// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/ic/ic-state.h" #include "src/ast/ast-types.h" #include "src/feedback-vector.h" #include "src/ic/ic.h" #include "src/objects-inl.h" namespace v8 { namespace internal { // static void ICUtility::Clear(Isolate* isolate, Address address, Address constant_pool) { IC::Clear(isolate, address, constant_pool); } // static STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::FIRST_TOKEN; // static STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::LAST_TOKEN; BinaryOpICState::BinaryOpICState(Isolate* isolate, ExtraICState extra_ic_state) : fixed_right_arg_( HasFixedRightArgField::decode(extra_ic_state) ? Just(1 << FixedRightArgValueField::decode(extra_ic_state)) : Nothing()), isolate_(isolate) { op_ = static_cast(FIRST_TOKEN + OpField::decode(extra_ic_state)); left_kind_ = LeftKindField::decode(extra_ic_state); right_kind_ = fixed_right_arg_.IsJust() ? (Smi::IsValid(fixed_right_arg_.FromJust()) ? SMI : INT32) : RightKindField::decode(extra_ic_state); result_kind_ = ResultKindField::decode(extra_ic_state); DCHECK_LE(FIRST_TOKEN, op_); DCHECK_LE(op_, LAST_TOKEN); } ExtraICState BinaryOpICState::GetExtraICState() const { ExtraICState extra_ic_state = OpField::encode(op_ - FIRST_TOKEN) | LeftKindField::encode(left_kind_) | ResultKindField::encode(result_kind_) | HasFixedRightArgField::encode(fixed_right_arg_.IsJust()); if (fixed_right_arg_.IsJust()) { extra_ic_state = FixedRightArgValueField::update( extra_ic_state, WhichPowerOf2(fixed_right_arg_.FromJust())); } else { extra_ic_state = RightKindField::update(extra_ic_state, right_kind_); } return extra_ic_state; } std::string BinaryOpICState::ToString() const { std::string ret = "("; ret += Token::Name(op_); if (CouldCreateAllocationMementos()) ret += "_CreateAllocationMementos"; ret += ":"; ret += BinaryOpICState::KindToString(left_kind_); ret += "*"; if (fixed_right_arg_.IsJust()) { ret += fixed_right_arg_.FromJust(); } else { ret += BinaryOpICState::KindToString(right_kind_); } ret += "->"; ret += BinaryOpICState::KindToString(result_kind_); ret += ")"; return ret; } // static void BinaryOpICState::GenerateAheadOfTime( Isolate* isolate, void (*Generate)(Isolate*, const BinaryOpICState&)) { // TODO(olivf) We should investigate why adding stubs to the snapshot is so // expensive at runtime. When solved we should be able to add most binops to // the snapshot instead of hand-picking them. // Generated list of commonly used stubs #define GENERATE(op, left_kind, right_kind, result_kind) \ do { \ BinaryOpICState state(isolate, op); \ state.left_kind_ = left_kind; \ state.fixed_right_arg_ = Nothing(); \ state.right_kind_ = right_kind; \ state.result_kind_ = result_kind; \ Generate(isolate, state); \ } while (false) GENERATE(Token::ADD, INT32, INT32, INT32); GENERATE(Token::ADD, INT32, INT32, NUMBER); GENERATE(Token::ADD, INT32, NUMBER, NUMBER); GENERATE(Token::ADD, INT32, SMI, INT32); GENERATE(Token::ADD, NUMBER, INT32, NUMBER); GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER); GENERATE(Token::ADD, NUMBER, SMI, NUMBER); GENERATE(Token::ADD, SMI, INT32, INT32); GENERATE(Token::ADD, SMI, INT32, NUMBER); GENERATE(Token::ADD, SMI, NUMBER, NUMBER); GENERATE(Token::ADD, SMI, SMI, INT32); GENERATE(Token::ADD, SMI, SMI, SMI); GENERATE(Token::BIT_AND, INT32, INT32, INT32); GENERATE(Token::BIT_AND, INT32, INT32, SMI); GENERATE(Token::BIT_AND, INT32, SMI, INT32); GENERATE(Token::BIT_AND, INT32, SMI, SMI); GENERATE(Token::BIT_AND, NUMBER, INT32, INT32); GENERATE(Token::BIT_AND, NUMBER, SMI, SMI); GENERATE(Token::BIT_AND, SMI, INT32, INT32); GENERATE(Token::BIT_AND, SMI, INT32, SMI); GENERATE(Token::BIT_AND, SMI, NUMBER, SMI); GENERATE(Token::BIT_AND, SMI, SMI, SMI); GENERATE(Token::BIT_OR, INT32, INT32, INT32); GENERATE(Token::BIT_OR, INT32, INT32, SMI); GENERATE(Token::BIT_OR, INT32, SMI, INT32); GENERATE(Token::BIT_OR, INT32, SMI, SMI); GENERATE(Token::BIT_OR, NUMBER, SMI, INT32); GENERATE(Token::BIT_OR, NUMBER, SMI, SMI); GENERATE(Token::BIT_OR, SMI, INT32, INT32); GENERATE(Token::BIT_OR, SMI, INT32, SMI); GENERATE(Token::BIT_OR, SMI, SMI, SMI); GENERATE(Token::BIT_XOR, INT32, INT32, INT32); GENERATE(Token::BIT_XOR, INT32, INT32, SMI); GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI); GENERATE(Token::BIT_XOR, INT32, SMI, INT32); GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32); GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32); GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI); GENERATE(Token::BIT_XOR, SMI, INT32, INT32); GENERATE(Token::BIT_XOR, SMI, INT32, SMI); GENERATE(Token::BIT_XOR, SMI, SMI, SMI); GENERATE(Token::DIV, INT32, INT32, INT32); GENERATE(Token::DIV, INT32, INT32, NUMBER); GENERATE(Token::DIV, INT32, NUMBER, NUMBER); GENERATE(Token::DIV, INT32, SMI, INT32); GENERATE(Token::DIV, INT32, SMI, NUMBER); GENERATE(Token::DIV, NUMBER, INT32, NUMBER); GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER); GENERATE(Token::DIV, NUMBER, SMI, NUMBER); GENERATE(Token::DIV, SMI, INT32, INT32); GENERATE(Token::DIV, SMI, INT32, NUMBER); GENERATE(Token::DIV, SMI, NUMBER, NUMBER); GENERATE(Token::DIV, SMI, SMI, NUMBER); GENERATE(Token::DIV, SMI, SMI, SMI); GENERATE(Token::MOD, NUMBER, SMI, NUMBER); GENERATE(Token::MOD, SMI, SMI, SMI); GENERATE(Token::MUL, INT32, INT32, INT32); GENERATE(Token::MUL, INT32, INT32, NUMBER); GENERATE(Token::MUL, INT32, NUMBER, NUMBER); GENERATE(Token::MUL, INT32, SMI, INT32); GENERATE(Token::MUL, INT32, SMI, NUMBER); GENERATE(Token::MUL, NUMBER, INT32, NUMBER); GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER); GENERATE(Token::MUL, NUMBER, SMI, NUMBER); GENERATE(Token::MUL, SMI, INT32, INT32); GENERATE(Token::MUL, SMI, INT32, NUMBER); GENERATE(Token::MUL, SMI, NUMBER, NUMBER); GENERATE(Token::MUL, SMI, SMI, INT32); GENERATE(Token::MUL, SMI, SMI, NUMBER); GENERATE(Token::MUL, SMI, SMI, SMI); GENERATE(Token::SAR, INT32, SMI, INT32); GENERATE(Token::SAR, INT32, SMI, SMI); GENERATE(Token::SAR, NUMBER, SMI, SMI); GENERATE(Token::SAR, SMI, SMI, SMI); GENERATE(Token::SHL, INT32, SMI, INT32); GENERATE(Token::SHL, INT32, SMI, SMI); GENERATE(Token::SHL, NUMBER, SMI, SMI); GENERATE(Token::SHL, SMI, SMI, INT32); GENERATE(Token::SHL, SMI, SMI, SMI); GENERATE(Token::SHR, INT32, SMI, SMI); GENERATE(Token::SHR, NUMBER, SMI, INT32); GENERATE(Token::SHR, NUMBER, SMI, SMI); GENERATE(Token::SHR, SMI, SMI, SMI); GENERATE(Token::SUB, INT32, INT32, INT32); GENERATE(Token::SUB, INT32, NUMBER, NUMBER); GENERATE(Token::SUB, INT32, SMI, INT32); GENERATE(Token::SUB, NUMBER, INT32, NUMBER); GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER); GENERATE(Token::SUB, NUMBER, SMI, NUMBER); GENERATE(Token::SUB, SMI, INT32, INT32); GENERATE(Token::SUB, SMI, NUMBER, NUMBER); GENERATE(Token::SUB, SMI, SMI, SMI); #undef GENERATE #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind) \ do { \ BinaryOpICState state(isolate, op); \ state.left_kind_ = left_kind; \ state.fixed_right_arg_ = Just(fixed_right_arg_value); \ state.right_kind_ = SMI; \ state.result_kind_ = result_kind; \ Generate(isolate, state); \ } while (false) GENERATE(Token::MOD, SMI, 2, SMI); GENERATE(Token::MOD, SMI, 4, SMI); GENERATE(Token::MOD, SMI, 8, SMI); GENERATE(Token::MOD, SMI, 16, SMI); GENERATE(Token::MOD, SMI, 32, SMI); GENERATE(Token::MOD, SMI, 2048, SMI); #undef GENERATE } AstType* BinaryOpICState::GetResultType() const { Kind result_kind = result_kind_; if (HasSideEffects()) { result_kind = NONE; } else if (result_kind == GENERIC && op_ == Token::ADD) { return AstType::NumberOrString(); } else if (result_kind == NUMBER && op_ == Token::SHR) { return AstType::Unsigned32(); } DCHECK_NE(GENERIC, result_kind); return KindToType(result_kind); } std::ostream& operator<<(std::ostream& os, const BinaryOpICState& s) { os << "(" << Token::Name(s.op_); if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos"; os << ":" << BinaryOpICState::KindToString(s.left_kind_) << "*"; if (s.fixed_right_arg_.IsJust()) { os << s.fixed_right_arg_.FromJust(); } else { os << BinaryOpICState::KindToString(s.right_kind_); } return os << "->" << BinaryOpICState::KindToString(s.result_kind_) << ")"; } void BinaryOpICState::Update(Handle left, Handle right, Handle result) { ExtraICState old_extra_ic_state = GetExtraICState(); left_kind_ = UpdateKind(left, left_kind_); right_kind_ = UpdateKind(right, right_kind_); int32_t fixed_right_arg_value = 0; bool has_fixed_right_arg = op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) && fixed_right_arg_value > 0 && base::bits::IsPowerOfTwo32(fixed_right_arg_value) && FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) && (left_kind_ == SMI || left_kind_ == INT32) && (result_kind_ == NONE || !fixed_right_arg_.IsJust()); fixed_right_arg_ = has_fixed_right_arg ? Just(fixed_right_arg_value) : Nothing(); result_kind_ = UpdateKind(result, result_kind_); if (!Token::IsTruncatingBinaryOp(op_)) { Kind input_kind = Max(left_kind_, right_kind_); if (result_kind_ < input_kind && input_kind <= NUMBER) { result_kind_ = input_kind; } } // We don't want to distinguish INT32 and NUMBER for string add (because // NumberToString can't make use of this anyway). if (left_kind_ == STRING && right_kind_ == INT32) { DCHECK_EQ(STRING, result_kind_); DCHECK_EQ(Token::ADD, op_); right_kind_ = NUMBER; } else if (right_kind_ == STRING && left_kind_ == INT32) { DCHECK_EQ(STRING, result_kind_); DCHECK_EQ(Token::ADD, op_); left_kind_ = NUMBER; } if (old_extra_ic_state == GetExtraICState()) { // Tagged operations can lead to non-truncating HChanges if (left->IsOddball()) { left_kind_ = GENERIC; } else { DCHECK(right->IsOddball()); right_kind_ = GENERIC; } } } BinaryOpICState::Kind BinaryOpICState::UpdateKind(Handle object, Kind kind) const { Kind new_kind = GENERIC; bool is_truncating = Token::IsTruncatingBinaryOp(op()); if (object->IsOddball() && is_truncating) { // Oddballs will be automatically truncated by HChange. new_kind = INT32; } else if (object->IsUndefined(isolate_)) { // Undefined will be automatically truncated by HChange. new_kind = is_truncating ? INT32 : NUMBER; } else if (object->IsSmi()) { new_kind = SMI; } else if (object->IsHeapNumber()) { double value = Handle::cast(object)->value(); new_kind = IsInt32Double(value) ? INT32 : NUMBER; } else if (object->IsString() && op() == Token::ADD) { new_kind = STRING; } if (new_kind == INT32 && SmiValuesAre32Bits()) { new_kind = NUMBER; } if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) || (new_kind > NUMBER && kind <= NUMBER))) { new_kind = GENERIC; } return Max(kind, new_kind); } // static const char* BinaryOpICState::KindToString(Kind kind) { switch (kind) { case NONE: return "None"; case SMI: return "Smi"; case INT32: return "Int32"; case NUMBER: return "Number"; case STRING: return "String"; case GENERIC: return "Generic"; } UNREACHABLE(); return NULL; } // static AstType* BinaryOpICState::KindToType(Kind kind) { switch (kind) { case NONE: return AstType::None(); case SMI: return AstType::SignedSmall(); case INT32: return AstType::Signed32(); case NUMBER: return AstType::Number(); case STRING: return AstType::String(); case GENERIC: return AstType::Any(); } UNREACHABLE(); return NULL; } const char* CompareICState::GetStateName(State state) { switch (state) { case UNINITIALIZED: return "UNINITIALIZED"; case BOOLEAN: return "BOOLEAN"; case SMI: return "SMI"; case NUMBER: return "NUMBER"; case INTERNALIZED_STRING: return "INTERNALIZED_STRING"; case STRING: return "STRING"; case UNIQUE_NAME: return "UNIQUE_NAME"; case RECEIVER: return "RECEIVER"; case KNOWN_RECEIVER: return "KNOWN_RECEIVER"; case GENERIC: return "GENERIC"; } UNREACHABLE(); return NULL; } AstType* CompareICState::StateToType(Zone* zone, State state, Handle map) { switch (state) { case UNINITIALIZED: return AstType::None(); case BOOLEAN: return AstType::Boolean(); case SMI: return AstType::SignedSmall(); case NUMBER: return AstType::Number(); case STRING: return AstType::String(); case INTERNALIZED_STRING: return AstType::InternalizedString(); case UNIQUE_NAME: return AstType::UniqueName(); case RECEIVER: return AstType::Receiver(); case KNOWN_RECEIVER: return map.is_null() ? AstType::Receiver() : AstType::Class(map, zone); case GENERIC: return AstType::Any(); } UNREACHABLE(); return NULL; } CompareICState::State CompareICState::NewInputState(State old_state, Handle value) { switch (old_state) { case UNINITIALIZED: if (value->IsBoolean()) return BOOLEAN; if (value->IsSmi()) return SMI; if (value->IsHeapNumber()) return NUMBER; if (value->IsInternalizedString()) return INTERNALIZED_STRING; if (value->IsString()) return STRING; if (value->IsSymbol()) return UNIQUE_NAME; if (value->IsJSReceiver() && !value->IsUndetectable()) { return RECEIVER; } break; case BOOLEAN: if (value->IsBoolean()) return BOOLEAN; break; case SMI: if (value->IsSmi()) return SMI; if (value->IsHeapNumber()) return NUMBER; break; case NUMBER: if (value->IsNumber()) return NUMBER; break; case INTERNALIZED_STRING: if (value->IsInternalizedString()) return INTERNALIZED_STRING; if (value->IsString()) return STRING; if (value->IsSymbol()) return UNIQUE_NAME; break; case STRING: if (value->IsString()) return STRING; break; case UNIQUE_NAME: if (value->IsUniqueName()) return UNIQUE_NAME; break; case RECEIVER: if (value->IsJSReceiver() && !value->IsUndetectable()) { return RECEIVER; } break; case GENERIC: break; case KNOWN_RECEIVER: UNREACHABLE(); break; } return GENERIC; } // static CompareICState::State CompareICState::TargetState( Isolate* isolate, State old_state, State old_left, State old_right, Token::Value op, bool has_inlined_smi_code, Handle x, Handle y) { switch (old_state) { case UNINITIALIZED: if (x->IsBoolean() && y->IsBoolean()) return BOOLEAN; if (x->IsSmi() && y->IsSmi()) return SMI; if (x->IsNumber() && y->IsNumber()) return NUMBER; if (Token::IsOrderedRelationalCompareOp(op)) { // Ordered comparisons treat undefined as NaN, so the // NUMBER stub will do the right thing. if ((x->IsNumber() && y->IsUndefined(isolate)) || (y->IsNumber() && x->IsUndefined(isolate))) { return NUMBER; } } if (x->IsInternalizedString() && y->IsInternalizedString()) { // We compare internalized strings as plain ones if we need to determine // the order in a non-equality compare. return Token::IsEqualityOp(op) ? INTERNALIZED_STRING : STRING; } if (x->IsString() && y->IsString()) return STRING; if (x->IsJSReceiver() && y->IsJSReceiver()) { if (x->IsUndetectable() || y->IsUndetectable()) { return GENERIC; } if (Handle::cast(x)->map() == Handle::cast(y)->map()) { return KNOWN_RECEIVER; } else { return Token::IsEqualityOp(op) ? RECEIVER : GENERIC; } } if (!Token::IsEqualityOp(op)) return GENERIC; if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; return GENERIC; case SMI: return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC; case INTERNALIZED_STRING: DCHECK(Token::IsEqualityOp(op)); if (x->IsString() && y->IsString()) return STRING; if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; return GENERIC; case NUMBER: // If the failure was due to one side changing from smi to heap number, // then keep the state (if other changed at the same time, we will get // a second miss and then go to generic). if (old_left == SMI && x->IsHeapNumber()) return NUMBER; if (old_right == SMI && y->IsHeapNumber()) return NUMBER; return GENERIC; case KNOWN_RECEIVER: if (x->IsJSReceiver() && y->IsJSReceiver()) { return Token::IsEqualityOp(op) ? RECEIVER : GENERIC; } return GENERIC; case BOOLEAN: case STRING: case UNIQUE_NAME: case RECEIVER: case GENERIC: return GENERIC; } UNREACHABLE(); return GENERIC; // Make the compiler happy. } } // namespace internal } // namespace v8