
- if type(x) == N.ndarray:
- frozen = N.ones(x.shape,
- N.float_) * -1 #start out w/ -1s, should replace all
- else:
- arrayflag = 0
- frozen = N.array([-1])
- x = N.array([x])
- mask = N.zeros(x.shape)
- bm = az = am = 1.0
- qab = a + b
- qap = a + 1.0
- qam = a - 1.0
- bz = 1.0 - qab * x / qap
- for i in range(ITMAX + 1):
- if N.sum(N.ravel(N.equal(frozen, -1))) == 0:
- break
- em = float(i + 1)
- tem = em + em
- d = em * (b - em) * x / ((qam + tem) * (a + tem))
- ap = az + d * am
- bp = bz + d * bm
- d = -(a + em) * (qab + em) * x / ((qap + tem) * (a + tem))
- app = ap + d * az
- bpp = bp + d * bz
- aold = az * 1
- am = ap / bpp
- bm = bp / bpp
- az = app / bpp
- bz = 1.0
- newmask = N.less(abs(az - aold), EPS * abs(az))
- frozen = N.where(newmask * N.equal(mask, 0), az, frozen)
- mask = N.clip(mask + newmask, 0, 1)
- noconverge = asum(N.equal(frozen, -1))
- if noconverge <> 0 and verbose:
- print 'a or b too big, or ITMAX too small in Betacf for ', noconverge, ' elements'
- if arrayflag:
- return frozen
- else:
- return frozen[0]
-
- def agammln(xx):
- """
-Returns the gamma function of xx.
- Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
-Adapted from: Numerical Recipies in C. Can handle multiple dims ... but
-probably doesn't normally have to.
-
-Usage: agammln(xx)
-"""
- coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516,
- 0.120858003e-2, -0.536382e-5]
- x = xx - 1.0
- tmp = x + 5.5
- tmp = tmp - (x + 0.5) * N.log(tmp)
- ser = 1.0
- for j in range(len(coeff)):
- x = x + 1
- ser = ser + coeff[j] / x
- return -tmp + N.log(2.50662827465 * ser)
-
- def abetai(a, b, x, verbose=1):
- """
-Returns the incomplete beta function:
-
- I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
-
-where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
-function of a. The continued fraction formulation is implemented
-here, using the betacf function. (Adapted from: Numerical Recipies in
-C.) Can handle multiple dimensions.
-
-Usage: abetai(a,b,x,verbose=1)
-"""
- TINY = 1e-15
- if type(a) == N.ndarray:
- if asum(N.less(x, 0) + N.greater(x, 1)) <> 0:
- raise ValueError, 'Bad x in abetai'
- x = N.where(N.equal(x, 0), TINY, x)
- x = N.where(N.equal(x, 1.0), 1 - TINY, x)
-
- bt = N.where(N.equal(x, 0) + N.equal(x, 1), 0, -1)
- exponents = (gammln(a + b) - gammln(a) - gammln(b) + a * N.log(x) + b *
- N.log(1.0 - x))
- # 746 (below) is the MAX POSSIBLE BEFORE OVERFLOW
- exponents = N.where(N.less(exponents, -740), -740, exponents)
- bt = N.exp(exponents)
- if type(x) == N.ndarray:
- ans = N.where(
- N.less(x, (a + 1) / (a + b + 2.0)), bt * abetacf(a, b, x, verbose) /
- float(a), 1.0 - bt * abetacf(b, a, 1.0 - x, verbose) / float(b))
- else:
- if x < (a + 1) / (a + b + 2.0):
- ans = bt * abetacf(a, b, x, verbose) / float(a)
- else:
- ans = 1.0 - bt * abetacf(b, a, 1.0 - x, verbose) / float(b)
- return ans
-
-#####################################
-####### AANOVA CALCULATIONS #######
-#####################################
-
- import numpy.linalg, operator
- LA = numpy.linalg
-
- def aglm(data, para):
- """
-Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken
-from:
- Peterson et al. Statistical limitations in functional neuroimaging
- I. Non-inferential methods and statistical models. Phil Trans Royal Soc
- Lond B 354: 1239-1260.
-
-Usage: aglm(data,para)
-Returns: statistic, p-value ???
-"""
- if len(para) <> len(data):
- print 'data and para must be same length in aglm'
- return
- n = len(para)
- p = pstat.aunique(para)
- x = N.zeros((n, len(p))) # design matrix
- for l in range(len(p)):
- x[:, l] = N.equal(para, p[l])
- b = N.dot(
- N.dot(
- LA.inv(N.dot(
- N.transpose(x), x)), # i.e., b=inv(X'X)X'Y
- N.transpose(x)),
- data)
- diffs = (data - N.dot(x, b))
- s_sq = 1. / (n - len(p)) * N.dot(N.transpose(diffs), diffs)
-
- if len(p) == 2: # ttest_ind
- c = N.array([1, -1])
- df = n - 2
- fact = asum(1.0 / asum(x, 0)) # i.e., 1/n1 + 1/n2 + 1/n3 ...
- t = N.dot(c, b) / N.sqrt(s_sq * fact)
- probs = abetai(0.5 * df, 0.5, float(df) / (df + t * t))
- return t, probs
-
- def aF_oneway(*args):
- """
-Performs a 1-way ANOVA, returning an F-value and probability given
-any number of groups. From Heiman, pp.394-7.
-
-Usage: aF_oneway (*args) where *args is 2 or more arrays, one per
- treatment group
-Returns: f-value, probability
-"""
- na = len(args) # ANOVA on 'na' groups, each in it's own array
- means = [0] * na
- vars = [0] * na
- ns = [0] * na
- alldata = []
- tmp = map(N.array, args)
- means = map(amean, tmp)
- vars = map(avar, tmp)
- ns = map(len, args)
- alldata = N.concatenate(args)
- bign = len(alldata)
- sstot = ass(alldata) - (asquare_of_sums(alldata) / float(bign))
- ssbn = 0
- for a in args:
- ssbn = ssbn + asquare_of_sums(N.array(a)) / float(len(a))
- ssbn = ssbn - (asquare_of_sums(alldata) / float(bign))
- sswn = sstot - ssbn
- dfbn = na - 1
- dfwn = bign - na
- msb = ssbn / float(dfbn)
- msw = sswn / float(dfwn)
- f = msb / msw
- prob = fprob(dfbn, dfwn, f)
- return f, prob
-
- def aF_value(ER, EF, dfR, dfF):
- """
-Returns an F-statistic given the following:
- ER = error associated with the null hypothesis (the Restricted model)
- EF = error associated with the alternate hypothesis (the Full model)
- dfR = degrees of freedom the Restricted model
- dfF = degrees of freedom associated with the Restricted model
-"""
- return ((ER - EF) / float(dfR - dfF) / (EF / float(dfF)))
-
- def outputfstats(Enum, Eden, dfnum, dfden, f, prob):
- Enum = round(Enum, 3)
- Eden = round(Eden, 3)
- dfnum = round(Enum, 3)
- dfden = round(dfden, 3)
- f = round(f, 3)
- prob = round(prob, 3)
- suffix = '' # for *s after the p-value
- if prob < 0.001:
- suffix = ' ***'
- elif prob < 0.01:
- suffix = ' **'
- elif prob < 0.05:
- suffix = ' *'
- title = [['EF/ER', 'DF', 'Mean Square', 'F-value', 'prob', '']]
- lofl = title + [[Enum, dfnum, round(Enum / float(dfnum), 3), f, prob, suffix
- ], [Eden, dfden, round(Eden / float(dfden), 3), '', '', '']]
- pstat.printcc(lofl)
- return
-
- def F_value_multivariate(ER, EF, dfnum, dfden):
- """
-Returns an F-statistic given the following:
- ER = error associated with the null hypothesis (the Restricted model)
- EF = error associated with the alternate hypothesis (the Full model)
- dfR = degrees of freedom the Restricted model
- dfF = degrees of freedom associated with the Restricted model
-where ER and EF are matrices from a multivariate F calculation.
-"""
- if type(ER) in [IntType, FloatType]:
- ER = N.array([[ER]])
- if type(EF) in [IntType, FloatType]:
- EF = N.array([[EF]])
- n_um = (LA.det(ER) - LA.det(EF)) / float(dfnum)
- d_en = LA.det(EF) / float(dfden)
- return n_um / d_en
-
-#####################################
-####### ASUPPORT FUNCTIONS ########
-#####################################
-
- def asign(a):
- """
-Usage: asign(a)
-Returns: array shape of a, with -1 where a<0 and +1 where a>=0
-"""
- a = N.asarray(a)
- if ((type(a) == type(1.4)) or (type(a) == type(1))):
- return a - a - N.less(a, 0) + N.greater(a, 0)
- else:
- return N.zeros(N.shape(a)) - N.less(a, 0) + N.greater(a, 0)
-
- def asum(a, dimension=None, keepdims=0):
- """
-An alternative to the Numeric.add.reduce function, which allows one to
-(1) collapse over multiple dimensions at once, and/or (2) to retain
-all dimensions in the original array (squashing one down to size.
-Dimension can equal None (ravel array first), an integer (the
-dimension over which to operate), or a sequence (operate over multiple
-dimensions). If keepdims=1, the resulting array will have as many
-dimensions as the input array.
-
-Usage: asum(a, dimension=None, keepdims=0)
-Returns: array summed along 'dimension'(s), same _number_ of dims if keepdims=1
-"""
- if type(a) == N.ndarray and a.dtype in [N.int_, N.short, N.ubyte]:
- a = a.astype(N.float_)
- if dimension == None:
- s = N.sum(N.ravel(a))
- elif type(dimension) in [IntType, FloatType]:
- s = N.add.reduce(a, dimension)
- if keepdims == 1:
- shp = list(a.shape)
- shp[dimension] = 1
- s = N.reshape(s, shp)
- else: # must be a SEQUENCE of dims to sum over
- dims = list(dimension)
- dims.sort()
- dims.reverse()
- s = a * 1.0
- for dim in dims:
- s = N.add.reduce(s, dim)
- if keepdims == 1:
- shp = list(a.shape)
- for dim in dims:
- shp[dim] = 1
- s = N.reshape(s, shp)
- return s
-
- def acumsum(a, dimension=None):
- """
-Returns an array consisting of the cumulative sum of the items in the
-passed array. Dimension can equal None (ravel array first), an
-integer (the dimension over which to operate), or a sequence (operate
-over multiple dimensions, but this last one just barely makes sense).
-
-Usage: acumsum(a,dimension=None)
-"""
- if dimension == None:
- a = N.ravel(a)
- dimension = 0
- if type(dimension) in [ListType, TupleType, N.ndarray]:
- dimension = list(dimension)
- dimension.sort()
- dimension.reverse()
- for d in dimension:
- a = N.add.accumulate(a, d)
- return a
- else:
- return N.add.accumulate(a, dimension)
-
- def ass(inarray, dimension=None, keepdims=0):
- """
-Squares each value in the passed array, adds these squares & returns
-the result. Unfortunate function name. :-) Defaults to ALL values in
-the array. Dimension can equal None (ravel array first), an integer
-(the dimension over which to operate), or a sequence (operate over
-multiple dimensions). Set keepdims=1 to maintain the original number
-of dimensions.
-
-Usage: ass(inarray, dimension=None, keepdims=0)
-Returns: sum-along-'dimension' for (inarray*inarray)
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- return asum(inarray * inarray, dimension, keepdims)
-
- def asummult(array1, array2, dimension=None, keepdims=0):
- """
-Multiplies elements in array1 and array2, element by element, and
-returns the sum (along 'dimension') of all resulting multiplications.
-Dimension can equal None (ravel array first), an integer (the
-dimension over which to operate), or a sequence (operate over multiple
-dimensions). A trivial function, but included for completeness.
-
-Usage: asummult(array1,array2,dimension=None,keepdims=0)
-"""
- if dimension == None:
- array1 = N.ravel(array1)
- array2 = N.ravel(array2)
- dimension = 0
- return asum(array1 * array2, dimension, keepdims)
-
- def asquare_of_sums(inarray, dimension=None, keepdims=0):
- """
-Adds the values in the passed array, squares that sum, and returns the
-result. Dimension can equal None (ravel array first), an integer (the
-dimension over which to operate), or a sequence (operate over multiple
-dimensions). If keepdims=1, the returned array will have the same
-NUMBER of dimensions as the original.
-
-Usage: asquare_of_sums(inarray, dimension=None, keepdims=0)
-Returns: the square of the sum over dim(s) in dimension
-"""
- if dimension == None:
- inarray = N.ravel(inarray)
- dimension = 0
- s = asum(inarray, dimension, keepdims)
- if type(s) == N.ndarray:
- return s.astype(N.float_) * s
- else:
- return float(s) * s
-
- def asumdiffsquared(a, b, dimension=None, keepdims=0):
- """
-Takes pairwise differences of the values in arrays a and b, squares
-these differences, and returns the sum of these squares. Dimension
-can equal None (ravel array first), an integer (the dimension over
-which to operate), or a sequence (operate over multiple dimensions).
-keepdims=1 means the return shape = len(a.shape) = len(b.shape)
-
-Usage: asumdiffsquared(a,b)
-Returns: sum[ravel(a-b)**2]
-"""
- if dimension == None:
- inarray = N.ravel(a)
- dimension = 0
- return asum((a - b)**2, dimension, keepdims)
-
- def ashellsort(inarray):
- """
-Shellsort algorithm. Sorts a 1D-array.
-
-Usage: ashellsort(inarray)
-Returns: sorted-inarray, sorting-index-vector (for original array)
-"""
- n = len(inarray)
- svec = inarray * 1.0
- ivec = range(n)
- gap = n / 2 # integer division needed
- while gap > 0:
- for i in range(gap, n):
- for j in range(i - gap, -1, -gap):
- while j >= 0 and svec[j] > svec[j + gap]:
- temp = svec[j]
- svec[j] = svec[j + gap]
- svec[j + gap] = temp
- itemp = ivec[j]
- ivec[j] = ivec[j + gap]
- ivec[j + gap] = itemp
- gap = gap / 2 # integer division needed
-# svec is now sorted input vector, ivec has the order svec[i] = vec[ivec[i]]
- return svec, ivec
-
- def arankdata(inarray):
- """
-Ranks the data in inarray, dealing with ties appropritely. Assumes
-a 1D inarray. Adapted from Gary Perlman's |Stat ranksort.
-
-Usage: arankdata(inarray)
-Returns: array of length equal to inarray, containing rank scores
-"""
- n = len(inarray)
- svec, ivec = ashellsort(inarray)
- sumranks = 0
- dupcount = 0
- newarray = N.zeros(n, N.float_)
- for i in range(n):
- sumranks = sumranks + i
- dupcount = dupcount + 1
- if i == n - 1 or svec[i] <> svec[i + 1]:
- averank = sumranks / float(dupcount) + 1
- for j in range(i - dupcount + 1, i + 1):
- newarray[ivec[j]] = averank
- sumranks = 0
- dupcount = 0
- return newarray
-
- def afindwithin(data):
- """
-Returns a binary vector, 1=within-subject factor, 0=between. Input
-equals the entire data array (i.e., column 1=random factor, last
-column = measured values.
-
-Usage: afindwithin(data) data in |Stat format
-"""
- numfact = len(data[0]) - 2
- withinvec = [0] * numfact
- for col in range(1, numfact + 1):
- rows = pstat.linexand(data, col, pstat.unique(pstat.colex(data, 1))[0]
- ) # get 1 level of this factor
- if len(pstat.unique(pstat.colex(rows, 0))) < len(
- rows): # if fewer subjects than scores on this factor
- withinvec[col - 1] = 1
- return withinvec
-
- #########################################################
- #########################################################
- ###### RE-DEFINE DISPATCHES TO INCLUDE ARRAYS #########
- #########################################################
- #########################################################
-
- ## CENTRAL TENDENCY:
- geometricmean = Dispatch(
- (lgeometricmean, (ListType, TupleType)), (ageometricmean, (N.ndarray,)))
- harmonicmean = Dispatch(
- (lharmonicmean, (ListType, TupleType)), (aharmonicmean, (N.ndarray,)))
- mean = Dispatch((lmean, (ListType, TupleType)), (amean, (N.ndarray,)))
- median = Dispatch((lmedian, (ListType, TupleType)), (amedian, (N.ndarray,)))
- medianscore = Dispatch(
- (lmedianscore, (ListType, TupleType)), (amedianscore, (N.ndarray,)))
- mode = Dispatch((lmode, (ListType, TupleType)), (amode, (N.ndarray,)))
- tmean = Dispatch((atmean, (N.ndarray,)))
- tvar = Dispatch((atvar, (N.ndarray,)))
- tstdev = Dispatch((atstdev, (N.ndarray,)))
- tsem = Dispatch((atsem, (N.ndarray,)))
-
- ## VARIATION:
- moment = Dispatch((lmoment, (ListType, TupleType)), (amoment, (N.ndarray,)))
- variation = Dispatch(
- (lvariation, (ListType, TupleType)), (avariation, (N.ndarray,)))
- skew = Dispatch((lskew, (ListType, TupleType)), (askew, (N.ndarray,)))
- kurtosis = Dispatch(
- (lkurtosis, (ListType, TupleType)), (akurtosis, (N.ndarray,)))
- describe = Dispatch(
- (ldescribe, (ListType, TupleType)), (adescribe, (N.ndarray,)))
-
- ## DISTRIBUTION TESTS
-
- skewtest = Dispatch(
- (askewtest, (ListType, TupleType)), (askewtest, (N.ndarray,)))
- kurtosistest = Dispatch(
- (akurtosistest, (ListType, TupleType)), (akurtosistest, (N.ndarray,)))
- normaltest = Dispatch(
- (anormaltest, (ListType, TupleType)), (anormaltest, (N.ndarray,)))
-
- ## FREQUENCY STATS:
- itemfreq = Dispatch(
- (litemfreq, (ListType, TupleType)), (aitemfreq, (N.ndarray,)))
- scoreatpercentile = Dispatch(
- (lscoreatpercentile, (ListType, TupleType)), (ascoreatpercentile,
- (N.ndarray,)))
- percentileofscore = Dispatch(
- (lpercentileofscore, (ListType, TupleType)), (apercentileofscore,
- (N.ndarray,)))
- histogram = Dispatch(
- (lhistogram, (ListType, TupleType)), (ahistogram, (N.ndarray,)))
- cumfreq = Dispatch(
- (lcumfreq, (ListType, TupleType)), (acumfreq, (N.ndarray,)))
- relfreq = Dispatch(
- (lrelfreq, (ListType, TupleType)), (arelfreq, (N.ndarray,)))
-
- ## VARIABILITY:
- obrientransform = Dispatch(
- (lobrientransform, (ListType, TupleType)), (aobrientransform,
- (N.ndarray,)))
- samplevar = Dispatch(
- (lsamplevar, (ListType, TupleType)), (asamplevar, (N.ndarray,)))
- samplestdev = Dispatch(
- (lsamplestdev, (ListType, TupleType)), (asamplestdev, (N.ndarray,)))
- signaltonoise = Dispatch((asignaltonoise, (N.ndarray,)),)
- var = Dispatch((lvar, (ListType, TupleType)), (avar, (N.ndarray,)))
- stdev = Dispatch((lstdev, (ListType, TupleType)), (astdev, (N.ndarray,)))
- sterr = Dispatch((lsterr, (ListType, TupleType)), (asterr, (N.ndarray,)))
- sem = Dispatch((lsem, (ListType, TupleType)), (asem, (N.ndarray,)))
- z = Dispatch((lz, (ListType, TupleType)), (az, (N.ndarray,)))
- zs = Dispatch((lzs, (ListType, TupleType)), (azs, (N.ndarray,)))
-
- ## TRIMMING FCNS:
- threshold = Dispatch((athreshold, (N.ndarray,)),)
- trimboth = Dispatch(
- (ltrimboth, (ListType, TupleType)), (atrimboth, (N.ndarray,)))
- trim1 = Dispatch((ltrim1, (ListType, TupleType)), (atrim1, (N.ndarray,)))
-
- ## CORRELATION FCNS:
- paired = Dispatch((lpaired, (ListType, TupleType)), (apaired, (N.ndarray,)))
- lincc = Dispatch((llincc, (ListType, TupleType)), (alincc, (N.ndarray,)))
- pearsonr = Dispatch(
- (lpearsonr, (ListType, TupleType)), (apearsonr, (N.ndarray,)))
- spearmanr = Dispatch(
- (lspearmanr, (ListType, TupleType)), (aspearmanr, (N.ndarray,)))
- pointbiserialr = Dispatch(
- (lpointbiserialr, (ListType, TupleType)), (apointbiserialr, (N.ndarray,)))
- kendalltau = Dispatch(
- (lkendalltau, (ListType, TupleType)), (akendalltau, (N.ndarray,)))
- linregress = Dispatch(
- (llinregress, (ListType, TupleType)), (alinregress, (N.ndarray,)))
-
- ## INFERENTIAL STATS:
- ttest_1samp = Dispatch(
- (lttest_1samp, (ListType, TupleType)), (attest_1samp, (N.ndarray,)))
- ttest_ind = Dispatch(
- (lttest_ind, (ListType, TupleType)), (attest_ind, (N.ndarray,)))
- ttest_rel = Dispatch(
- (lttest_rel, (ListType, TupleType)), (attest_rel, (N.ndarray,)))
- chisquare = Dispatch(
- (lchisquare, (ListType, TupleType)), (achisquare, (N.ndarray,)))
- ks_2samp = Dispatch(
- (lks_2samp, (ListType, TupleType)), (aks_2samp, (N.ndarray,)))
- mannwhitneyu = Dispatch(
- (lmannwhitneyu, (ListType, TupleType)), (amannwhitneyu, (N.ndarray,)))
- tiecorrect = Dispatch(
- (ltiecorrect, (ListType, TupleType)), (atiecorrect, (N.ndarray,)))
- ranksums = Dispatch(
- (lranksums, (ListType, TupleType)), (aranksums, (N.ndarray,)))
- wilcoxont = Dispatch(
- (lwilcoxont, (ListType, TupleType)), (awilcoxont, (N.ndarray,)))
- kruskalwallish = Dispatch(
- (lkruskalwallish, (ListType, TupleType)), (akruskalwallish, (N.ndarray,)))
- friedmanchisquare = Dispatch(
- (lfriedmanchisquare, (ListType, TupleType)), (afriedmanchisquare,
- (N.ndarray,)))
-
- ## PROBABILITY CALCS:
- chisqprob = Dispatch(
- (lchisqprob, (IntType, FloatType)), (achisqprob, (N.ndarray,)))
- zprob = Dispatch((lzprob, (IntType, FloatType)), (azprob, (N.ndarray,)))
- ksprob = Dispatch((lksprob, (IntType, FloatType)), (aksprob, (N.ndarray,)))
- fprob = Dispatch((lfprob, (IntType, FloatType)), (afprob, (N.ndarray,)))
- betacf = Dispatch((lbetacf, (IntType, FloatType)), (abetacf, (N.ndarray,)))
- betai = Dispatch((lbetai, (IntType, FloatType)), (abetai, (N.ndarray,)))
- erfcc = Dispatch((lerfcc, (IntType, FloatType)), (aerfcc, (N.ndarray,)))
- gammln = Dispatch((lgammln, (IntType, FloatType)), (agammln, (N.ndarray,)))
-
- ## ANOVA FUNCTIONS:
- F_oneway = Dispatch(
- (lF_oneway, (ListType, TupleType)), (aF_oneway, (N.ndarray,)))
- F_value = Dispatch(
- (lF_value, (ListType, TupleType)), (aF_value, (N.ndarray,)))
-
- ## SUPPORT FUNCTIONS:
- incr = Dispatch((lincr, (ListType, TupleType, N.ndarray)),)
- sum = Dispatch((lsum, (ListType, TupleType)), (asum, (N.ndarray,)))
- cumsum = Dispatch((lcumsum, (ListType, TupleType)), (acumsum, (N.ndarray,)))
- ss = Dispatch((lss, (ListType, TupleType)), (ass, (N.ndarray,)))
- summult = Dispatch(
- (lsummult, (ListType, TupleType)), (asummult, (N.ndarray,)))
- square_of_sums = Dispatch(
- (lsquare_of_sums, (ListType, TupleType)), (asquare_of_sums, (N.ndarray,)))
- sumdiffsquared = Dispatch(
- (lsumdiffsquared, (ListType, TupleType)), (asumdiffsquared, (N.ndarray,)))
- shellsort = Dispatch(
- (lshellsort, (ListType, TupleType)), (ashellsort, (N.ndarray,)))
- rankdata = Dispatch(
- (lrankdata, (ListType, TupleType)), (arankdata, (N.ndarray,)))
- findwithin = Dispatch(
- (lfindwithin, (ListType, TupleType)), (afindwithin, (N.ndarray,)))
-
-###################### END OF NUMERIC FUNCTION BLOCK #####################
-
-###################### END OF STATISTICAL FUNCTIONS ######################
-
-except ImportError:
- pass