// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins.h" #include "src/builtins/builtins-utils.h" #include "src/code-factory.h" #include "src/contexts.h" #include "src/elements.h" namespace v8 { namespace internal { namespace { inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { // This is an extended version of ECMA-262 7.1.11 handling signed values // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] if (object->IsSmi()) { *out = Smi::cast(object)->value(); return true; } else if (object->IsHeapNumber()) { double value = HeapNumber::cast(object)->value(); if (std::isnan(value)) { *out = 0; } else if (value > kMaxInt) { *out = kMaxInt; } else if (value < kMinInt) { *out = kMinInt; } else { *out = static_cast(value); } return true; } else if (object->IsUndefined(isolate) || object->IsNull(isolate)) { *out = 0; return true; } else if (object->IsBoolean()) { *out = object->IsTrue(isolate); return true; } return false; } inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle object, int* out) { Context* context = *isolate->native_context(); Map* map = object->map(); if (map != context->sloppy_arguments_map() && map != context->strict_arguments_map() && map != context->fast_aliased_arguments_map()) { return false; } DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); if (!len_obj->IsSmi()) return false; *out = Max(0, Smi::cast(len_obj)->value()); return *out <= object->elements()->length(); } inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, JSArray* receiver) { return JSObject::PrototypeHasNoElements(isolate, receiver); } inline bool HasSimpleElements(JSObject* current) { return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && !current->GetElementsAccessor()->HasAccessors(current); } inline bool HasOnlySimpleReceiverElements(Isolate* isolate, JSObject* receiver) { // Check that we have no accessors on the receiver's elements. if (!HasSimpleElements(receiver)) return false; return JSObject::PrototypeHasNoElements(isolate, receiver); } inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { DisallowHeapAllocation no_gc; PrototypeIterator iter(isolate, receiver, kStartAtReceiver); for (; !iter.IsAtEnd(); iter.Advance()) { if (iter.GetCurrent()->IsJSProxy()) return false; JSObject* current = iter.GetCurrent(); if (!HasSimpleElements(current)) return false; } return true; } // Returns |false| if not applicable. MUST_USE_RESULT inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, Handle receiver, BuiltinArguments* args, int first_added_arg) { if (!receiver->IsJSArray()) return false; Handle array = Handle::cast(receiver); ElementsKind origin_kind = array->GetElementsKind(); if (IsDictionaryElementsKind(origin_kind)) return false; if (!array->map()->is_extensible()) return false; if (args == nullptr) return true; // If there may be elements accessors in the prototype chain, the fast path // cannot be used if there arguments to add to the array. if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; // Adding elements to the array prototype would break code that makes sure // it has no elements. Handle that elsewhere. if (isolate->IsAnyInitialArrayPrototype(array)) return false; // Need to ensure that the arguments passed in args can be contained in // the array. int args_length = args->length(); if (first_added_arg >= args_length) return true; if (IsFastObjectElementsKind(origin_kind)) return true; ElementsKind target_kind = origin_kind; { DisallowHeapAllocation no_gc; for (int i = first_added_arg; i < args_length; i++) { Object* arg = (*args)[i]; if (arg->IsHeapObject()) { if (arg->IsHeapNumber()) { target_kind = FAST_DOUBLE_ELEMENTS; } else { target_kind = FAST_ELEMENTS; break; } } } } if (target_kind != origin_kind) { // Use a short-lived HandleScope to avoid creating several copies of the // elements handle which would cause issues when left-trimming later-on. HandleScope scope(isolate); JSObject::TransitionElementsKind(array, target_kind); } return true; } MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, Handle function, BuiltinArguments args) { HandleScope handleScope(isolate); int argc = args.length() - 1; ScopedVector> argv(argc); for (int i = 0; i < argc; ++i) { argv[i] = args.at(i + 1); } RETURN_RESULT_OR_FAILURE( isolate, Execution::Call(isolate, function, args.receiver(), argc, argv.start())); } Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) { HandleScope scope(isolate); Handle receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { return CallJsIntrinsic(isolate, isolate->array_push(), args); } // Fast Elements Path int to_add = args.length() - 1; Handle array = Handle::cast(receiver); int len = Smi::cast(array->length())->value(); if (to_add == 0) return Smi::FromInt(len); // Currently fixed arrays cannot grow too big, so we should never hit this. DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_push(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); int new_length = accessor->Push(array, &args, to_add); return Smi::FromInt(new_length); } } // namespace BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); } // TODO(verwaest): This is a temporary helper until the FastArrayPush stub can // tailcall to the builtin directly. RUNTIME_FUNCTION(Runtime_ArrayPush) { DCHECK_EQ(2, args.length()); Arguments* incoming = reinterpret_cast(args[0]); // Rewrap the arguments as builtins arguments. int argc = incoming->length() + BuiltinArguments::kNumExtraArgsWithReceiver; BuiltinArguments caller_args(argc, incoming->arguments() + 1); return DoArrayPush(isolate, caller_args); } BUILTIN(ArrayPop) { HandleScope scope(isolate); Handle receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { return CallJsIntrinsic(isolate, isolate->array_pop(), args); } Handle array = Handle::cast(receiver); uint32_t len = static_cast(Smi::cast(array->length())->value()); if (len == 0) return isolate->heap()->undefined_value(); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_pop(), args); } Handle result; if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { // Fast Elements Path result = array->GetElementsAccessor()->Pop(array); } else { // Use Slow Lookup otherwise uint32_t new_length = len - 1; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSReceiver::GetElement(isolate, array, new_length)); JSArray::SetLength(array, new_length); } return *result; } BUILTIN(ArrayShift) { HandleScope scope(isolate); Heap* heap = isolate->heap(); Handle receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { return CallJsIntrinsic(isolate, isolate->array_shift(), args); } Handle array = Handle::cast(receiver); int len = Smi::cast(array->length())->value(); if (len == 0) return heap->undefined_value(); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_shift(), args); } Handle first = array->GetElementsAccessor()->Shift(array); return *first; } BUILTIN(ArrayUnshift) { HandleScope scope(isolate); Handle receiver = args.receiver(); if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { return CallJsIntrinsic(isolate, isolate->array_unshift(), args); } Handle array = Handle::cast(receiver); int to_add = args.length() - 1; if (to_add == 0) return array->length(); // Currently fixed arrays cannot grow too big, so we should never hit this. DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); if (JSArray::HasReadOnlyLength(array)) { return CallJsIntrinsic(isolate, isolate->array_unshift(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); int new_length = accessor->Unshift(array, &args, to_add); return Smi::FromInt(new_length); } BUILTIN(ArraySlice) { HandleScope scope(isolate); Handle receiver = args.receiver(); int len = -1; int relative_start = 0; int relative_end = 0; if (receiver->IsJSArray()) { DisallowHeapAllocation no_gc; JSArray* array = JSArray::cast(*receiver); if (V8_UNLIKELY(!array->HasFastElements() || !IsJSArrayFastElementMovingAllowed(isolate, array) || !isolate->IsArraySpeciesLookupChainIntact() || // If this is a subclass of Array, then call out to JS !array->HasArrayPrototype(isolate))) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } len = Smi::cast(array->length())->value(); } else if (receiver->IsJSObject() && GetSloppyArgumentsLength(isolate, Handle::cast(receiver), &len)) { // Array.prototype.slice.call(arguments, ...) is quite a common idiom // (notably more than 50% of invocations in Web apps). // Treat it in C++ as well. DCHECK(JSObject::cast(*receiver)->HasFastElements() || JSObject::cast(*receiver)->HasFastArgumentsElements()); } else { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } DCHECK_LE(0, len); int argument_count = args.length() - 1; // Note carefully chosen defaults---if argument is missing, // it's undefined which gets converted to 0 for relative_start // and to len for relative_end. relative_start = 0; relative_end = len; if (argument_count > 0) { DisallowHeapAllocation no_gc; if (!ClampedToInteger(isolate, args[1], &relative_start)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } if (argument_count > 1) { Object* end_arg = args[2]; // slice handles the end_arg specially if (end_arg->IsUndefined(isolate)) { relative_end = len; } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_slice(), args); } } } // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. uint32_t actual_end = (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); Handle object = Handle::cast(receiver); ElementsAccessor* accessor = object->GetElementsAccessor(); return *accessor->Slice(object, actual_start, actual_end); } BUILTIN(ArraySplice) { HandleScope scope(isolate); Handle receiver = args.receiver(); if (V8_UNLIKELY( !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || // If this is a subclass of Array, then call out to JS. !Handle::cast(receiver)->HasArrayPrototype(isolate) || // If anything with @@species has been messed with, call out to JS. !isolate->IsArraySpeciesLookupChainIntact())) { return CallJsIntrinsic(isolate, isolate->array_splice(), args); } Handle array = Handle::cast(receiver); int argument_count = args.length() - 1; int relative_start = 0; if (argument_count > 0) { DisallowHeapAllocation no_gc; if (!ClampedToInteger(isolate, args[1], &relative_start)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } } int len = Smi::cast(array->length())->value(); // clip relative start to [0, len] int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) : Min(relative_start, len); int actual_delete_count; if (argument_count == 1) { // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is // given as a request to delete all the elements from the start. // And it differs from the case of undefined delete count. // This does not follow ECMA-262, but we do the same for compatibility. DCHECK(len - actual_start >= 0); actual_delete_count = len - actual_start; } else { int delete_count = 0; DisallowHeapAllocation no_gc; if (argument_count > 1) { if (!ClampedToInteger(isolate, args[2], &delete_count)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } } actual_delete_count = Min(Max(delete_count, 0), len - actual_start); } int add_count = (argument_count > 1) ? (argument_count - 2) : 0; int new_length = len - actual_delete_count + add_count; if (new_length != len && JSArray::HasReadOnlyLength(array)) { AllowHeapAllocation allow_allocation; return CallJsIntrinsic(isolate, isolate->array_splice(), args); } ElementsAccessor* accessor = array->GetElementsAccessor(); Handle result_array = accessor->Splice( array, actual_start, actual_delete_count, &args, add_count); return *result_array; } // Array Concat ------------------------------------------------------------- namespace { /** * A simple visitor visits every element of Array's. * The backend storage can be a fixed array for fast elements case, * or a dictionary for sparse array. Since Dictionary is a subtype * of FixedArray, the class can be used by both fast and slow cases. * The second parameter of the constructor, fast_elements, specifies * whether the storage is a FixedArray or Dictionary. * * An index limit is used to deal with the situation that a result array * length overflows 32-bit non-negative integer. */ class ArrayConcatVisitor { public: ArrayConcatVisitor(Isolate* isolate, Handle storage, bool fast_elements) : isolate_(isolate), storage_(isolate->global_handles()->Create(*storage)), index_offset_(0u), bit_field_( FastElementsField::encode(fast_elements) | ExceedsLimitField::encode(false) | IsFixedArrayField::encode(storage->IsFixedArray()) | HasSimpleElementsField::encode(storage->IsFixedArray() || storage->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER)) { DCHECK(!(this->fast_elements() && !is_fixed_array())); } ~ArrayConcatVisitor() { clear_storage(); } MUST_USE_RESULT bool visit(uint32_t i, Handle elm) { uint32_t index = index_offset_ + i; if (i >= JSObject::kMaxElementCount - index_offset_) { set_exceeds_array_limit(true); // Exception hasn't been thrown at this point. Return true to // break out, and caller will throw. !visit would imply that // there is already a pending exception. return true; } if (!is_fixed_array()) { LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); MAYBE_RETURN( JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), false); return true; } if (fast_elements()) { if (index < static_cast(storage_fixed_array()->length())) { storage_fixed_array()->set(index, *elm); return true; } // Our initial estimate of length was foiled, possibly by // getters on the arrays increasing the length of later arrays // during iteration. // This shouldn't happen in anything but pathological cases. SetDictionaryMode(); // Fall-through to dictionary mode. } DCHECK(!fast_elements()); Handle dict( SeededNumberDictionary::cast(*storage_)); // The object holding this backing store has just been allocated, so // it cannot yet be used as a prototype. Handle result = SeededNumberDictionary::AtNumberPut(dict, index, elm, false); if (!result.is_identical_to(dict)) { // Dictionary needed to grow. clear_storage(); set_storage(*result); } return true; } void increase_index_offset(uint32_t delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) { index_offset_ = JSObject::kMaxElementCount; } else { index_offset_ += delta; } // If the initial length estimate was off (see special case in visit()), // but the array blowing the limit didn't contain elements beyond the // provided-for index range, go to dictionary mode now. if (fast_elements() && index_offset_ > static_cast(FixedArrayBase::cast(*storage_)->length())) { SetDictionaryMode(); } } bool exceeds_array_limit() const { return ExceedsLimitField::decode(bit_field_); } Handle ToArray() { DCHECK(is_fixed_array()); Handle array = isolate_->factory()->NewJSArray(0); Handle length = isolate_->factory()->NewNumber(static_cast(index_offset_)); Handle map = JSObject::GetElementsTransitionMap( array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); array->set_map(*map); array->set_length(*length); array->set_elements(*storage_fixed_array()); return array; } // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever // (otherwise) Handle storage_fixed_array() { DCHECK(is_fixed_array()); DCHECK(has_simple_elements()); return Handle::cast(storage_); } Handle storage_jsreceiver() { DCHECK(!is_fixed_array()); return Handle::cast(storage_); } bool has_simple_elements() const { return HasSimpleElementsField::decode(bit_field_); } private: // Convert storage to dictionary mode. void SetDictionaryMode() { DCHECK(fast_elements() && is_fixed_array()); Handle current_storage = storage_fixed_array(); Handle slow_storage( SeededNumberDictionary::New(isolate_, current_storage->length())); uint32_t current_length = static_cast(current_storage->length()); FOR_WITH_HANDLE_SCOPE( isolate_, uint32_t, i = 0, i, i < current_length, i++, { Handle element(current_storage->get(i), isolate_); if (!element->IsTheHole(isolate_)) { // The object holding this backing store has just been allocated, so // it cannot yet be used as a prototype. Handle new_storage = SeededNumberDictionary::AtNumberPut(slow_storage, i, element, false); if (!new_storage.is_identical_to(slow_storage)) { slow_storage = loop_scope.CloseAndEscape(new_storage); } } }); clear_storage(); set_storage(*slow_storage); set_fast_elements(false); } inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } inline void set_storage(FixedArray* storage) { DCHECK(is_fixed_array()); DCHECK(has_simple_elements()); storage_ = isolate_->global_handles()->Create(storage); } class FastElementsField : public BitField {}; class ExceedsLimitField : public BitField {}; class IsFixedArrayField : public BitField {}; class HasSimpleElementsField : public BitField {}; bool fast_elements() const { return FastElementsField::decode(bit_field_); } void set_fast_elements(bool fast) { bit_field_ = FastElementsField::update(bit_field_, fast); } void set_exceeds_array_limit(bool exceeds) { bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); } bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } Isolate* isolate_; Handle storage_; // Always a global handle. // Index after last seen index. Always less than or equal to // JSObject::kMaxElementCount. uint32_t index_offset_; uint32_t bit_field_; }; uint32_t EstimateElementCount(Handle array) { DisallowHeapAllocation no_gc; uint32_t length = static_cast(array->length()->Number()); int element_count = 0; switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast(FixedArray::kMaxLength) >= 0); int fast_length = static_cast(length); Isolate* isolate = array->GetIsolate(); FixedArray* elements = FixedArray::cast(array->elements()); for (int i = 0; i < fast_length; i++) { if (!elements->get(i)->IsTheHole(isolate)) element_count++; } break; } case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast(FixedDoubleArray::kMaxLength) >= 0); int fast_length = static_cast(length); if (array->elements()->IsFixedArray()) { DCHECK(FixedArray::cast(array->elements())->length() == 0); break; } FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (int i = 0; i < fast_length; i++) { if (!elements->is_the_hole(i)) element_count++; } break; } case DICTIONARY_ELEMENTS: { SeededNumberDictionary* dictionary = SeededNumberDictionary::cast(array->elements()); Isolate* isolate = dictionary->GetIsolate(); int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* key = dictionary->KeyAt(i); if (dictionary->IsKey(isolate, key)) { element_count++; } } break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // External arrays are always dense. return length; case NO_ELEMENTS: return 0; case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: UNREACHABLE(); return 0; } // As an estimate, we assume that the prototype doesn't contain any // inherited elements. return element_count; } // Used for sorting indices in a List. int compareUInt32(const uint32_t* ap, const uint32_t* bp) { uint32_t a = *ap; uint32_t b = *bp; return (a == b) ? 0 : (a < b) ? -1 : 1; } void CollectElementIndices(Handle object, uint32_t range, List* indices) { Isolate* isolate = object->GetIsolate(); ElementsKind kind = object->GetElementsKind(); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { DisallowHeapAllocation no_gc; FixedArray* elements = FixedArray::cast(object->elements()); uint32_t length = static_cast(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->get(i)->IsTheHole(isolate)) { indices->Add(i); } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { if (object->elements()->IsFixedArray()) { DCHECK(object->elements()->length() == 0); break; } Handle elements( FixedDoubleArray::cast(object->elements())); uint32_t length = static_cast(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->is_the_hole(i)) { indices->Add(i); } } break; } case DICTIONARY_ELEMENTS: { DisallowHeapAllocation no_gc; SeededNumberDictionary* dict = SeededNumberDictionary::cast(object->elements()); uint32_t capacity = dict->Capacity(); FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { Object* k = dict->KeyAt(j); if (!dict->IsKey(isolate, k)) continue; DCHECK(k->IsNumber()); uint32_t index = static_cast(k->Number()); if (index < range) { indices->Add(index); } }); break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { uint32_t length = static_cast( FixedArrayBase::cast(object->elements())->length()); if (range <= length) { length = range; // We will add all indices, so we might as well clear it first // and avoid duplicates. indices->Clear(); } for (uint32_t i = 0; i < length; i++) { indices->Add(i); } if (length == range) return; // All indices accounted for already. break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { ElementsAccessor* accessor = object->GetElementsAccessor(); for (uint32_t i = 0; i < range; i++) { if (accessor->HasElement(object, i)) { indices->Add(i); } } break; } case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: { DCHECK(object->IsJSValue()); Handle js_value = Handle::cast(object); DCHECK(js_value->value()->IsString()); Handle string(String::cast(js_value->value()), isolate); uint32_t length = static_cast(string->length()); uint32_t i = 0; uint32_t limit = Min(length, range); for (; i < limit; i++) { indices->Add(i); } ElementsAccessor* accessor = object->GetElementsAccessor(); for (; i < range; i++) { if (accessor->HasElement(object, i)) { indices->Add(i); } } break; } case NO_ELEMENTS: break; } PrototypeIterator iter(isolate, object); if (!iter.IsAtEnd()) { // The prototype will usually have no inherited element indices, // but we have to check. CollectElementIndices(PrototypeIterator::GetCurrent(iter), range, indices); } } bool IterateElementsSlow(Isolate* isolate, Handle receiver, uint32_t length, ArrayConcatVisitor* visitor) { FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { Maybe maybe = JSReceiver::HasElement(receiver, i); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { Handle element_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), false); if (!visitor->visit(i, element_value)) return false; } }); visitor->increase_index_offset(length); return true; } /** * A helper function that visits "array" elements of a JSReceiver in numerical * order. * * The visitor argument called for each existing element in the array * with the element index and the element's value. * Afterwards it increments the base-index of the visitor by the array * length. * Returns false if any access threw an exception, otherwise true. */ bool IterateElements(Isolate* isolate, Handle receiver, ArrayConcatVisitor* visitor) { uint32_t length = 0; if (receiver->IsJSArray()) { Handle array = Handle::cast(receiver); length = static_cast(array->length()->Number()); } else { Handle val; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); // TODO(caitp): Support larger element indexes (up to 2^53-1). if (!val->ToUint32(&length)) { length = 0; } // TODO(cbruni): handle other element kind as well return IterateElementsSlow(isolate, receiver, length, visitor); } if (!HasOnlySimpleElements(isolate, *receiver) || !visitor->has_simple_elements()) { return IterateElementsSlow(isolate, receiver, length, visitor); } Handle array = Handle::cast(receiver); switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle elements(FixedArray::cast(array->elements())); int fast_length = static_cast(length); DCHECK(fast_length <= elements->length()); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { Handle element_value(elements->get(j), isolate); if (!element_value->IsTheHole(isolate)) { if (!visitor->visit(j, element_value)) return false; } else { Maybe maybe = JSReceiver::HasElement(array, j); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { // Call GetElement on array, not its prototype, or getters won't // have the correct receiver. ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, array, j), false); if (!visitor->visit(j, element_value)) return false; } } }); break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. if (array->elements()->IsFixedArray()) { DCHECK(array->elements()->length() == 0); break; } Handle elements( FixedDoubleArray::cast(array->elements())); int fast_length = static_cast(length); DCHECK(fast_length <= elements->length()); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { if (!elements->is_the_hole(j)) { double double_value = elements->get_scalar(j); Handle element_value = isolate->factory()->NewNumber(double_value); if (!visitor->visit(j, element_value)) return false; } else { Maybe maybe = JSReceiver::HasElement(array, j); if (!maybe.IsJust()) return false; if (maybe.FromJust()) { // Call GetElement on array, not its prototype, or getters won't // have the correct receiver. Handle element_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, JSReceiver::GetElement(isolate, array, j), false); if (!visitor->visit(j, element_value)) return false; } } }); break; } case DICTIONARY_ELEMENTS: { Handle dict(array->element_dictionary()); List indices(dict->Capacity() / 2); // Collect all indices in the object and the prototypes less // than length. This might introduce duplicates in the indices list. CollectElementIndices(array, length, &indices); indices.Sort(&compareUInt32); int n = indices.length(); FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { uint32_t index = indices[j]; Handle element; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element, JSReceiver::GetElement(isolate, array, index), false); if (!visitor->visit(index, element)) return false; // Skip to next different index (i.e., omit duplicates). do { j++; } while (j < n && indices[j] == index); }); break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { FOR_WITH_HANDLE_SCOPE( isolate, uint32_t, index = 0, index, index < length, index++, { Handle element; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element, JSReceiver::GetElement(isolate, array, index), false); if (!visitor->visit(index, element)) return false; }); break; } case NO_ELEMENTS: break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE return IterateElementsSlow(isolate, receiver, length, visitor); case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: // |array| is guaranteed to be an array or typed array. UNREACHABLE(); break; } visitor->increase_index_offset(length); return true; } static Maybe IsConcatSpreadable(Isolate* isolate, Handle obj) { HandleScope handle_scope(isolate); if (!obj->IsJSReceiver()) return Just(false); if (!isolate->IsIsConcatSpreadableLookupChainIntact(JSReceiver::cast(*obj))) { // Slow path if @@isConcatSpreadable has been used. Handle key(isolate->factory()->is_concat_spreadable_symbol()); Handle value; MaybeHandle maybeValue = i::Runtime::GetObjectProperty(isolate, obj, key); if (!maybeValue.ToHandle(&value)) return Nothing(); if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); } return Object::IsArray(obj); } Object* Slow_ArrayConcat(BuiltinArguments* args, Handle species, Isolate* isolate) { int argument_count = args->length(); bool is_array_species = *species == isolate->context()->array_function(); // Pass 1: estimate the length and number of elements of the result. // The actual length can be larger if any of the arguments have getters // that mutate other arguments (but will otherwise be precise). // The number of elements is precise if there are no inherited elements. ElementsKind kind = FAST_SMI_ELEMENTS; uint32_t estimate_result_length = 0; uint32_t estimate_nof_elements = 0; FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { Handle obj((*args)[i], isolate); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle array(Handle::cast(obj)); length_estimate = static_cast(array->length()->Number()); if (length_estimate != 0) { ElementsKind array_kind = GetPackedElementsKind(array->GetElementsKind()); kind = GetMoreGeneralElementsKind(kind, array_kind); } element_estimate = EstimateElementCount(array); } else { if (obj->IsHeapObject()) { kind = GetMoreGeneralElementsKind( kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); } length_estimate = 1; element_estimate = 1; } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { estimate_nof_elements = JSObject::kMaxElementCount; } else { estimate_nof_elements += element_estimate; } }); // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = is_array_species && (estimate_nof_elements * 2) >= estimate_result_length; if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { Handle storage = isolate->factory()->NewFixedDoubleArray(estimate_result_length); int j = 0; bool failure = false; if (estimate_result_length > 0) { Handle double_storage = Handle::cast(storage); for (int i = 0; i < argument_count; i++) { Handle obj((*args)[i], isolate); if (obj->IsSmi()) { double_storage->set(j, Smi::cast(*obj)->value()); j++; } else if (obj->IsNumber()) { double_storage->set(j, obj->Number()); j++; } else { DisallowHeapAllocation no_gc; JSArray* array = JSArray::cast(*obj); uint32_t length = static_cast(array->length()->Number()); switch (array->GetElementsKind()) { case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (uint32_t i = 0; i < length; i++) { if (elements->is_the_hole(i)) { // TODO(jkummerow/verwaest): We could be a bit more clever // here: Check if there are no elements/getters on the // prototype chain, and if so, allow creation of a holey // result array. // Same thing below (holey smi case). failure = true; break; } double double_value = elements->get_scalar(i); double_storage->set(j, double_value); j++; } break; } case FAST_HOLEY_SMI_ELEMENTS: case FAST_SMI_ELEMENTS: { Object* the_hole = isolate->heap()->the_hole_value(); FixedArray* elements(FixedArray::cast(array->elements())); for (uint32_t i = 0; i < length; i++) { Object* element = elements->get(i); if (element == the_hole) { failure = true; break; } int32_t int_value = Smi::cast(element)->value(); double_storage->set(j, int_value); j++; } break; } case FAST_HOLEY_ELEMENTS: case FAST_ELEMENTS: case DICTIONARY_ELEMENTS: case NO_ELEMENTS: DCHECK_EQ(0u, length); break; default: UNREACHABLE(); } } if (failure) break; } } if (!failure) { return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); } // In case of failure, fall through. } Handle storage; if (fast_case) { // The backing storage array must have non-existing elements to preserve // holes across concat operations. storage = isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); } else if (is_array_species) { // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate uint32_t at_least_space_for = estimate_nof_elements + (estimate_nof_elements >> 2); storage = SeededNumberDictionary::New(isolate, at_least_space_for); } else { DCHECK(species->IsConstructor()); Handle length(Smi::kZero, isolate); Handle storage_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, storage_object, Execution::New(isolate, species, species, 1, &length)); storage = Handle::cast(storage_object); } ArrayConcatVisitor visitor(isolate, storage, fast_case); for (int i = 0; i < argument_count; i++) { Handle obj((*args)[i], isolate); Maybe spreadable = IsConcatSpreadable(isolate, obj); MAYBE_RETURN(spreadable, isolate->heap()->exception()); if (spreadable.FromJust()) { Handle object = Handle::cast(obj); if (!IterateElements(isolate, object, &visitor)) { return isolate->heap()->exception(); } } else { if (!visitor.visit(0, obj)) return isolate->heap()->exception(); visitor.increase_index_offset(1); } } if (visitor.exceeds_array_limit()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); } if (is_array_species) { return *visitor.ToArray(); } else { return *visitor.storage_jsreceiver(); } } bool IsSimpleArray(Isolate* isolate, Handle obj) { DisallowHeapAllocation no_gc; Map* map = obj->map(); // If there is only the 'length' property we are fine. if (map->prototype() == isolate->native_context()->initial_array_prototype() && map->NumberOfOwnDescriptors() == 1) { return true; } // TODO(cbruni): slower lookup for array subclasses and support slow // @@IsConcatSpreadable lookup. return false; } MaybeHandle Fast_ArrayConcat(Isolate* isolate, BuiltinArguments* args) { if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { return MaybeHandle(); } // We shouldn't overflow when adding another len. const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); USE(kHalfOfMaxInt); int n_arguments = args->length(); int result_len = 0; { DisallowHeapAllocation no_gc; // Iterate through all the arguments performing checks // and calculating total length. for (int i = 0; i < n_arguments; i++) { Object* arg = (*args)[i]; if (!arg->IsJSArray()) return MaybeHandle(); if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { return MaybeHandle(); } // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. if (!JSObject::cast(arg)->HasFastElements()) { return MaybeHandle(); } Handle array(JSArray::cast(arg), isolate); if (!IsSimpleArray(isolate, array)) { return MaybeHandle(); } // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't // overflow. result_len += Smi::cast(array->length())->value(); DCHECK(result_len >= 0); // Throw an Error if we overflow the FixedArray limits if (FixedDoubleArray::kMaxLength < result_len || FixedArray::kMaxLength < result_len) { AllowHeapAllocation gc; THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength), JSArray); } } } return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); } } // namespace // ES6 22.1.3.1 Array.prototype.concat BUILTIN(ArrayConcat) { HandleScope scope(isolate); Handle receiver = args.receiver(); // TODO(bmeurer): Do we really care about the exact exception message here? if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, isolate->factory()->NewStringFromAsciiChecked( "Array.prototype.concat"))); } ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, receiver, Object::ToObject(isolate, args.receiver())); args[0] = *receiver; Handle result_array; // Avoid a real species read to avoid extra lookups to the array constructor if (V8_LIKELY(receiver->IsJSArray() && Handle::cast(receiver)->HasArrayPrototype(isolate) && isolate->IsArraySpeciesLookupChainIntact())) { if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { return *result_array; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); } // Reading @@species happens before anything else with a side effect, so // we can do it here to determine whether to take the fast path. Handle species; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); if (*species == *isolate->array_function()) { if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { return *result_array; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); } return Slow_ArrayConcat(&args, species, isolate); } void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; Node* object = assembler->Parameter(1); Node* context = assembler->Parameter(4); Label call_runtime(assembler), return_true(assembler), return_false(assembler); assembler->GotoIf(assembler->TaggedIsSmi(object), &return_false); Node* instance_type = assembler->LoadInstanceType(object); assembler->GotoIf(assembler->Word32Equal( instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)), &return_true); // TODO(verwaest): Handle proxies in-place. assembler->Branch(assembler->Word32Equal( instance_type, assembler->Int32Constant(JS_PROXY_TYPE)), &call_runtime, &return_false); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); assembler->Bind(&call_runtime); assembler->Return( assembler->CallRuntime(Runtime::kArrayIsArray, context, object)); } void Builtins::Generate_ArrayIncludes(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Node* array = assembler->Parameter(0); Node* search_element = assembler->Parameter(1); Node* start_from = assembler->Parameter(2); Node* context = assembler->Parameter(3 + 2); Node* intptr_zero = assembler->IntPtrConstant(0); Node* intptr_one = assembler->IntPtrConstant(1); Node* the_hole = assembler->TheHoleConstant(); Node* undefined = assembler->UndefinedConstant(); Node* heap_number_map = assembler->HeapNumberMapConstant(); Variable len_var(assembler, MachineType::PointerRepresentation()), index_var(assembler, MachineType::PointerRepresentation()), start_from_var(assembler, MachineType::PointerRepresentation()); Label init_k(assembler), return_true(assembler), return_false(assembler), call_runtime(assembler); Label init_len(assembler); index_var.Bind(intptr_zero); len_var.Bind(intptr_zero); // Take slow path if not a JSArray, if retrieving elements requires // traversing prototype, or if access checks are required. assembler->BranchIfFastJSArray(array, context, &init_len, &call_runtime); assembler->Bind(&init_len); { // Handle case where JSArray length is not an Smi in the runtime Node* len = assembler->LoadObjectField(array, JSArray::kLengthOffset); assembler->GotoUnless(assembler->TaggedIsSmi(len), &call_runtime); len_var.Bind(assembler->SmiToWord(len)); assembler->Branch(assembler->WordEqual(len_var.value(), intptr_zero), &return_false, &init_k); } assembler->Bind(&init_k); { Label done(assembler), init_k_smi(assembler), init_k_heap_num(assembler), init_k_zero(assembler), init_k_n(assembler); Node* tagged_n = assembler->ToInteger(context, start_from); assembler->Branch(assembler->TaggedIsSmi(tagged_n), &init_k_smi, &init_k_heap_num); assembler->Bind(&init_k_smi); { start_from_var.Bind(assembler->SmiUntag(tagged_n)); assembler->Goto(&init_k_n); } assembler->Bind(&init_k_heap_num); { Label do_return_false(assembler); // This round is lossless for all valid lengths. Node* fp_len = assembler->RoundIntPtrToFloat64(len_var.value()); Node* fp_n = assembler->LoadHeapNumberValue(tagged_n); assembler->GotoIf(assembler->Float64GreaterThanOrEqual(fp_n, fp_len), &do_return_false); start_from_var.Bind(assembler->ChangeInt32ToIntPtr( assembler->TruncateFloat64ToWord32(fp_n))); assembler->Goto(&init_k_n); assembler->Bind(&do_return_false); { index_var.Bind(intptr_zero); assembler->Goto(&return_false); } } assembler->Bind(&init_k_n); { Label if_positive(assembler), if_negative(assembler), done(assembler); assembler->Branch( assembler->IntPtrLessThan(start_from_var.value(), intptr_zero), &if_negative, &if_positive); assembler->Bind(&if_positive); { index_var.Bind(start_from_var.value()); assembler->Goto(&done); } assembler->Bind(&if_negative); { index_var.Bind( assembler->IntPtrAdd(len_var.value(), start_from_var.value())); assembler->Branch( assembler->IntPtrLessThan(index_var.value(), intptr_zero), &init_k_zero, &done); } assembler->Bind(&init_k_zero); { index_var.Bind(intptr_zero); assembler->Goto(&done); } assembler->Bind(&done); } } static int32_t kElementsKind[] = { FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, }; Label if_smiorobjects(assembler), if_packed_doubles(assembler), if_holey_doubles(assembler); Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_packed_doubles, &if_holey_doubles}; Node* map = assembler->LoadMap(array); Node* elements_kind = assembler->LoadMapElementsKind(map); Node* elements = assembler->LoadElements(array); assembler->Switch(elements_kind, &return_false, kElementsKind, element_kind_handlers, arraysize(kElementsKind)); assembler->Bind(&if_smiorobjects); { Variable search_num(assembler, MachineRepresentation::kFloat64); Label ident_loop(assembler, &index_var), heap_num_loop(assembler, &search_num), string_loop(assembler, &index_var), simd_loop(assembler), undef_loop(assembler, &index_var), not_smi(assembler), not_heap_num(assembler); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), ¬_smi); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(&heap_num_loop); assembler->Bind(¬_smi); assembler->GotoIf(assembler->WordEqual(search_element, undefined), &undef_loop); Node* map = assembler->LoadMap(search_element); assembler->GotoIf(assembler->WordNotEqual(map, heap_number_map), ¬_heap_num); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->Goto(&heap_num_loop); assembler->Bind(¬_heap_num); Node* search_type = assembler->LoadMapInstanceType(map); assembler->GotoIf(assembler->IsStringInstanceType(search_type), &string_loop); assembler->GotoIf( assembler->Word32Equal(search_type, assembler->Int32Constant(SIMD128_VALUE_TYPE)), &simd_loop); assembler->Goto(&ident_loop); assembler->Bind(&ident_loop); { assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->WordEqual(element_k, search_element), &return_true); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&ident_loop); } assembler->Bind(&undef_loop); { assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->WordEqual(element_k, undefined), &return_true); assembler->GotoIf(assembler->WordEqual(element_k, the_hole), &return_true); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&undef_loop); } assembler->Bind(&heap_num_loop); { Label nan_loop(assembler, &index_var), not_nan_loop(assembler, &index_var); assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); assembler->Bind(¬_nan_loop); { Label continue_loop(assembler), not_smi(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoUnless(assembler->TaggedIsSmi(element_k), ¬_smi); assembler->Branch( assembler->Float64Equal(search_num.value(), assembler->SmiToFloat64(element_k)), &return_true, &continue_loop); assembler->Bind(¬_smi); assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k), heap_number_map), &continue_loop); assembler->Branch( assembler->Float64Equal(search_num.value(), assembler->LoadHeapNumberValue(element_k)), &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } assembler->Bind(&nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop); assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k), heap_number_map), &continue_loop); assembler->BranchIfFloat64IsNaN( assembler->LoadHeapNumberValue(element_k), &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&nan_loop); } } assembler->Bind(&string_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop); assembler->GotoUnless(assembler->IsStringInstanceType( assembler->LoadInstanceType(element_k)), &continue_loop); // TODO(bmeurer): Consider inlining the StringEqual logic here. Callable callable = CodeFactory::StringEqual(assembler->isolate()); Node* result = assembler->CallStub(callable, context, search_element, element_k); assembler->Branch( assembler->WordEqual(assembler->BooleanConstant(true), result), &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&string_loop); } assembler->Bind(&simd_loop); { Label continue_loop(assembler, &index_var), loop_body(assembler, &index_var); Node* map = assembler->LoadMap(search_element); assembler->Goto(&loop_body); assembler->Bind(&loop_body); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop); Node* map_k = assembler->LoadMap(element_k); assembler->BranchIfSimd128Equal(search_element, map, element_k, map_k, &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&loop_body); } } assembler->Bind(&if_packed_doubles); { Label nan_loop(assembler, &index_var), not_nan_loop(assembler, &index_var), hole_loop(assembler, &index_var), search_notnan(assembler); Variable search_num(assembler, MachineRepresentation::kFloat64); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(¬_nan_loop); assembler->Bind(&search_notnan); assembler->GotoIf(assembler->WordNotEqual( assembler->LoadMap(search_element), heap_number_map), &return_false); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); // Search for HeapNumber assembler->Bind(¬_nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->Branch(assembler->Float64Equal(element_k, search_num.value()), &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } // Search for NaN assembler->Bind(&nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&nan_loop); } } assembler->Bind(&if_holey_doubles); { Label nan_loop(assembler, &index_var), not_nan_loop(assembler, &index_var), hole_loop(assembler, &index_var), search_notnan(assembler); Variable search_num(assembler, MachineRepresentation::kFloat64); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(¬_nan_loop); assembler->Bind(&search_notnan); assembler->GotoIf(assembler->WordEqual(search_element, undefined), &hole_loop); assembler->GotoIf(assembler->WordNotEqual( assembler->LoadMap(search_element), heap_number_map), &return_false); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->BranchIfFloat64IsNaN(search_num.value(), &nan_loop, ¬_nan_loop); // Search for HeapNumber assembler->Bind(¬_nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Load double value or continue if it contains a double hole. Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); assembler->Branch(assembler->Float64Equal(element_k, search_num.value()), &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } // Search for NaN assembler->Bind(&nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Load double value or continue if it contains a double hole. Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); assembler->BranchIfFloat64IsNaN(element_k, &return_true, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&nan_loop); } // Search for the Hole assembler->Bind(&hole_loop); { assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_false); // Check if the element is a double hole, but don't load it. assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::None(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &return_true); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&hole_loop); } } assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); assembler->Bind(&call_runtime); assembler->Return(assembler->CallRuntime(Runtime::kArrayIncludes_Slow, context, array, search_element, start_from)); } void Builtins::Generate_ArrayIndexOf(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Node* array = assembler->Parameter(0); Node* search_element = assembler->Parameter(1); Node* start_from = assembler->Parameter(2); Node* context = assembler->Parameter(3 + 2); Node* intptr_zero = assembler->IntPtrConstant(0); Node* intptr_one = assembler->IntPtrConstant(1); Node* undefined = assembler->UndefinedConstant(); Node* heap_number_map = assembler->HeapNumberMapConstant(); Variable len_var(assembler, MachineType::PointerRepresentation()), index_var(assembler, MachineType::PointerRepresentation()), start_from_var(assembler, MachineType::PointerRepresentation()); Label init_k(assembler), return_found(assembler), return_not_found(assembler), call_runtime(assembler); Label init_len(assembler); index_var.Bind(intptr_zero); len_var.Bind(intptr_zero); // Take slow path if not a JSArray, if retrieving elements requires // traversing prototype, or if access checks are required. assembler->BranchIfFastJSArray(array, context, &init_len, &call_runtime); assembler->Bind(&init_len); { // Handle case where JSArray length is not an Smi in the runtime Node* len = assembler->LoadObjectField(array, JSArray::kLengthOffset); assembler->GotoUnless(assembler->TaggedIsSmi(len), &call_runtime); len_var.Bind(assembler->SmiToWord(len)); assembler->Branch(assembler->WordEqual(len_var.value(), intptr_zero), &return_not_found, &init_k); } assembler->Bind(&init_k); { Label done(assembler), init_k_smi(assembler), init_k_heap_num(assembler), init_k_zero(assembler), init_k_n(assembler); Node* tagged_n = assembler->ToInteger(context, start_from); assembler->Branch(assembler->TaggedIsSmi(tagged_n), &init_k_smi, &init_k_heap_num); assembler->Bind(&init_k_smi); { start_from_var.Bind(assembler->SmiUntag(tagged_n)); assembler->Goto(&init_k_n); } assembler->Bind(&init_k_heap_num); { Label do_return_not_found(assembler); // This round is lossless for all valid lengths. Node* fp_len = assembler->RoundIntPtrToFloat64(len_var.value()); Node* fp_n = assembler->LoadHeapNumberValue(tagged_n); assembler->GotoIf(assembler->Float64GreaterThanOrEqual(fp_n, fp_len), &do_return_not_found); start_from_var.Bind(assembler->ChangeInt32ToIntPtr( assembler->TruncateFloat64ToWord32(fp_n))); assembler->Goto(&init_k_n); assembler->Bind(&do_return_not_found); { index_var.Bind(intptr_zero); assembler->Goto(&return_not_found); } } assembler->Bind(&init_k_n); { Label if_positive(assembler), if_negative(assembler), done(assembler); assembler->Branch( assembler->IntPtrLessThan(start_from_var.value(), intptr_zero), &if_negative, &if_positive); assembler->Bind(&if_positive); { index_var.Bind(start_from_var.value()); assembler->Goto(&done); } assembler->Bind(&if_negative); { index_var.Bind( assembler->IntPtrAdd(len_var.value(), start_from_var.value())); assembler->Branch( assembler->IntPtrLessThan(index_var.value(), intptr_zero), &init_k_zero, &done); } assembler->Bind(&init_k_zero); { index_var.Bind(intptr_zero); assembler->Goto(&done); } assembler->Bind(&done); } } static int32_t kElementsKind[] = { FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, }; Label if_smiorobjects(assembler), if_packed_doubles(assembler), if_holey_doubles(assembler); Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_smiorobjects, &if_packed_doubles, &if_holey_doubles}; Node* map = assembler->LoadMap(array); Node* elements_kind = assembler->LoadMapElementsKind(map); Node* elements = assembler->LoadElements(array); assembler->Switch(elements_kind, &return_not_found, kElementsKind, element_kind_handlers, arraysize(kElementsKind)); assembler->Bind(&if_smiorobjects); { Variable search_num(assembler, MachineRepresentation::kFloat64); Label ident_loop(assembler, &index_var), heap_num_loop(assembler, &search_num), string_loop(assembler, &index_var), simd_loop(assembler), undef_loop(assembler, &index_var), not_smi(assembler), not_heap_num(assembler); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), ¬_smi); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(&heap_num_loop); assembler->Bind(¬_smi); assembler->GotoIf(assembler->WordEqual(search_element, undefined), &undef_loop); Node* map = assembler->LoadMap(search_element); assembler->GotoIf(assembler->WordNotEqual(map, heap_number_map), ¬_heap_num); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->Goto(&heap_num_loop); assembler->Bind(¬_heap_num); Node* search_type = assembler->LoadMapInstanceType(map); assembler->GotoIf(assembler->IsStringInstanceType(search_type), &string_loop); assembler->GotoIf( assembler->Word32Equal(search_type, assembler->Int32Constant(SIMD128_VALUE_TYPE)), &simd_loop); assembler->Goto(&ident_loop); assembler->Bind(&ident_loop); { assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->WordEqual(element_k, search_element), &return_found); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&ident_loop); } assembler->Bind(&undef_loop); { assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->WordEqual(element_k, undefined), &return_found); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&undef_loop); } assembler->Bind(&heap_num_loop); { Label not_nan_loop(assembler, &index_var); assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); assembler->Bind(¬_nan_loop); { Label continue_loop(assembler), not_smi(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoUnless(assembler->TaggedIsSmi(element_k), ¬_smi); assembler->Branch( assembler->Float64Equal(search_num.value(), assembler->SmiToFloat64(element_k)), &return_found, &continue_loop); assembler->Bind(¬_smi); assembler->GotoIf(assembler->WordNotEqual(assembler->LoadMap(element_k), heap_number_map), &continue_loop); assembler->Branch( assembler->Float64Equal(search_num.value(), assembler->LoadHeapNumberValue(element_k)), &return_found, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } } assembler->Bind(&string_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop); assembler->GotoUnless(assembler->IsStringInstanceType( assembler->LoadInstanceType(element_k)), &continue_loop); // TODO(bmeurer): Consider inlining the StringEqual logic here. Callable callable = CodeFactory::StringEqual(assembler->isolate()); Node* result = assembler->CallStub(callable, context, search_element, element_k); assembler->Branch( assembler->WordEqual(assembler->BooleanConstant(true), result), &return_found, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&string_loop); } assembler->Bind(&simd_loop); { Label continue_loop(assembler, &index_var), loop_body(assembler, &index_var); Node* map = assembler->LoadMap(search_element); assembler->Goto(&loop_body); assembler->Bind(&loop_body); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedArrayElement( elements, index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->GotoIf(assembler->TaggedIsSmi(element_k), &continue_loop); Node* map_k = assembler->LoadMap(element_k); assembler->BranchIfSimd128Equal(search_element, map, element_k, map_k, &return_found, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(&loop_body); } } assembler->Bind(&if_packed_doubles); { Label not_nan_loop(assembler, &index_var), search_notnan(assembler); Variable search_num(assembler, MachineRepresentation::kFloat64); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(¬_nan_loop); assembler->Bind(&search_notnan); assembler->GotoIf(assembler->WordNotEqual( assembler->LoadMap(search_element), heap_number_map), &return_not_found); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); // Search for HeapNumber assembler->Bind(¬_nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS); assembler->Branch(assembler->Float64Equal(element_k, search_num.value()), &return_found, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } } assembler->Bind(&if_holey_doubles); { Label not_nan_loop(assembler, &index_var), search_notnan(assembler); Variable search_num(assembler, MachineRepresentation::kFloat64); assembler->GotoUnless(assembler->TaggedIsSmi(search_element), &search_notnan); search_num.Bind(assembler->SmiToFloat64(search_element)); assembler->Goto(¬_nan_loop); assembler->Bind(&search_notnan); assembler->GotoIf(assembler->WordNotEqual( assembler->LoadMap(search_element), heap_number_map), &return_not_found); search_num.Bind(assembler->LoadHeapNumberValue(search_element)); assembler->BranchIfFloat64IsNaN(search_num.value(), &return_not_found, ¬_nan_loop); // Search for HeapNumber assembler->Bind(¬_nan_loop); { Label continue_loop(assembler); assembler->GotoUnless( assembler->UintPtrLessThan(index_var.value(), len_var.value()), &return_not_found); // Load double value or continue if it contains a double hole. Node* element_k = assembler->LoadFixedDoubleArrayElement( elements, index_var.value(), MachineType::Float64(), 0, CodeStubAssembler::INTPTR_PARAMETERS, &continue_loop); assembler->Branch(assembler->Float64Equal(element_k, search_num.value()), &return_found, &continue_loop); assembler->Bind(&continue_loop); index_var.Bind(assembler->IntPtrAdd(index_var.value(), intptr_one)); assembler->Goto(¬_nan_loop); } } assembler->Bind(&return_found); assembler->Return(assembler->ChangeInt32ToTagged(index_var.value())); assembler->Bind(&return_not_found); assembler->Return(assembler->NumberConstant(-1)); assembler->Bind(&call_runtime); assembler->Return(assembler->CallRuntime(Runtime::kArrayIndexOf, context, array, search_element, start_from)); } namespace { template void Generate_ArrayPrototypeIterationMethod(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Node* receiver = assembler->Parameter(0); Node* context = assembler->Parameter(3); Variable var_array(assembler, MachineRepresentation::kTagged); Variable var_map(assembler, MachineRepresentation::kTagged); Variable var_type(assembler, MachineRepresentation::kWord32); Label if_isnotobject(assembler, Label::kDeferred); Label create_array_iterator(assembler); assembler->GotoIf(assembler->TaggedIsSmi(receiver), &if_isnotobject); var_array.Bind(receiver); var_map.Bind(assembler->LoadMap(receiver)); var_type.Bind(assembler->LoadMapInstanceType(var_map.value())); assembler->Branch(assembler->IsJSReceiverInstanceType(var_type.value()), &create_array_iterator, &if_isnotobject); assembler->Bind(&if_isnotobject); { Callable callable = CodeFactory::ToObject(assembler->isolate()); Node* result = assembler->CallStub(callable, context, receiver); var_array.Bind(result); var_map.Bind(assembler->LoadMap(result)); var_type.Bind(assembler->LoadMapInstanceType(var_map.value())); assembler->Goto(&create_array_iterator); } assembler->Bind(&create_array_iterator); assembler->Return(assembler->CreateArrayIterator( var_array.value(), var_map.value(), var_type.value(), context, kIterationKind)); } } // namespace void Builtins::Generate_ArrayPrototypeValues(CodeStubAssembler* assembler) { Generate_ArrayPrototypeIterationMethod(assembler); } void Builtins::Generate_ArrayPrototypeEntries(CodeStubAssembler* assembler) { Generate_ArrayPrototypeIterationMethod(assembler); } void Builtins::Generate_ArrayPrototypeKeys(CodeStubAssembler* assembler) { Generate_ArrayPrototypeIterationMethod(assembler); } void Builtins::Generate_ArrayIteratorPrototypeNext( CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; Node* iterator = assembler->Parameter(0); Node* context = assembler->Parameter(3); Variable var_value(assembler, MachineRepresentation::kTagged); Variable var_done(assembler, MachineRepresentation::kTagged); // Required, or else `throw_bad_receiver` fails a DCHECK due to these // variables not being bound along all paths, despite not being used. var_done.Bind(assembler->TrueConstant()); var_value.Bind(assembler->UndefinedConstant()); Label throw_bad_receiver(assembler, Label::kDeferred); Label set_done(assembler); Label allocate_key_result(assembler); Label allocate_entry_if_needed(assembler); Label allocate_iterator_result(assembler); Label generic_values(assembler); // If O does not have all of the internal slots of an Array Iterator Instance // (22.1.5.3), throw a TypeError exception assembler->GotoIf(assembler->TaggedIsSmi(iterator), &throw_bad_receiver); Node* instance_type = assembler->LoadInstanceType(iterator); assembler->GotoIf( assembler->Uint32LessThan( assembler->Int32Constant(LAST_ARRAY_ITERATOR_TYPE - FIRST_ARRAY_ITERATOR_TYPE), assembler->Int32Sub(instance_type, assembler->Int32Constant( FIRST_ARRAY_ITERATOR_TYPE))), &throw_bad_receiver); // Let a be O.[[IteratedObject]]. Node* array = assembler->LoadObjectField( iterator, JSArrayIterator::kIteratedObjectOffset); // Let index be O.[[ArrayIteratorNextIndex]]. Node* index = assembler->LoadObjectField(iterator, JSArrayIterator::kNextIndexOffset); Node* orig_map = assembler->LoadObjectField( iterator, JSArrayIterator::kIteratedObjectMapOffset); Node* array_map = assembler->LoadMap(array); Label if_isfastarray(assembler), if_isnotfastarray(assembler); assembler->Branch(assembler->WordEqual(orig_map, array_map), &if_isfastarray, &if_isnotfastarray); assembler->Bind(&if_isfastarray); { CSA_ASSERT(assembler, assembler->Word32Equal(assembler->LoadMapInstanceType(array_map), assembler->Int32Constant(JS_ARRAY_TYPE))); Node* length = assembler->LoadObjectField(array, JSArray::kLengthOffset); CSA_ASSERT(assembler, assembler->TaggedIsSmi(length)); CSA_ASSERT(assembler, assembler->TaggedIsSmi(index)); assembler->GotoUnless(assembler->SmiBelow(index, length), &set_done); Node* one = assembler->SmiConstant(Smi::FromInt(1)); assembler->StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kNextIndexOffset, assembler->IntPtrAdd(assembler->BitcastTaggedToWord(index), assembler->BitcastTaggedToWord(one))); var_done.Bind(assembler->FalseConstant()); Node* elements = assembler->LoadElements(array); static int32_t kInstanceType[] = { JS_FAST_ARRAY_KEY_ITERATOR_TYPE, JS_FAST_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_SMI_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_DOUBLE_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FAST_SMI_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_SMI_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE, JS_FAST_HOLEY_DOUBLE_ARRAY_VALUE_ITERATOR_TYPE, }; Label packed_object_values(assembler), holey_object_values(assembler), packed_double_values(assembler), holey_double_values(assembler); Label* kInstanceTypeHandlers[] = { &allocate_key_result, &packed_object_values, &holey_object_values, &packed_object_values, &holey_object_values, &packed_double_values, &holey_double_values, &packed_object_values, &holey_object_values, &packed_object_values, &holey_object_values, &packed_double_values, &holey_double_values}; assembler->Switch(instance_type, &throw_bad_receiver, kInstanceType, kInstanceTypeHandlers, arraysize(kInstanceType)); assembler->Bind(&packed_object_values); { var_value.Bind(assembler->LoadFixedArrayElement( elements, index, 0, CodeStubAssembler::SMI_PARAMETERS)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&packed_double_values); { Node* value = assembler->LoadFixedDoubleArrayElement( elements, index, MachineType::Float64(), 0, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->AllocateHeapNumberWithValue(value)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&holey_object_values); { // Check the array_protector cell, and take the slow path if it's invalid. Node* invalid = assembler->SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler->LoadRoot(Heap::kArrayProtectorRootIndex); Node* cell_value = assembler->LoadObjectField(cell, PropertyCell::kValueOffset); assembler->GotoIf(assembler->WordEqual(cell_value, invalid), &generic_values); var_value.Bind(assembler->UndefinedConstant()); Node* value = assembler->LoadFixedArrayElement( elements, index, 0, CodeStubAssembler::SMI_PARAMETERS); assembler->GotoIf( assembler->WordEqual(value, assembler->TheHoleConstant()), &allocate_entry_if_needed); var_value.Bind(value); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&holey_double_values); { // Check the array_protector cell, and take the slow path if it's invalid. Node* invalid = assembler->SmiConstant(Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler->LoadRoot(Heap::kArrayProtectorRootIndex); Node* cell_value = assembler->LoadObjectField(cell, PropertyCell::kValueOffset); assembler->GotoIf(assembler->WordEqual(cell_value, invalid), &generic_values); var_value.Bind(assembler->UndefinedConstant()); Node* value = assembler->LoadFixedDoubleArrayElement( elements, index, MachineType::Float64(), 0, CodeStubAssembler::SMI_PARAMETERS, &allocate_entry_if_needed); var_value.Bind(assembler->AllocateHeapNumberWithValue(value)); assembler->Goto(&allocate_entry_if_needed); } } assembler->Bind(&if_isnotfastarray); { Label if_istypedarray(assembler), if_isgeneric(assembler); // If a is undefined, return CreateIterResultObject(undefined, true) assembler->GotoIf( assembler->WordEqual(array, assembler->UndefinedConstant()), &allocate_iterator_result); Node* array_type = assembler->LoadInstanceType(array); assembler->Branch( assembler->Word32Equal(array_type, assembler->Int32Constant(JS_TYPED_ARRAY_TYPE)), &if_istypedarray, &if_isgeneric); assembler->Bind(&if_isgeneric); { Label if_wasfastarray(assembler); Node* length = nullptr; { Variable var_length(assembler, MachineRepresentation::kTagged); Label if_isarray(assembler), if_isnotarray(assembler), done(assembler); assembler->Branch( assembler->Word32Equal(array_type, assembler->Int32Constant(JS_ARRAY_TYPE)), &if_isarray, &if_isnotarray); assembler->Bind(&if_isarray); { var_length.Bind( assembler->LoadObjectField(array, JSArray::kLengthOffset)); // Invalidate protector cell if needed assembler->Branch( assembler->WordNotEqual(orig_map, assembler->UndefinedConstant()), &if_wasfastarray, &done); assembler->Bind(&if_wasfastarray); { Label if_invalid(assembler, Label::kDeferred); // A fast array iterator transitioned to a slow iterator during // iteration. Invalidate fast_array_iteration_prtoector cell to // prevent potential deopt loops. assembler->StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectMapOffset, assembler->UndefinedConstant()); assembler->GotoIf( assembler->Uint32LessThanOrEqual( instance_type, assembler->Int32Constant( JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)), &done); Node* invalid = assembler->SmiConstant( Smi::FromInt(Isolate::kProtectorInvalid)); Node* cell = assembler->LoadRoot( Heap::kFastArrayIterationProtectorRootIndex); assembler->StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, invalid); assembler->Goto(&done); } } assembler->Bind(&if_isnotarray); { Node* length_string = assembler->HeapConstant( assembler->isolate()->factory()->length_string()); Callable get_property = CodeFactory::GetProperty(assembler->isolate()); Node* length = assembler->CallStub(get_property, context, array, length_string); Callable to_length = CodeFactory::ToLength(assembler->isolate()); var_length.Bind(assembler->CallStub(to_length, context, length)); assembler->Goto(&done); } assembler->Bind(&done); length = var_length.value(); } assembler->GotoUnlessNumberLessThan(index, length, &set_done); assembler->StoreObjectField(iterator, JSArrayIterator::kNextIndexOffset, assembler->NumberInc(index)); var_done.Bind(assembler->FalseConstant()); assembler->Branch( assembler->Uint32LessThanOrEqual( instance_type, assembler->Int32Constant(JS_GENERIC_ARRAY_KEY_ITERATOR_TYPE)), &allocate_key_result, &generic_values); assembler->Bind(&generic_values); { Callable get_property = CodeFactory::GetProperty(assembler->isolate()); var_value.Bind( assembler->CallStub(get_property, context, array, index)); assembler->Goto(&allocate_entry_if_needed); } } assembler->Bind(&if_istypedarray); { Node* length = nullptr; { Variable var_length(assembler, MachineRepresentation::kTagged); Label if_isdetached(assembler, Label::kDeferred), if_isnotdetached(assembler), done(assembler); Node* buffer = assembler->LoadObjectField(array, JSTypedArray::kBufferOffset); assembler->Branch(assembler->IsDetachedBuffer(buffer), &if_isdetached, &if_isnotdetached); assembler->Bind(&if_isnotdetached); { var_length.Bind( assembler->LoadObjectField(array, JSTypedArray::kLengthOffset)); assembler->Goto(&done); } assembler->Bind(&if_isdetached); { // TODO(caitp): If IsDetached(buffer) is true, throw a TypeError, per // https://github.com/tc39/ecma262/issues/713 var_length.Bind(assembler->SmiConstant(Smi::kZero)); assembler->Goto(&done); } assembler->Bind(&done); length = var_length.value(); } CSA_ASSERT(assembler, assembler->TaggedIsSmi(length)); CSA_ASSERT(assembler, assembler->TaggedIsSmi(index)); assembler->GotoUnless(assembler->SmiBelow(index, length), &set_done); Node* one = assembler->SmiConstant(Smi::FromInt(1)); assembler->StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kNextIndexOffset, assembler->IntPtrAdd(assembler->BitcastTaggedToWord(index), assembler->BitcastTaggedToWord(one))); var_done.Bind(assembler->FalseConstant()); Node* elements = assembler->LoadElements(array); Node* base_ptr = assembler->LoadObjectField( elements, FixedTypedArrayBase::kBasePointerOffset); Node* external_ptr = assembler->LoadObjectField( elements, FixedTypedArrayBase::kExternalPointerOffset); Node* data_ptr = assembler->IntPtrAdd(base_ptr, external_ptr); static int32_t kInstanceType[] = { JS_TYPED_ARRAY_KEY_ITERATOR_TYPE, JS_UINT8_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT8_CLAMPED_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT8_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT16_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT16_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_INT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FLOAT32_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_FLOAT64_ARRAY_KEY_VALUE_ITERATOR_TYPE, JS_UINT8_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT8_CLAMPED_ARRAY_VALUE_ITERATOR_TYPE, JS_INT8_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT16_ARRAY_VALUE_ITERATOR_TYPE, JS_INT16_ARRAY_VALUE_ITERATOR_TYPE, JS_UINT32_ARRAY_VALUE_ITERATOR_TYPE, JS_INT32_ARRAY_VALUE_ITERATOR_TYPE, JS_FLOAT32_ARRAY_VALUE_ITERATOR_TYPE, JS_FLOAT64_ARRAY_VALUE_ITERATOR_TYPE, }; Label uint8_values(assembler), int8_values(assembler), uint16_values(assembler), int16_values(assembler), uint32_values(assembler), int32_values(assembler), float32_values(assembler), float64_values(assembler); Label* kInstanceTypeHandlers[] = { &allocate_key_result, &uint8_values, &uint8_values, &int8_values, &uint16_values, &int16_values, &uint32_values, &int32_values, &float32_values, &float64_values, &uint8_values, &uint8_values, &int8_values, &uint16_values, &int16_values, &uint32_values, &int32_values, &float32_values, &float64_values, }; var_done.Bind(assembler->FalseConstant()); assembler->Switch(instance_type, &throw_bad_receiver, kInstanceType, kInstanceTypeHandlers, arraysize(kInstanceType)); assembler->Bind(&uint8_values); { Node* value_uint8 = assembler->LoadFixedTypedArrayElement( data_ptr, index, UINT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->SmiFromWord(value_uint8)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&int8_values); { Node* value_int8 = assembler->LoadFixedTypedArrayElement( data_ptr, index, INT8_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->SmiFromWord(value_int8)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&uint16_values); { Node* value_uint16 = assembler->LoadFixedTypedArrayElement( data_ptr, index, UINT16_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->SmiFromWord(value_uint16)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&int16_values); { Node* value_int16 = assembler->LoadFixedTypedArrayElement( data_ptr, index, INT16_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->SmiFromWord(value_int16)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&uint32_values); { Node* value_uint32 = assembler->LoadFixedTypedArrayElement( data_ptr, index, UINT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->ChangeUint32ToTagged(value_uint32)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&int32_values); { Node* value_int32 = assembler->LoadFixedTypedArrayElement( data_ptr, index, INT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->ChangeInt32ToTagged(value_int32)); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&float32_values); { Node* value_float32 = assembler->LoadFixedTypedArrayElement( data_ptr, index, FLOAT32_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->AllocateHeapNumberWithValue( assembler->ChangeFloat32ToFloat64(value_float32))); assembler->Goto(&allocate_entry_if_needed); } assembler->Bind(&float64_values); { Node* value_float64 = assembler->LoadFixedTypedArrayElement( data_ptr, index, FLOAT64_ELEMENTS, CodeStubAssembler::SMI_PARAMETERS); var_value.Bind(assembler->AllocateHeapNumberWithValue(value_float64)); assembler->Goto(&allocate_entry_if_needed); } } } assembler->Bind(&set_done); { assembler->StoreObjectFieldNoWriteBarrier( iterator, JSArrayIterator::kIteratedObjectOffset, assembler->UndefinedConstant()); assembler->Goto(&allocate_iterator_result); } assembler->Bind(&allocate_key_result); { var_value.Bind(index); var_done.Bind(assembler->FalseConstant()); assembler->Goto(&allocate_iterator_result); } assembler->Bind(&allocate_entry_if_needed); { assembler->GotoIf( assembler->Int32GreaterThan( instance_type, assembler->Int32Constant(LAST_ARRAY_KEY_VALUE_ITERATOR_TYPE)), &allocate_iterator_result); Node* elements = assembler->AllocateFixedArray(FAST_ELEMENTS, assembler->Int32Constant(2)); assembler->StoreFixedArrayElement(elements, assembler->Int32Constant(0), index, SKIP_WRITE_BARRIER); assembler->StoreFixedArrayElement(elements, assembler->Int32Constant(1), var_value.value(), SKIP_WRITE_BARRIER); Node* entry = assembler->Allocate(JSArray::kSize); Node* map = assembler->LoadContextElement( assembler->LoadNativeContext(context), Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX); assembler->StoreMapNoWriteBarrier(entry, map); assembler->StoreObjectFieldRoot(entry, JSArray::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); assembler->StoreObjectFieldNoWriteBarrier(entry, JSArray::kElementsOffset, elements); assembler->StoreObjectFieldNoWriteBarrier( entry, JSArray::kLengthOffset, assembler->SmiConstant(Smi::FromInt(2))); var_value.Bind(entry); assembler->Goto(&allocate_iterator_result); } assembler->Bind(&allocate_iterator_result); { Node* result = assembler->Allocate(JSIteratorResult::kSize); Node* map = assembler->LoadContextElement(assembler->LoadNativeContext(context), Context::ITERATOR_RESULT_MAP_INDEX); assembler->StoreMapNoWriteBarrier(result, map); assembler->StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); assembler->StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); assembler->StoreObjectFieldNoWriteBarrier( result, JSIteratorResult::kValueOffset, var_value.value()); assembler->StoreObjectFieldNoWriteBarrier( result, JSIteratorResult::kDoneOffset, var_done.value()); assembler->Return(result); } assembler->Bind(&throw_bad_receiver); { // The {receiver} is not a valid JSArrayIterator. Node* result = assembler->CallRuntime( Runtime::kThrowIncompatibleMethodReceiver, context, assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked( "Array Iterator.prototype.next", TENURED)), iterator); assembler->Return(result); } } } // namespace internal } // namespace v8