// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Review notes: // // - The use of macros in these inline functions may seem superfluous // but it is absolutely needed to make sure gcc generates optimal // code. gcc is not happy when attempting to inline too deep. // #ifndef V8_OBJECTS_INL_H_ #define V8_OBJECTS_INL_H_ #include "elements.h" #include "objects.h" #include "contexts.h" #include "conversions-inl.h" #include "heap.h" #include "isolate.h" #include "property.h" #include "spaces.h" #include "v8memory.h" namespace v8 { namespace internal { PropertyDetails::PropertyDetails(Smi* smi) { value_ = smi->value(); } Smi* PropertyDetails::AsSmi() { return Smi::FromInt(value_); } PropertyDetails PropertyDetails::AsDeleted() { Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1)); return PropertyDetails(smi); } #define CAST_ACCESSOR(type) \ type* type::cast(Object* object) { \ ASSERT(object->Is##type()); \ return reinterpret_cast(object); \ } #define INT_ACCESSORS(holder, name, offset) \ int holder::name() { return READ_INT_FIELD(this, offset); } \ void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); } #define ACCESSORS(holder, name, type, offset) \ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \ void holder::set_##name(type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); \ } // GC-safe accessors do not use HeapObject::GetHeap(), but access TLS instead. #define ACCESSORS_GCSAFE(holder, name, type, offset) \ type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \ void holder::set_##name(type* value, WriteBarrierMode mode) { \ WRITE_FIELD(this, offset, value); \ CONDITIONAL_WRITE_BARRIER(HEAP, this, offset, mode); \ } #define SMI_ACCESSORS(holder, name, offset) \ int holder::name() { \ Object* value = READ_FIELD(this, offset); \ return Smi::cast(value)->value(); \ } \ void holder::set_##name(int value) { \ WRITE_FIELD(this, offset, Smi::FromInt(value)); \ } #define BOOL_GETTER(holder, field, name, offset) \ bool holder::name() { \ return BooleanBit::get(field(), offset); \ } \ #define BOOL_ACCESSORS(holder, field, name, offset) \ bool holder::name() { \ return BooleanBit::get(field(), offset); \ } \ void holder::set_##name(bool value) { \ set_##field(BooleanBit::set(field(), offset, value)); \ } bool Object::IsInstanceOf(FunctionTemplateInfo* expected) { // There is a constraint on the object; check. if (!this->IsJSObject()) return false; // Fetch the constructor function of the object. Object* cons_obj = JSObject::cast(this)->map()->constructor(); if (!cons_obj->IsJSFunction()) return false; JSFunction* fun = JSFunction::cast(cons_obj); // Iterate through the chain of inheriting function templates to // see if the required one occurs. for (Object* type = fun->shared()->function_data(); type->IsFunctionTemplateInfo(); type = FunctionTemplateInfo::cast(type)->parent_template()) { if (type == expected) return true; } // Didn't find the required type in the inheritance chain. return false; } bool Object::IsSmi() { return HAS_SMI_TAG(this); } bool Object::IsHeapObject() { return Internals::HasHeapObjectTag(this); } bool Object::IsHeapNumber() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE; } bool Object::IsString() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE; } bool Object::IsSpecObject() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE; } bool Object::IsSymbol() { if (!this->IsHeapObject()) return false; uint32_t type = HeapObject::cast(this)->map()->instance_type(); // Because the symbol tag is non-zero and no non-string types have the // symbol bit set we can test for symbols with a very simple test // operation. STATIC_ASSERT(kSymbolTag != 0); ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); return (type & kIsSymbolMask) != 0; } bool Object::IsConsString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsCons(); } bool Object::IsSlicedString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSliced(); } bool Object::IsSeqString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential(); } bool Object::IsSeqAsciiString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsAsciiRepresentation(); } bool Object::IsSeqTwoByteString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsSequential() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::IsExternalString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal(); } bool Object::IsExternalAsciiString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsAsciiRepresentation(); } bool Object::IsExternalTwoByteString() { if (!IsString()) return false; return StringShape(String::cast(this)).IsExternal() && String::cast(this)->IsTwoByteRepresentation(); } bool Object::HasValidElements() { // Dictionary is covered under FixedArray. return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray(); } StringShape::StringShape(String* str) : type_(str->map()->instance_type()) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(Map* map) : type_(map->instance_type()) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } StringShape::StringShape(InstanceType t) : type_(static_cast(t)) { set_valid(); ASSERT((type_ & kIsNotStringMask) == kStringTag); } bool StringShape::IsSymbol() { ASSERT(valid()); STATIC_ASSERT(kSymbolTag != 0); return (type_ & kIsSymbolMask) != 0; } bool String::IsAsciiRepresentation() { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kAsciiStringTag; } bool String::IsTwoByteRepresentation() { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kTwoByteStringTag; } bool String::IsAsciiRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); ASSERT(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kAsciiStringTag: return true; case kTwoByteStringTag: return false; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsAsciiRepresentation(); } } bool String::IsTwoByteRepresentationUnderneath() { uint32_t type = map()->instance_type(); STATIC_ASSERT(kIsIndirectStringTag != 0); STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0); ASSERT(IsFlat()); switch (type & (kIsIndirectStringMask | kStringEncodingMask)) { case kAsciiStringTag: return false; case kTwoByteStringTag: return true; default: // Cons or sliced string. Need to go deeper. return GetUnderlying()->IsTwoByteRepresentation(); } } bool String::HasOnlyAsciiChars() { uint32_t type = map()->instance_type(); return (type & kStringEncodingMask) == kAsciiStringTag || (type & kAsciiDataHintMask) == kAsciiDataHintTag; } bool StringShape::IsCons() { return (type_ & kStringRepresentationMask) == kConsStringTag; } bool StringShape::IsSliced() { return (type_ & kStringRepresentationMask) == kSlicedStringTag; } bool StringShape::IsIndirect() { return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag; } bool StringShape::IsExternal() { return (type_ & kStringRepresentationMask) == kExternalStringTag; } bool StringShape::IsSequential() { return (type_ & kStringRepresentationMask) == kSeqStringTag; } StringRepresentationTag StringShape::representation_tag() { uint32_t tag = (type_ & kStringRepresentationMask); return static_cast(tag); } uint32_t StringShape::encoding_tag() { return type_ & kStringEncodingMask; } uint32_t StringShape::full_representation_tag() { return (type_ & (kStringRepresentationMask | kStringEncodingMask)); } STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) == Internals::kFullStringRepresentationMask); bool StringShape::IsSequentialAscii() { return full_representation_tag() == (kSeqStringTag | kAsciiStringTag); } bool StringShape::IsSequentialTwoByte() { return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag); } bool StringShape::IsExternalAscii() { return full_representation_tag() == (kExternalStringTag | kAsciiStringTag); } bool StringShape::IsExternalTwoByte() { return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag); } STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) == Internals::kExternalTwoByteRepresentationTag); uc32 FlatStringReader::Get(int index) { ASSERT(0 <= index && index <= length_); if (is_ascii_) { return static_cast(start_)[index]; } else { return static_cast(start_)[index]; } } bool Object::IsNumber() { return IsSmi() || IsHeapNumber(); } bool Object::IsByteArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE; } bool Object::IsExternalPixelArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_PIXEL_ARRAY_TYPE; } bool Object::IsExternalArray() { if (!Object::IsHeapObject()) return false; InstanceType instance_type = HeapObject::cast(this)->map()->instance_type(); return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE && instance_type <= LAST_EXTERNAL_ARRAY_TYPE); } bool Object::IsExternalByteArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_BYTE_ARRAY_TYPE; } bool Object::IsExternalUnsignedByteArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE; } bool Object::IsExternalShortArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_SHORT_ARRAY_TYPE; } bool Object::IsExternalUnsignedShortArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE; } bool Object::IsExternalIntArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_INT_ARRAY_TYPE; } bool Object::IsExternalUnsignedIntArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_UNSIGNED_INT_ARRAY_TYPE; } bool Object::IsExternalFloatArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_FLOAT_ARRAY_TYPE; } bool Object::IsExternalDoubleArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == EXTERNAL_DOUBLE_ARRAY_TYPE; } bool MaybeObject::IsFailure() { return HAS_FAILURE_TAG(this); } bool MaybeObject::IsRetryAfterGC() { return HAS_FAILURE_TAG(this) && Failure::cast(this)->type() == Failure::RETRY_AFTER_GC; } bool MaybeObject::IsOutOfMemory() { return HAS_FAILURE_TAG(this) && Failure::cast(this)->IsOutOfMemoryException(); } bool MaybeObject::IsException() { return this == Failure::Exception(); } bool MaybeObject::IsTheHole() { return !IsFailure() && ToObjectUnchecked()->IsTheHole(); } Failure* Failure::cast(MaybeObject* obj) { ASSERT(HAS_FAILURE_TAG(obj)); return reinterpret_cast(obj); } bool Object::IsJSReceiver() { return IsHeapObject() && HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE; } bool Object::IsJSObject() { return IsJSReceiver() && !IsJSProxy(); } bool Object::IsJSProxy() { return Object::IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_PROXY_TYPE || HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_PROXY_TYPE); } bool Object::IsJSFunctionProxy() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_PROXY_TYPE; } bool Object::IsJSWeakMap() { return Object::IsJSObject() && HeapObject::cast(this)->map()->instance_type() == JS_WEAK_MAP_TYPE; } bool Object::IsJSContextExtensionObject() { return IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE); } bool Object::IsMap() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == MAP_TYPE; } bool Object::IsFixedArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE; } bool Object::IsFixedDoubleArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == FIXED_DOUBLE_ARRAY_TYPE; } bool Object::IsDescriptorArray() { return IsFixedArray(); } bool Object::IsDeoptimizationInputData() { // Must be a fixed array. if (!IsFixedArray()) return false; // There's no sure way to detect the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can // check that the length is zero or else the fixed size plus a multiple of // the entry size. int length = FixedArray::cast(this)->length(); if (length == 0) return true; length -= DeoptimizationInputData::kFirstDeoptEntryIndex; return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0; } bool Object::IsDeoptimizationOutputData() { if (!IsFixedArray()) return false; // There's actually no way to see the difference between a fixed array and // a deoptimization data array. Since this is used for asserts we can check // that the length is plausible though. if (FixedArray::cast(this)->length() % 2 != 0) return false; return true; } bool Object::IsContext() { if (Object::IsHeapObject()) { Map* map = HeapObject::cast(this)->map(); Heap* heap = map->GetHeap(); return (map == heap->function_context_map() || map == heap->catch_context_map() || map == heap->with_context_map() || map == heap->global_context_map() || map == heap->block_context_map()); } return false; } bool Object::IsGlobalContext() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->global_context_map(); } bool Object::IsSerializedScopeInfo() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->serialized_scope_info_map(); } bool Object::IsJSFunction() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE; } template <> inline bool Is(Object* obj) { return obj->IsJSFunction(); } bool Object::IsCode() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == CODE_TYPE; } bool Object::IsOddball() { ASSERT(HEAP->is_safe_to_read_maps()); return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE; } bool Object::IsJSGlobalPropertyCell() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_GLOBAL_PROPERTY_CELL_TYPE; } bool Object::IsSharedFunctionInfo() { return Object::IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == SHARED_FUNCTION_INFO_TYPE); } bool Object::IsJSValue() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE; } bool Object::IsJSMessageObject() { return Object::IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_MESSAGE_OBJECT_TYPE); } bool Object::IsStringWrapper() { return IsJSValue() && JSValue::cast(this)->value()->IsString(); } bool Object::IsForeign() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == FOREIGN_TYPE; } bool Object::IsBoolean() { return IsOddball() && ((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0); } bool Object::IsJSArray() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE; } bool Object::IsJSRegExp() { return Object::IsHeapObject() && HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE; } template <> inline bool Is(Object* obj) { return obj->IsJSArray(); } bool Object::IsHashTable() { return Object::IsHeapObject() && HeapObject::cast(this)->map() == HeapObject::cast(this)->GetHeap()->hash_table_map(); } bool Object::IsDictionary() { return IsHashTable() && this != HeapObject::cast(this)->GetHeap()->symbol_table(); } bool Object::IsSymbolTable() { return IsHashTable() && this == HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table(); } bool Object::IsJSFunctionResultCache() { if (!IsFixedArray()) return false; FixedArray* self = FixedArray::cast(this); int length = self->length(); if (length < JSFunctionResultCache::kEntriesIndex) return false; if ((length - JSFunctionResultCache::kEntriesIndex) % JSFunctionResultCache::kEntrySize != 0) { return false; } #ifdef DEBUG reinterpret_cast(this)->JSFunctionResultCacheVerify(); #endif return true; } bool Object::IsNormalizedMapCache() { if (!IsFixedArray()) return false; if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) { return false; } #ifdef DEBUG reinterpret_cast(this)->NormalizedMapCacheVerify(); #endif return true; } bool Object::IsCompilationCacheTable() { return IsHashTable(); } bool Object::IsCodeCacheHashTable() { return IsHashTable(); } bool Object::IsPolymorphicCodeCacheHashTable() { return IsHashTable(); } bool Object::IsMapCache() { return IsHashTable(); } bool Object::IsPrimitive() { return IsOddball() || IsNumber() || IsString(); } bool Object::IsJSGlobalProxy() { bool result = IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_GLOBAL_PROXY_TYPE); ASSERT(!result || IsAccessCheckNeeded()); return result; } bool Object::IsGlobalObject() { if (!IsHeapObject()) return false; InstanceType type = HeapObject::cast(this)->map()->instance_type(); return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE; } bool Object::IsJSGlobalObject() { return IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_GLOBAL_OBJECT_TYPE); } bool Object::IsJSBuiltinsObject() { return IsHeapObject() && (HeapObject::cast(this)->map()->instance_type() == JS_BUILTINS_OBJECT_TYPE); } bool Object::IsUndetectableObject() { return IsHeapObject() && HeapObject::cast(this)->map()->is_undetectable(); } bool Object::IsAccessCheckNeeded() { return IsHeapObject() && HeapObject::cast(this)->map()->is_access_check_needed(); } bool Object::IsStruct() { if (!IsHeapObject()) return false; switch (HeapObject::cast(this)->map()->instance_type()) { #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE default: return false; } } #define MAKE_STRUCT_PREDICATE(NAME, Name, name) \ bool Object::Is##Name() { \ return Object::IsHeapObject() \ && HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \ } STRUCT_LIST(MAKE_STRUCT_PREDICATE) #undef MAKE_STRUCT_PREDICATE bool Object::IsUndefined() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined; } bool Object::IsNull() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull; } bool Object::IsTheHole() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole; } bool Object::IsTrue() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue; } bool Object::IsFalse() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse; } bool Object::IsArgumentsMarker() { return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker; } double Object::Number() { ASSERT(IsNumber()); return IsSmi() ? static_cast(reinterpret_cast(this)->value()) : reinterpret_cast(this)->value(); } MaybeObject* Object::ToSmi() { if (IsSmi()) return this; if (IsHeapNumber()) { double value = HeapNumber::cast(this)->value(); int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } } return Failure::Exception(); } bool Object::HasSpecificClassOf(String* name) { return this->IsJSObject() && (JSObject::cast(this)->class_name() == name); } MaybeObject* Object::GetElement(uint32_t index) { // GetElement can trigger a getter which can cause allocation. // This was not always the case. This ASSERT is here to catch // leftover incorrect uses. ASSERT(HEAP->IsAllocationAllowed()); return GetElementWithReceiver(this, index); } Object* Object::GetElementNoExceptionThrown(uint32_t index) { MaybeObject* maybe = GetElementWithReceiver(this, index); ASSERT(!maybe->IsFailure()); Object* result = NULL; // Initialization to please compiler. maybe->ToObject(&result); return result; } MaybeObject* Object::GetProperty(String* key) { PropertyAttributes attributes; return GetPropertyWithReceiver(this, key, &attributes); } MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) { return GetPropertyWithReceiver(this, key, attributes); } #define FIELD_ADDR(p, offset) \ (reinterpret_cast(p) + offset - kHeapObjectTag) #define READ_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) // TODO(isolates): Pass heap in to these macros. #define WRITE_BARRIER(object, offset) \ object->GetHeap()->RecordWrite(object->address(), offset); // CONDITIONAL_WRITE_BARRIER must be issued after the actual // write due to the assert validating the written value. #define CONDITIONAL_WRITE_BARRIER(heap, object, offset, mode) \ if (mode == UPDATE_WRITE_BARRIER) { \ heap->RecordWrite(object->address(), offset); \ } else { \ ASSERT(mode == SKIP_WRITE_BARRIER); \ ASSERT(heap->InNewSpace(object) || \ !heap->InNewSpace(READ_FIELD(object, offset)) || \ Page::FromAddress(object->address())-> \ IsRegionDirty(object->address() + offset)); \ } #ifndef V8_TARGET_ARCH_MIPS #define READ_DOUBLE_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #else // V8_TARGET_ARCH_MIPS // Prevent gcc from using load-double (mips ldc1) on (possibly) // non-64-bit aligned HeapNumber::value. static inline double read_double_field(void* p, int offset) { union conversion { double d; uint32_t u[2]; } c; c.u[0] = (*reinterpret_cast(FIELD_ADDR(p, offset))); c.u[1] = (*reinterpret_cast(FIELD_ADDR(p, offset + 4))); return c.d; } #define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset) #endif // V8_TARGET_ARCH_MIPS #ifndef V8_TARGET_ARCH_MIPS #define WRITE_DOUBLE_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #else // V8_TARGET_ARCH_MIPS // Prevent gcc from using store-double (mips sdc1) on (possibly) // non-64-bit aligned HeapNumber::value. static inline void write_double_field(void* p, int offset, double value) { union conversion { double d; uint32_t u[2]; } c; c.d = value; (*reinterpret_cast(FIELD_ADDR(p, offset))) = c.u[0]; (*reinterpret_cast(FIELD_ADDR(p, offset + 4))) = c.u[1]; } #define WRITE_DOUBLE_FIELD(p, offset, value) \ write_double_field(p, offset, value) #endif // V8_TARGET_ARCH_MIPS #define READ_INT_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_INT_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_INTPTR_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_INTPTR_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_UINT32_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_UINT32_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_SHORT_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_SHORT_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast(FIELD_ADDR(p, offset))) #define WRITE_BYTE_FIELD(p, offset, value) \ (*reinterpret_cast(FIELD_ADDR(p, offset)) = value) Object** HeapObject::RawField(HeapObject* obj, int byte_offset) { return &READ_FIELD(obj, byte_offset); } int Smi::value() { return Internals::SmiValue(this); } Smi* Smi::FromInt(int value) { ASSERT(Smi::IsValid(value)); int smi_shift_bits = kSmiTagSize + kSmiShiftSize; intptr_t tagged_value = (static_cast(value) << smi_shift_bits) | kSmiTag; return reinterpret_cast(tagged_value); } Smi* Smi::FromIntptr(intptr_t value) { ASSERT(Smi::IsValid(value)); int smi_shift_bits = kSmiTagSize + kSmiShiftSize; return reinterpret_cast((value << smi_shift_bits) | kSmiTag); } Failure::Type Failure::type() const { return static_cast(value() & kFailureTypeTagMask); } bool Failure::IsInternalError() const { return type() == INTERNAL_ERROR; } bool Failure::IsOutOfMemoryException() const { return type() == OUT_OF_MEMORY_EXCEPTION; } AllocationSpace Failure::allocation_space() const { ASSERT_EQ(RETRY_AFTER_GC, type()); return static_cast((value() >> kFailureTypeTagSize) & kSpaceTagMask); } Failure* Failure::InternalError() { return Construct(INTERNAL_ERROR); } Failure* Failure::Exception() { return Construct(EXCEPTION); } Failure* Failure::OutOfMemoryException() { return Construct(OUT_OF_MEMORY_EXCEPTION); } intptr_t Failure::value() const { return static_cast( reinterpret_cast(this) >> kFailureTagSize); } Failure* Failure::RetryAfterGC() { return RetryAfterGC(NEW_SPACE); } Failure* Failure::RetryAfterGC(AllocationSpace space) { ASSERT((space & ~kSpaceTagMask) == 0); return Construct(RETRY_AFTER_GC, space); } Failure* Failure::Construct(Type type, intptr_t value) { uintptr_t info = (static_cast(value) << kFailureTypeTagSize) | type; ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info); return reinterpret_cast((info << kFailureTagSize) | kFailureTag); } bool Smi::IsValid(intptr_t value) { #ifdef DEBUG bool in_range = (value >= kMinValue) && (value <= kMaxValue); #endif #ifdef V8_TARGET_ARCH_X64 // To be representable as a long smi, the value must be a 32-bit integer. bool result = (value == static_cast(value)); #else // To be representable as an tagged small integer, the two // most-significant bits of 'value' must be either 00 or 11 due to // sign-extension. To check this we add 01 to the two // most-significant bits, and check if the most-significant bit is 0 // // CAUTION: The original code below: // bool result = ((value + 0x40000000) & 0x80000000) == 0; // may lead to incorrect results according to the C language spec, and // in fact doesn't work correctly with gcc4.1.1 in some cases: The // compiler may produce undefined results in case of signed integer // overflow. The computation must be done w/ unsigned ints. bool result = (static_cast(value + 0x40000000U) < 0x80000000U); #endif ASSERT(result == in_range); return result; } MapWord MapWord::FromMap(Map* map) { return MapWord(reinterpret_cast(map)); } Map* MapWord::ToMap() { return reinterpret_cast(value_); } bool MapWord::IsForwardingAddress() { return HAS_SMI_TAG(reinterpret_cast(value_)); } MapWord MapWord::FromForwardingAddress(HeapObject* object) { Address raw = reinterpret_cast
(object) - kHeapObjectTag; return MapWord(reinterpret_cast(raw)); } HeapObject* MapWord::ToForwardingAddress() { ASSERT(IsForwardingAddress()); return HeapObject::FromAddress(reinterpret_cast
(value_)); } bool MapWord::IsMarked() { return (value_ & kMarkingMask) == 0; } void MapWord::SetMark() { value_ &= ~kMarkingMask; } void MapWord::ClearMark() { value_ |= kMarkingMask; } bool MapWord::IsOverflowed() { return (value_ & kOverflowMask) != 0; } void MapWord::SetOverflow() { value_ |= kOverflowMask; } void MapWord::ClearOverflow() { value_ &= ~kOverflowMask; } MapWord MapWord::EncodeAddress(Address map_address, int offset) { // Offset is the distance in live bytes from the first live object in the // same page. The offset between two objects in the same page should not // exceed the object area size of a page. ASSERT(0 <= offset && offset < Page::kObjectAreaSize); uintptr_t compact_offset = offset >> kObjectAlignmentBits; ASSERT(compact_offset < (1 << kForwardingOffsetBits)); Page* map_page = Page::FromAddress(map_address); ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index); uintptr_t map_page_offset = map_page->Offset(map_address) >> kMapAlignmentBits; uintptr_t encoding = (compact_offset << kForwardingOffsetShift) | (map_page_offset << kMapPageOffsetShift) | (map_page->mc_page_index << kMapPageIndexShift); return MapWord(encoding); } Address MapWord::DecodeMapAddress(MapSpace* map_space) { int map_page_index = static_cast((value_ & kMapPageIndexMask) >> kMapPageIndexShift); ASSERT_MAP_PAGE_INDEX(map_page_index); int map_page_offset = static_cast( ((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift) << kMapAlignmentBits); return (map_space->PageAddress(map_page_index) + map_page_offset); } int MapWord::DecodeOffset() { // The offset field is represented in the kForwardingOffsetBits // most-significant bits. uintptr_t offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits; ASSERT(offset < static_cast(Page::kObjectAreaSize)); return static_cast(offset); } MapWord MapWord::FromEncodedAddress(Address address) { return MapWord(reinterpret_cast(address)); } Address MapWord::ToEncodedAddress() { return reinterpret_cast
(value_); } #ifdef DEBUG void HeapObject::VerifyObjectField(int offset) { VerifyPointer(READ_FIELD(this, offset)); } void HeapObject::VerifySmiField(int offset) { ASSERT(READ_FIELD(this, offset)->IsSmi()); } #endif Heap* HeapObject::GetHeap() { // During GC, the map pointer in HeapObject is used in various ways that // prevent us from retrieving Heap from the map. // Assert that we are not in GC, implement GC code in a way that it doesn't // pull heap from the map. ASSERT(HEAP->is_safe_to_read_maps()); return map()->heap(); } Isolate* HeapObject::GetIsolate() { return GetHeap()->isolate(); } Map* HeapObject::map() { return map_word().ToMap(); } void HeapObject::set_map(Map* value) { set_map_word(MapWord::FromMap(value)); } MapWord HeapObject::map_word() { return MapWord(reinterpret_cast(READ_FIELD(this, kMapOffset))); } void HeapObject::set_map_word(MapWord map_word) { // WRITE_FIELD does not invoke write barrier, but there is no need // here. WRITE_FIELD(this, kMapOffset, reinterpret_cast(map_word.value_)); } HeapObject* HeapObject::FromAddress(Address address) { ASSERT_TAG_ALIGNED(address); return reinterpret_cast(address + kHeapObjectTag); } Address HeapObject::address() { return reinterpret_cast
(this) - kHeapObjectTag; } int HeapObject::Size() { return SizeFromMap(map()); } void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) { v->VisitPointers(reinterpret_cast(FIELD_ADDR(this, start)), reinterpret_cast(FIELD_ADDR(this, end))); } void HeapObject::IteratePointer(ObjectVisitor* v, int offset) { v->VisitPointer(reinterpret_cast(FIELD_ADDR(this, offset))); } bool HeapObject::IsMarked() { return map_word().IsMarked(); } void HeapObject::SetMark() { ASSERT(!IsMarked()); MapWord first_word = map_word(); first_word.SetMark(); set_map_word(first_word); } void HeapObject::ClearMark() { ASSERT(IsMarked()); MapWord first_word = map_word(); first_word.ClearMark(); set_map_word(first_word); } bool HeapObject::IsOverflowed() { return map_word().IsOverflowed(); } void HeapObject::SetOverflow() { MapWord first_word = map_word(); first_word.SetOverflow(); set_map_word(first_word); } void HeapObject::ClearOverflow() { ASSERT(IsOverflowed()); MapWord first_word = map_word(); first_word.ClearOverflow(); set_map_word(first_word); } double HeapNumber::value() { return READ_DOUBLE_FIELD(this, kValueOffset); } void HeapNumber::set_value(double value) { WRITE_DOUBLE_FIELD(this, kValueOffset, value); } int HeapNumber::get_exponent() { return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >> kExponentShift) - kExponentBias; } int HeapNumber::get_sign() { return READ_INT_FIELD(this, kExponentOffset) & kSignMask; } ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset) FixedArrayBase* JSObject::elements() { Object* array = READ_FIELD(this, kElementsOffset); ASSERT(array->HasValidElements()); return static_cast(array); } void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) { ASSERT(map()->has_fast_elements() == (value->map() == GetHeap()->fixed_array_map() || value->map() == GetHeap()->fixed_cow_array_map())); ASSERT(map()->has_fast_double_elements() == value->IsFixedDoubleArray()); ASSERT(value->HasValidElements()); WRITE_FIELD(this, kElementsOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, mode); } void JSObject::initialize_properties() { ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array()); } void JSObject::initialize_elements() { ASSERT(map()->has_fast_elements()); ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array())); WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array()); } MaybeObject* JSObject::ResetElements() { Object* obj; { MaybeObject* maybe_obj = map()->GetFastElementsMap(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } set_map(Map::cast(obj)); initialize_elements(); return this; } ACCESSORS(Oddball, to_string, String, kToStringOffset) ACCESSORS(Oddball, to_number, Object, kToNumberOffset) byte Oddball::kind() { return READ_BYTE_FIELD(this, kKindOffset); } void Oddball::set_kind(byte value) { WRITE_BYTE_FIELD(this, kKindOffset, value); } Object* JSGlobalPropertyCell::value() { return READ_FIELD(this, kValueOffset); } void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) { // The write barrier is not used for global property cells. ASSERT(!val->IsJSGlobalPropertyCell()); WRITE_FIELD(this, kValueOffset, val); } int JSObject::GetHeaderSize() { InstanceType type = map()->instance_type(); // Check for the most common kind of JavaScript object before // falling into the generic switch. This speeds up the internal // field operations considerably on average. if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize; switch (type) { case JS_GLOBAL_PROXY_TYPE: return JSGlobalProxy::kSize; case JS_GLOBAL_OBJECT_TYPE: return JSGlobalObject::kSize; case JS_BUILTINS_OBJECT_TYPE: return JSBuiltinsObject::kSize; case JS_FUNCTION_TYPE: return JSFunction::kSize; case JS_VALUE_TYPE: return JSValue::kSize; case JS_ARRAY_TYPE: return JSValue::kSize; case JS_WEAK_MAP_TYPE: return JSWeakMap::kSize; case JS_REGEXP_TYPE: return JSValue::kSize; case JS_CONTEXT_EXTENSION_OBJECT_TYPE: return JSObject::kHeaderSize; case JS_MESSAGE_OBJECT_TYPE: return JSMessageObject::kSize; default: UNREACHABLE(); return 0; } } int JSObject::GetInternalFieldCount() { ASSERT(1 << kPointerSizeLog2 == kPointerSize); // Make sure to adjust for the number of in-object properties. These // properties do contribute to the size, but are not internal fields. return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) - map()->inobject_properties(); } int JSObject::GetInternalFieldOffset(int index) { ASSERT(index < GetInternalFieldCount() && index >= 0); return GetHeaderSize() + (kPointerSize * index); } Object* JSObject::GetInternalField(int index) { ASSERT(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index)); } void JSObject::SetInternalField(int index, Object* value) { ASSERT(index < GetInternalFieldCount() && index >= 0); // Internal objects do follow immediately after the header, whereas in-object // properties are at the end of the object. Therefore there is no need // to adjust the index here. int offset = GetHeaderSize() + (kPointerSize * index); WRITE_FIELD(this, offset, value); WRITE_BARRIER(this, offset); } // Access fast-case object properties at index. The use of these routines // is needed to correctly distinguish between properties stored in-object and // properties stored in the properties array. Object* JSObject::FastPropertyAt(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); if (index < 0) { int offset = map()->instance_size() + (index * kPointerSize); return READ_FIELD(this, offset); } else { ASSERT(index < properties()->length()); return properties()->get(index); } } Object* JSObject::FastPropertyAtPut(int index, Object* value) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); if (index < 0) { int offset = map()->instance_size() + (index * kPointerSize); WRITE_FIELD(this, offset, value); WRITE_BARRIER(this, offset); } else { ASSERT(index < properties()->length()); properties()->set(index, value); } return value; } int JSObject::GetInObjectPropertyOffset(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); return map()->instance_size() + (index * kPointerSize); } Object* JSObject::InObjectPropertyAt(int index) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); int offset = map()->instance_size() + (index * kPointerSize); return READ_FIELD(this, offset); } Object* JSObject::InObjectPropertyAtPut(int index, Object* value, WriteBarrierMode mode) { // Adjust for the number of properties stored in the object. index -= map()->inobject_properties(); ASSERT(index < 0); int offset = map()->instance_size() + (index * kPointerSize); WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); return value; } void JSObject::InitializeBody(int object_size, Object* value) { ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value)); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool JSObject::HasFastProperties() { return !properties()->IsDictionary(); } int JSObject::MaxFastProperties() { // Allow extra fast properties if the object has more than // kMaxFastProperties in-object properties. When this is the case, // it is very unlikely that the object is being used as a dictionary // and there is a good chance that allowing more map transitions // will be worth it. return Max(map()->inobject_properties(), kMaxFastProperties); } void Struct::InitializeBody(int object_size) { Object* value = GetHeap()->undefined_value(); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } bool Object::ToArrayIndex(uint32_t* index) { if (IsSmi()) { int value = Smi::cast(this)->value(); if (value < 0) return false; *index = value; return true; } if (IsHeapNumber()) { double value = HeapNumber::cast(this)->value(); uint32_t uint_value = static_cast(value); if (value == static_cast(uint_value)) { *index = uint_value; return true; } } return false; } bool Object::IsStringObjectWithCharacterAt(uint32_t index) { if (!this->IsJSValue()) return false; JSValue* js_value = JSValue::cast(this); if (!js_value->value()->IsString()) return false; String* str = String::cast(js_value->value()); if (index >= (uint32_t)str->length()) return false; return true; } FixedArrayBase* FixedArrayBase::cast(Object* object) { ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray()); return reinterpret_cast(object); } Object* FixedArray::get(int index) { ASSERT(index >= 0 && index < this->length()); return READ_FIELD(this, kHeaderSize + index * kPointerSize); } void FixedArray::set(int index, Smi* value) { ASSERT(map() != HEAP->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); ASSERT(reinterpret_cast(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); } void FixedArray::set(int index, Object* value) { ASSERT(map() != HEAP->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); WRITE_BARRIER(this, offset); } inline bool FixedDoubleArray::is_the_hole_nan(double value) { return BitCast(value) == kHoleNanInt64; } inline double FixedDoubleArray::hole_nan_as_double() { return BitCast(kHoleNanInt64); } inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() { ASSERT(BitCast(OS::nan_value()) != kHoleNanInt64); ASSERT((BitCast(OS::nan_value()) >> 32) != kHoleNanUpper32); return OS::nan_value(); } double FixedDoubleArray::get_scalar(int index) { ASSERT(map() != HEAP->fixed_cow_array_map() && map() != HEAP->fixed_array_map()); ASSERT(index >= 0 && index < this->length()); double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize); ASSERT(!is_the_hole_nan(result)); return result; } MaybeObject* FixedDoubleArray::get(int index) { if (is_the_hole(index)) { return GetHeap()->the_hole_value(); } else { return GetHeap()->NumberFromDouble(get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { ASSERT(map() != HEAP->fixed_cow_array_map() && map() != HEAP->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; if (isnan(value)) value = canonical_not_the_hole_nan_as_double(); WRITE_DOUBLE_FIELD(this, offset, value); } void FixedDoubleArray::set_the_hole(int index) { ASSERT(map() != HEAP->fixed_cow_array_map() && map() != HEAP->fixed_array_map()); int offset = kHeaderSize + index * kDoubleSize; WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double()); } bool FixedDoubleArray::is_the_hole(int index) { int offset = kHeaderSize + index * kDoubleSize; return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset)); } void FixedDoubleArray::Initialize(FixedDoubleArray* from) { int old_length = from->length(); ASSERT(old_length < length()); if (old_length * kDoubleSize >= OS::kMinComplexMemCopy) { OS::MemCopy(FIELD_ADDR(this, kHeaderSize), FIELD_ADDR(from, kHeaderSize), old_length * kDoubleSize); } else { for (int i = 0; i < old_length; ++i) { if (from->is_the_hole(i)) { set_the_hole(i); } else { set(i, from->get_scalar(i)); } } } int offset = kHeaderSize + old_length * kDoubleSize; for (int current = from->length(); current < length(); ++current) { WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double()); offset += kDoubleSize; } } void FixedDoubleArray::Initialize(FixedArray* from) { int old_length = from->length(); ASSERT(old_length < length()); for (int i = 0; i < old_length; i++) { Object* hole_or_object = from->get(i); if (hole_or_object->IsTheHole()) { set_the_hole(i); } else { set(i, hole_or_object->Number()); } } int offset = kHeaderSize + old_length * kDoubleSize; for (int current = from->length(); current < length(); ++current) { WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double()); offset += kDoubleSize; } } void FixedDoubleArray::Initialize(NumberDictionary* from) { int offset = kHeaderSize; for (int current = 0; current < length(); ++current) { WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double()); offset += kDoubleSize; } for (int i = 0; i < from->Capacity(); i++) { Object* key = from->KeyAt(i); if (key->IsNumber()) { uint32_t entry = static_cast(key->Number()); set(entry, from->ValueAt(i)->Number()); } } } WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) { if (GetHeap()->InNewSpace(this)) return SKIP_WRITE_BARRIER; return UPDATE_WRITE_BARRIER; } void FixedArray::set(int index, Object* value, WriteBarrierMode mode) { ASSERT(map() != HEAP->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); } void FixedArray::fast_set(FixedArray* array, int index, Object* value) { ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map()); ASSERT(index >= 0 && index < array->length()); ASSERT(!HEAP->InNewSpace(value)); WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value); } void FixedArray::set_undefined(int index) { ASSERT(map() != HEAP->fixed_cow_array_map()); set_undefined(GetHeap(), index); } void FixedArray::set_undefined(Heap* heap, int index) { ASSERT(index >= 0 && index < this->length()); ASSERT(!heap->InNewSpace(heap->undefined_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->undefined_value()); } void FixedArray::set_null(int index) { set_null(GetHeap(), index); } void FixedArray::set_null(Heap* heap, int index) { ASSERT(index >= 0 && index < this->length()); ASSERT(!heap->InNewSpace(heap->null_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value()); } void FixedArray::set_the_hole(int index) { ASSERT(map() != HEAP->fixed_cow_array_map()); ASSERT(index >= 0 && index < this->length()); ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, GetHeap()->the_hole_value()); } void FixedArray::set_unchecked(int index, Smi* value) { ASSERT(reinterpret_cast(value)->IsSmi()); int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); } void FixedArray::set_unchecked(Heap* heap, int index, Object* value, WriteBarrierMode mode) { int offset = kHeaderSize + index * kPointerSize; WRITE_FIELD(this, offset, value); CONDITIONAL_WRITE_BARRIER(heap, this, offset, mode); } void FixedArray::set_null_unchecked(Heap* heap, int index) { ASSERT(index >= 0 && index < this->length()); ASSERT(!HEAP->InNewSpace(heap->null_value())); WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value()); } Object** FixedArray::data_start() { return HeapObject::RawField(this, kHeaderSize); } bool DescriptorArray::IsEmpty() { ASSERT(this->IsSmi() || this->length() > kFirstIndex || this == HEAP->empty_descriptor_array()); return this->IsSmi() || length() <= kFirstIndex; } int DescriptorArray::bit_field3_storage() { Object* storage = READ_FIELD(this, kBitField3StorageOffset); return Smi::cast(storage)->value(); } void DescriptorArray::set_bit_field3_storage(int value) { ASSERT(!IsEmpty()); WRITE_FIELD(this, kBitField3StorageOffset, Smi::FromInt(value)); } void DescriptorArray::fast_swap(FixedArray* array, int first, int second) { Object* tmp = array->get(first); fast_set(array, first, array->get(second)); fast_set(array, second, tmp); } int DescriptorArray::Search(String* name) { SLOW_ASSERT(IsSortedNoDuplicates()); // Check for empty descriptor array. int nof = number_of_descriptors(); if (nof == 0) return kNotFound; // Fast case: do linear search for small arrays. const int kMaxElementsForLinearSearch = 8; if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) { return LinearSearch(name, nof); } // Slow case: perform binary search. return BinarySearch(name, 0, nof - 1); } int DescriptorArray::SearchWithCache(String* name) { int number = GetIsolate()->descriptor_lookup_cache()->Lookup(this, name); if (number == DescriptorLookupCache::kAbsent) { number = Search(name); GetIsolate()->descriptor_lookup_cache()->Update(this, name, number); } return number; } String* DescriptorArray::GetKey(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return String::cast(get(ToKeyIndex(descriptor_number))); } Object* DescriptorArray::GetValue(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return GetContentArray()->get(ToValueIndex(descriptor_number)); } Smi* DescriptorArray::GetDetails(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number))); } PropertyType DescriptorArray::GetType(int descriptor_number) { ASSERT(descriptor_number < number_of_descriptors()); return PropertyDetails(GetDetails(descriptor_number)).type(); } int DescriptorArray::GetFieldIndex(int descriptor_number) { return Descriptor::IndexFromValue(GetValue(descriptor_number)); } JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) { return JSFunction::cast(GetValue(descriptor_number)); } Object* DescriptorArray::GetCallbacksObject(int descriptor_number) { ASSERT(GetType(descriptor_number) == CALLBACKS); return GetValue(descriptor_number); } AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) { ASSERT(GetType(descriptor_number) == CALLBACKS); Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number)); return reinterpret_cast(p->address()); } bool DescriptorArray::IsProperty(int descriptor_number) { return GetType(descriptor_number) < FIRST_PHANTOM_PROPERTY_TYPE; } bool DescriptorArray::IsTransition(int descriptor_number) { PropertyType t = GetType(descriptor_number); return t == MAP_TRANSITION || t == CONSTANT_TRANSITION || t == ELEMENTS_TRANSITION; } bool DescriptorArray::IsNullDescriptor(int descriptor_number) { return GetType(descriptor_number) == NULL_DESCRIPTOR; } bool DescriptorArray::IsDontEnum(int descriptor_number) { return PropertyDetails(GetDetails(descriptor_number)).IsDontEnum(); } void DescriptorArray::Get(int descriptor_number, Descriptor* desc) { desc->Init(GetKey(descriptor_number), GetValue(descriptor_number), PropertyDetails(GetDetails(descriptor_number))); } void DescriptorArray::Set(int descriptor_number, Descriptor* desc) { // Range check. ASSERT(descriptor_number < number_of_descriptors()); // Make sure none of the elements in desc are in new space. ASSERT(!HEAP->InNewSpace(desc->GetKey())); ASSERT(!HEAP->InNewSpace(desc->GetValue())); fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey()); FixedArray* content_array = GetContentArray(); fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue()); fast_set(content_array, ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi()); } void DescriptorArray::CopyFrom(int index, DescriptorArray* src, int src_index) { Descriptor desc; src->Get(src_index, &desc); Set(index, &desc); } void DescriptorArray::Swap(int first, int second) { fast_swap(this, ToKeyIndex(first), ToKeyIndex(second)); FixedArray* content_array = GetContentArray(); fast_swap(content_array, ToValueIndex(first), ToValueIndex(second)); fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second)); } template int HashTable::ComputeCapacity(int at_least_space_for) { const int kMinCapacity = 32; int capacity = RoundUpToPowerOf2(at_least_space_for * 2); if (capacity < kMinCapacity) { capacity = kMinCapacity; // Guarantee min capacity. } return capacity; } template int HashTable::FindEntry(Key key) { return FindEntry(GetIsolate(), key); } // Find entry for key otherwise return kNotFound. template int HashTable::FindEntry(Isolate* isolate, Key key) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(Shape::Hash(key), capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. while (true) { Object* element = KeyAt(entry); if (element == isolate->heap()->undefined_value()) break; // Empty entry. if (element != isolate->heap()->null_value() && Shape::IsMatch(key, element)) return entry; entry = NextProbe(entry, count++, capacity); } return kNotFound; } bool NumberDictionary::requires_slow_elements() { Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return false; return 0 != (Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask); } uint32_t NumberDictionary::max_number_key() { ASSERT(!requires_slow_elements()); Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi()) return 0; uint32_t value = static_cast(Smi::cast(max_index_object)->value()); return value >> kRequiresSlowElementsTagSize; } void NumberDictionary::set_requires_slow_elements() { set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask)); } // ------------------------------------ // Cast operations CAST_ACCESSOR(FixedArray) CAST_ACCESSOR(FixedDoubleArray) CAST_ACCESSOR(DescriptorArray) CAST_ACCESSOR(DeoptimizationInputData) CAST_ACCESSOR(DeoptimizationOutputData) CAST_ACCESSOR(SymbolTable) CAST_ACCESSOR(JSFunctionResultCache) CAST_ACCESSOR(NormalizedMapCache) CAST_ACCESSOR(CompilationCacheTable) CAST_ACCESSOR(CodeCacheHashTable) CAST_ACCESSOR(PolymorphicCodeCacheHashTable) CAST_ACCESSOR(MapCache) CAST_ACCESSOR(String) CAST_ACCESSOR(SeqString) CAST_ACCESSOR(SeqAsciiString) CAST_ACCESSOR(SeqTwoByteString) CAST_ACCESSOR(SlicedString) CAST_ACCESSOR(ConsString) CAST_ACCESSOR(ExternalString) CAST_ACCESSOR(ExternalAsciiString) CAST_ACCESSOR(ExternalTwoByteString) CAST_ACCESSOR(JSReceiver) CAST_ACCESSOR(JSObject) CAST_ACCESSOR(Smi) CAST_ACCESSOR(HeapObject) CAST_ACCESSOR(HeapNumber) CAST_ACCESSOR(Oddball) CAST_ACCESSOR(JSGlobalPropertyCell) CAST_ACCESSOR(SharedFunctionInfo) CAST_ACCESSOR(Map) CAST_ACCESSOR(JSFunction) CAST_ACCESSOR(GlobalObject) CAST_ACCESSOR(JSGlobalProxy) CAST_ACCESSOR(JSGlobalObject) CAST_ACCESSOR(JSBuiltinsObject) CAST_ACCESSOR(Code) CAST_ACCESSOR(JSArray) CAST_ACCESSOR(JSRegExp) CAST_ACCESSOR(JSProxy) CAST_ACCESSOR(JSFunctionProxy) CAST_ACCESSOR(JSWeakMap) CAST_ACCESSOR(Foreign) CAST_ACCESSOR(ByteArray) CAST_ACCESSOR(ExternalArray) CAST_ACCESSOR(ExternalByteArray) CAST_ACCESSOR(ExternalUnsignedByteArray) CAST_ACCESSOR(ExternalShortArray) CAST_ACCESSOR(ExternalUnsignedShortArray) CAST_ACCESSOR(ExternalIntArray) CAST_ACCESSOR(ExternalUnsignedIntArray) CAST_ACCESSOR(ExternalFloatArray) CAST_ACCESSOR(ExternalDoubleArray) CAST_ACCESSOR(ExternalPixelArray) CAST_ACCESSOR(Struct) #define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name) STRUCT_LIST(MAKE_STRUCT_CAST) #undef MAKE_STRUCT_CAST template HashTable* HashTable::cast(Object* obj) { ASSERT(obj->IsHashTable()); return reinterpret_cast(obj); } SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) SMI_ACCESSORS(String, length, kLengthOffset) uint32_t String::hash_field() { return READ_UINT32_FIELD(this, kHashFieldOffset); } void String::set_hash_field(uint32_t value) { WRITE_UINT32_FIELD(this, kHashFieldOffset, value); #if V8_HOST_ARCH_64_BIT WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0); #endif } bool String::Equals(String* other) { if (other == this) return true; if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) { return false; } return SlowEquals(other); } MaybeObject* String::TryFlatten(PretenureFlag pretenure) { if (!StringShape(this).IsCons()) return this; ConsString* cons = ConsString::cast(this); if (cons->IsFlat()) return cons->first(); return SlowTryFlatten(pretenure); } String* String::TryFlattenGetString(PretenureFlag pretenure) { MaybeObject* flat = TryFlatten(pretenure); Object* successfully_flattened; if (!flat->ToObject(&successfully_flattened)) return this; return String::cast(successfully_flattened); } uint16_t String::Get(int index) { ASSERT(index >= 0 && index < length()); switch (StringShape(this).full_representation_tag()) { case kSeqStringTag | kAsciiStringTag: return SeqAsciiString::cast(this)->SeqAsciiStringGet(index); case kSeqStringTag | kTwoByteStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index); case kConsStringTag | kAsciiStringTag: case kConsStringTag | kTwoByteStringTag: return ConsString::cast(this)->ConsStringGet(index); case kExternalStringTag | kAsciiStringTag: return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index); case kExternalStringTag | kTwoByteStringTag: return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index); case kSlicedStringTag | kAsciiStringTag: case kSlicedStringTag | kTwoByteStringTag: return SlicedString::cast(this)->SlicedStringGet(index); default: break; } UNREACHABLE(); return 0; } void String::Set(int index, uint16_t value) { ASSERT(index >= 0 && index < length()); ASSERT(StringShape(this).IsSequential()); return this->IsAsciiRepresentation() ? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value) : SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value); } bool String::IsFlat() { if (!StringShape(this).IsCons()) return true; return ConsString::cast(this)->second()->length() == 0; } String* String::GetUnderlying() { // Giving direct access to underlying string only makes sense if the // wrapping string is already flattened. ASSERT(this->IsFlat()); ASSERT(StringShape(this).IsIndirect()); STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset); const int kUnderlyingOffset = SlicedString::kParentOffset; return String::cast(READ_FIELD(this, kUnderlyingOffset)); } uint16_t SeqAsciiString::SeqAsciiStringGet(int index) { ASSERT(index >= 0 && index < length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) { ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, static_cast(value)); } Address SeqAsciiString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } char* SeqAsciiString::GetChars() { return reinterpret_cast(GetCharsAddress()); } Address SeqTwoByteString::GetCharsAddress() { return FIELD_ADDR(this, kHeaderSize); } uc16* SeqTwoByteString::GetChars() { return reinterpret_cast(FIELD_ADDR(this, kHeaderSize)); } uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) { ASSERT(index >= 0 && index < length()); return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize); } void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) { ASSERT(index >= 0 && index < length()); WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value); } int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) { return SizeFor(length()); } int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) { return SizeFor(length()); } String* SlicedString::parent() { return String::cast(READ_FIELD(this, kParentOffset)); } void SlicedString::set_parent(String* parent) { ASSERT(parent->IsSeqString()); WRITE_FIELD(this, kParentOffset, parent); } SMI_ACCESSORS(SlicedString, offset, kOffsetOffset) String* ConsString::first() { return String::cast(READ_FIELD(this, kFirstOffset)); } Object* ConsString::unchecked_first() { return READ_FIELD(this, kFirstOffset); } void ConsString::set_first(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kFirstOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, mode); } String* ConsString::second() { return String::cast(READ_FIELD(this, kSecondOffset)); } Object* ConsString::unchecked_second() { return READ_FIELD(this, kSecondOffset); } void ConsString::set_second(String* value, WriteBarrierMode mode) { WRITE_FIELD(this, kSecondOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, mode); } ExternalAsciiString::Resource* ExternalAsciiString::resource() { return *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)); } void ExternalAsciiString::set_resource( ExternalAsciiString::Resource* resource) { *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)) = resource; } ExternalTwoByteString::Resource* ExternalTwoByteString::resource() { return *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)); } void ExternalTwoByteString::set_resource( ExternalTwoByteString::Resource* resource) { *reinterpret_cast(FIELD_ADDR(this, kResourceOffset)) = resource; } void JSFunctionResultCache::MakeZeroSize() { set_finger_index(kEntriesIndex); set_size(kEntriesIndex); } void JSFunctionResultCache::Clear() { int cache_size = size(); Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex)); MemsetPointer(entries_start, GetHeap()->the_hole_value(), cache_size - kEntriesIndex); MakeZeroSize(); } int JSFunctionResultCache::size() { return Smi::cast(get(kCacheSizeIndex))->value(); } void JSFunctionResultCache::set_size(int size) { set(kCacheSizeIndex, Smi::FromInt(size)); } int JSFunctionResultCache::finger_index() { return Smi::cast(get(kFingerIndex))->value(); } void JSFunctionResultCache::set_finger_index(int finger_index) { set(kFingerIndex, Smi::FromInt(finger_index)); } byte ByteArray::get(int index) { ASSERT(index >= 0 && index < this->length()); return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { ASSERT(index >= 0 && index < this->length()); WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value); } int ByteArray::get_int(int index) { ASSERT(index >= 0 && (index * kIntSize) < this->length()); return READ_INT_FIELD(this, kHeaderSize + index * kIntSize); } ByteArray* ByteArray::FromDataStartAddress(Address address) { ASSERT_TAG_ALIGNED(address); return reinterpret_cast(address - kHeaderSize + kHeapObjectTag); } Address ByteArray::GetDataStartAddress() { return reinterpret_cast
(this) - kHeapObjectTag + kHeaderSize; } uint8_t* ExternalPixelArray::external_pixel_pointer() { return reinterpret_cast(external_pointer()); } uint8_t ExternalPixelArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = external_pixel_pointer(); return ptr[index]; } MaybeObject* ExternalPixelArray::get(int index) { return Smi::FromInt(static_cast(get_scalar(index))); } void ExternalPixelArray::set(int index, uint8_t value) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = external_pixel_pointer(); ptr[index] = value; } void* ExternalArray::external_pointer() { intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset); return reinterpret_cast(ptr); } void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) { intptr_t ptr = reinterpret_cast(value); WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr); } int8_t ExternalByteArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int8_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalByteArray::get(int index) { return Smi::FromInt(static_cast(get_scalar(index))); } void ExternalByteArray::set(int index, int8_t value) { ASSERT((index >= 0) && (index < this->length())); int8_t* ptr = static_cast(external_pointer()); ptr[index] = value; } uint8_t ExternalUnsignedByteArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedByteArray::get(int index) { return Smi::FromInt(static_cast(get_scalar(index))); } void ExternalUnsignedByteArray::set(int index, uint8_t value) { ASSERT((index >= 0) && (index < this->length())); uint8_t* ptr = static_cast(external_pointer()); ptr[index] = value; } int16_t ExternalShortArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int16_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalShortArray::get(int index) { return Smi::FromInt(static_cast(get_scalar(index))); } void ExternalShortArray::set(int index, int16_t value) { ASSERT((index >= 0) && (index < this->length())); int16_t* ptr = static_cast(external_pointer()); ptr[index] = value; } uint16_t ExternalUnsignedShortArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint16_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedShortArray::get(int index) { return Smi::FromInt(static_cast(get_scalar(index))); } void ExternalUnsignedShortArray::set(int index, uint16_t value) { ASSERT((index >= 0) && (index < this->length())); uint16_t* ptr = static_cast(external_pointer()); ptr[index] = value; } int32_t ExternalIntArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); int32_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalIntArray::get(int index) { return GetHeap()->NumberFromInt32(get_scalar(index)); } void ExternalIntArray::set(int index, int32_t value) { ASSERT((index >= 0) && (index < this->length())); int32_t* ptr = static_cast(external_pointer()); ptr[index] = value; } uint32_t ExternalUnsignedIntArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); uint32_t* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalUnsignedIntArray::get(int index) { return GetHeap()->NumberFromUint32(get_scalar(index)); } void ExternalUnsignedIntArray::set(int index, uint32_t value) { ASSERT((index >= 0) && (index < this->length())); uint32_t* ptr = static_cast(external_pointer()); ptr[index] = value; } float ExternalFloatArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); float* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalFloatArray::get(int index) { return GetHeap()->NumberFromDouble(get_scalar(index)); } void ExternalFloatArray::set(int index, float value) { ASSERT((index >= 0) && (index < this->length())); float* ptr = static_cast(external_pointer()); ptr[index] = value; } double ExternalDoubleArray::get_scalar(int index) { ASSERT((index >= 0) && (index < this->length())); double* ptr = static_cast(external_pointer()); return ptr[index]; } MaybeObject* ExternalDoubleArray::get(int index) { return GetHeap()->NumberFromDouble(get_scalar(index)); } void ExternalDoubleArray::set(int index, double value) { ASSERT((index >= 0) && (index < this->length())); double* ptr = static_cast(external_pointer()); ptr[index] = value; } int Map::visitor_id() { return READ_BYTE_FIELD(this, kVisitorIdOffset); } void Map::set_visitor_id(int id) { ASSERT(0 <= id && id < 256); WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast(id)); } int Map::instance_size() { return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2; } int Map::inobject_properties() { return READ_BYTE_FIELD(this, kInObjectPropertiesOffset); } int Map::pre_allocated_property_fields() { return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset); } int HeapObject::SizeFromMap(Map* map) { int instance_size = map->instance_size(); if (instance_size != kVariableSizeSentinel) return instance_size; // We can ignore the "symbol" bit becase it is only set for symbols // and implies a string type. int instance_type = static_cast(map->instance_type()) & ~kIsSymbolMask; // Only inline the most frequent cases. if (instance_type == FIXED_ARRAY_TYPE) { return FixedArray::BodyDescriptor::SizeOf(map, this); } if (instance_type == ASCII_STRING_TYPE) { return SeqAsciiString::SizeFor( reinterpret_cast(this)->length()); } if (instance_type == BYTE_ARRAY_TYPE) { return reinterpret_cast(this)->ByteArraySize(); } if (instance_type == STRING_TYPE) { return SeqTwoByteString::SizeFor( reinterpret_cast(this)->length()); } if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) { return FixedDoubleArray::SizeFor( reinterpret_cast(this)->length()); } ASSERT(instance_type == CODE_TYPE); return reinterpret_cast(this)->CodeSize(); } void Map::set_instance_size(int value) { ASSERT_EQ(0, value & (kPointerSize - 1)); value >>= kPointerSizeLog2; ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast(value)); } void Map::set_inobject_properties(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast(value)); } void Map::set_pre_allocated_property_fields(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset, static_cast(value)); } InstanceType Map::instance_type() { return static_cast(READ_BYTE_FIELD(this, kInstanceTypeOffset)); } void Map::set_instance_type(InstanceType value) { WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value); } int Map::unused_property_fields() { return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset); } void Map::set_unused_property_fields(int value) { WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255)); } byte Map::bit_field() { return READ_BYTE_FIELD(this, kBitFieldOffset); } void Map::set_bit_field(byte value) { WRITE_BYTE_FIELD(this, kBitFieldOffset, value); } byte Map::bit_field2() { return READ_BYTE_FIELD(this, kBitField2Offset); } void Map::set_bit_field2(byte value) { WRITE_BYTE_FIELD(this, kBitField2Offset, value); } void Map::set_non_instance_prototype(bool value) { if (value) { set_bit_field(bit_field() | (1 << kHasNonInstancePrototype)); } else { set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype)); } } bool Map::has_non_instance_prototype() { return ((1 << kHasNonInstancePrototype) & bit_field()) != 0; } void Map::set_function_with_prototype(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kFunctionWithPrototype)); } else { set_bit_field2(bit_field2() & ~(1 << kFunctionWithPrototype)); } } bool Map::function_with_prototype() { return ((1 << kFunctionWithPrototype) & bit_field2()) != 0; } void Map::set_is_access_check_needed(bool access_check_needed) { if (access_check_needed) { set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded)); } else { set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded)); } } bool Map::is_access_check_needed() { return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0; } void Map::set_is_extensible(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kIsExtensible)); } else { set_bit_field2(bit_field2() & ~(1 << kIsExtensible)); } } bool Map::is_extensible() { return ((1 << kIsExtensible) & bit_field2()) != 0; } void Map::set_attached_to_shared_function_info(bool value) { if (value) { set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo)); } else { set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo)); } } bool Map::attached_to_shared_function_info() { return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0; } void Map::set_is_shared(bool value) { if (value) { set_bit_field3(bit_field3() | (1 << kIsShared)); } else { set_bit_field3(bit_field3() & ~(1 << kIsShared)); } } bool Map::is_shared() { return ((1 << kIsShared) & bit_field3()) != 0; } JSFunction* Map::unchecked_constructor() { return reinterpret_cast(READ_FIELD(this, kConstructorOffset)); } FixedArray* Map::unchecked_prototype_transitions() { return reinterpret_cast( READ_FIELD(this, kPrototypeTransitionsOffset)); } Code::Flags Code::flags() { return static_cast(READ_INT_FIELD(this, kFlagsOffset)); } void Code::set_flags(Code::Flags flags) { STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1); // Make sure that all call stubs have an arguments count. ASSERT((ExtractKindFromFlags(flags) != CALL_IC && ExtractKindFromFlags(flags) != KEYED_CALL_IC) || ExtractArgumentsCountFromFlags(flags) >= 0); WRITE_INT_FIELD(this, kFlagsOffset, flags); } Code::Kind Code::kind() { return ExtractKindFromFlags(flags()); } InlineCacheState Code::ic_state() { InlineCacheState result = ExtractICStateFromFlags(flags()); // Only allow uninitialized or debugger states for non-IC code // objects. This is used in the debugger to determine whether or not // a call to code object has been replaced with a debug break call. ASSERT(is_inline_cache_stub() || result == UNINITIALIZED || result == DEBUG_BREAK || result == DEBUG_PREPARE_STEP_IN); return result; } Code::ExtraICState Code::extra_ic_state() { ASSERT(is_inline_cache_stub()); return ExtractExtraICStateFromFlags(flags()); } PropertyType Code::type() { return ExtractTypeFromFlags(flags()); } int Code::arguments_count() { ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB); return ExtractArgumentsCountFromFlags(flags()); } int Code::major_key() { ASSERT(kind() == STUB || kind() == UNARY_OP_IC || kind() == BINARY_OP_IC || kind() == COMPARE_IC || kind() == TO_BOOLEAN_IC); return READ_BYTE_FIELD(this, kStubMajorKeyOffset); } void Code::set_major_key(int major) { ASSERT(kind() == STUB || kind() == UNARY_OP_IC || kind() == BINARY_OP_IC || kind() == COMPARE_IC || kind() == TO_BOOLEAN_IC); ASSERT(0 <= major && major < 256); WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major); } bool Code::optimizable() { ASSERT(kind() == FUNCTION); return READ_BYTE_FIELD(this, kOptimizableOffset) == 1; } void Code::set_optimizable(bool value) { ASSERT(kind() == FUNCTION); WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0); } bool Code::has_deoptimization_support() { ASSERT(kind() == FUNCTION); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDeoptimizationSupportField::decode(flags); } void Code::set_has_deoptimization_support(bool value) { ASSERT(kind() == FUNCTION); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value); WRITE_BYTE_FIELD(this, kFullCodeFlags, flags); } bool Code::has_debug_break_slots() { ASSERT(kind() == FUNCTION); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); return FullCodeFlagsHasDebugBreakSlotsField::decode(flags); } void Code::set_has_debug_break_slots(bool value) { ASSERT(kind() == FUNCTION); byte flags = READ_BYTE_FIELD(this, kFullCodeFlags); flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value); WRITE_BYTE_FIELD(this, kFullCodeFlags, flags); } int Code::allow_osr_at_loop_nesting_level() { ASSERT(kind() == FUNCTION); return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset); } void Code::set_allow_osr_at_loop_nesting_level(int level) { ASSERT(kind() == FUNCTION); ASSERT(level >= 0 && level <= kMaxLoopNestingMarker); WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level); } unsigned Code::stack_slots() { ASSERT(kind() == OPTIMIZED_FUNCTION); return READ_UINT32_FIELD(this, kStackSlotsOffset); } void Code::set_stack_slots(unsigned slots) { ASSERT(kind() == OPTIMIZED_FUNCTION); WRITE_UINT32_FIELD(this, kStackSlotsOffset, slots); } unsigned Code::safepoint_table_offset() { ASSERT(kind() == OPTIMIZED_FUNCTION); return READ_UINT32_FIELD(this, kSafepointTableOffsetOffset); } void Code::set_safepoint_table_offset(unsigned offset) { ASSERT(kind() == OPTIMIZED_FUNCTION); ASSERT(IsAligned(offset, static_cast(kIntSize))); WRITE_UINT32_FIELD(this, kSafepointTableOffsetOffset, offset); } unsigned Code::stack_check_table_offset() { ASSERT(kind() == FUNCTION); return READ_UINT32_FIELD(this, kStackCheckTableOffsetOffset); } void Code::set_stack_check_table_offset(unsigned offset) { ASSERT(kind() == FUNCTION); ASSERT(IsAligned(offset, static_cast(kIntSize))); WRITE_UINT32_FIELD(this, kStackCheckTableOffsetOffset, offset); } CheckType Code::check_type() { ASSERT(is_call_stub() || is_keyed_call_stub()); byte type = READ_BYTE_FIELD(this, kCheckTypeOffset); return static_cast(type); } void Code::set_check_type(CheckType value) { ASSERT(is_call_stub() || is_keyed_call_stub()); WRITE_BYTE_FIELD(this, kCheckTypeOffset, value); } byte Code::unary_op_type() { ASSERT(is_unary_op_stub()); return READ_BYTE_FIELD(this, kUnaryOpTypeOffset); } void Code::set_unary_op_type(byte value) { ASSERT(is_unary_op_stub()); WRITE_BYTE_FIELD(this, kUnaryOpTypeOffset, value); } byte Code::binary_op_type() { ASSERT(is_binary_op_stub()); return READ_BYTE_FIELD(this, kBinaryOpTypeOffset); } void Code::set_binary_op_type(byte value) { ASSERT(is_binary_op_stub()); WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value); } byte Code::binary_op_result_type() { ASSERT(is_binary_op_stub()); return READ_BYTE_FIELD(this, kBinaryOpReturnTypeOffset); } void Code::set_binary_op_result_type(byte value) { ASSERT(is_binary_op_stub()); WRITE_BYTE_FIELD(this, kBinaryOpReturnTypeOffset, value); } byte Code::compare_state() { ASSERT(is_compare_ic_stub()); return READ_BYTE_FIELD(this, kCompareStateOffset); } void Code::set_compare_state(byte value) { ASSERT(is_compare_ic_stub()); WRITE_BYTE_FIELD(this, kCompareStateOffset, value); } byte Code::to_boolean_state() { ASSERT(is_to_boolean_ic_stub()); return READ_BYTE_FIELD(this, kToBooleanTypeOffset); } void Code::set_to_boolean_state(byte value) { ASSERT(is_to_boolean_ic_stub()); WRITE_BYTE_FIELD(this, kToBooleanTypeOffset, value); } bool Code::is_inline_cache_stub() { Kind kind = this->kind(); return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND; } Code::Flags Code::ComputeFlags(Kind kind, InlineCacheState ic_state, ExtraICState extra_ic_state, PropertyType type, int argc, InlineCacheHolderFlag holder) { // Extra IC state is only allowed for call IC stubs or for store IC // stubs. ASSERT(extra_ic_state == kNoExtraICState || kind == CALL_IC || kind == STORE_IC || kind == KEYED_STORE_IC); // Compute the bit mask. int bits = KindField::encode(kind) | ICStateField::encode(ic_state) | TypeField::encode(type) | ExtraICStateField::encode(extra_ic_state) | (argc << kArgumentsCountShift) | CacheHolderField::encode(holder); return static_cast(bits); } Code::Flags Code::ComputeMonomorphicFlags(Kind kind, PropertyType type, ExtraICState extra_ic_state, InlineCacheHolderFlag holder, int argc) { return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, argc, holder); } Code::Kind Code::ExtractKindFromFlags(Flags flags) { return KindField::decode(flags); } InlineCacheState Code::ExtractICStateFromFlags(Flags flags) { return ICStateField::decode(flags); } Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) { return ExtraICStateField::decode(flags); } PropertyType Code::ExtractTypeFromFlags(Flags flags) { return TypeField::decode(flags); } int Code::ExtractArgumentsCountFromFlags(Flags flags) { return (flags & kArgumentsCountMask) >> kArgumentsCountShift; } InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) { return CacheHolderField::decode(flags); } Code::Flags Code::RemoveTypeFromFlags(Flags flags) { int bits = flags & ~TypeField::kMask; return static_cast(bits); } Code* Code::GetCodeFromTargetAddress(Address address) { HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize); // GetCodeFromTargetAddress might be called when marking objects during mark // sweep. reinterpret_cast is therefore used instead of the more appropriate // Code::cast. Code::cast does not work when the object's map is // marked. Code* result = reinterpret_cast(code); return result; } Isolate* Map::isolate() { return heap()->isolate(); } Heap* Map::heap() { // NOTE: address() helper is not used to save one instruction. Heap* heap = Page::FromAddress(reinterpret_cast
(this))->heap_; ASSERT(heap != NULL); ASSERT(heap->isolate() == Isolate::Current()); return heap; } Heap* Code::heap() { // NOTE: address() helper is not used to save one instruction. Heap* heap = Page::FromAddress(reinterpret_cast
(this))->heap_; ASSERT(heap != NULL); ASSERT(heap->isolate() == Isolate::Current()); return heap; } Isolate* Code::isolate() { return heap()->isolate(); } Heap* JSGlobalPropertyCell::heap() { // NOTE: address() helper is not used to save one instruction. Heap* heap = Page::FromAddress(reinterpret_cast
(this))->heap_; ASSERT(heap != NULL); ASSERT(heap->isolate() == Isolate::Current()); return heap; } Isolate* JSGlobalPropertyCell::isolate() { return heap()->isolate(); } Object* Code::GetObjectFromEntryAddress(Address location_of_address) { return HeapObject:: FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize); } Object* Map::prototype() { return READ_FIELD(this, kPrototypeOffset); } void Map::set_prototype(Object* value, WriteBarrierMode mode) { ASSERT(value->IsNull() || value->IsJSReceiver()); WRITE_FIELD(this, kPrototypeOffset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, mode); } MaybeObject* Map::GetFastElementsMap() { if (has_fast_elements()) return this; Object* obj; { MaybeObject* maybe_obj = CopyDropTransitions(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); new_map->set_elements_kind(FAST_ELEMENTS); isolate()->counters()->map_to_fast_elements()->Increment(); return new_map; } MaybeObject* Map::GetFastDoubleElementsMap() { if (has_fast_double_elements()) return this; Object* obj; { MaybeObject* maybe_obj = CopyDropTransitions(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); new_map->set_elements_kind(FAST_DOUBLE_ELEMENTS); isolate()->counters()->map_to_fast_double_elements()->Increment(); return new_map; } MaybeObject* Map::GetSlowElementsMap() { if (!has_fast_elements() && !has_fast_double_elements()) return this; Object* obj; { MaybeObject* maybe_obj = CopyDropTransitions(); if (!maybe_obj->ToObject(&obj)) return maybe_obj; } Map* new_map = Map::cast(obj); new_map->set_elements_kind(DICTIONARY_ELEMENTS); isolate()->counters()->map_to_slow_elements()->Increment(); return new_map; } DescriptorArray* Map::instance_descriptors() { Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset); if (object->IsSmi()) { return HEAP->empty_descriptor_array(); } else { return DescriptorArray::cast(object); } } void Map::init_instance_descriptors() { WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, Smi::FromInt(0)); } void Map::clear_instance_descriptors() { Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset); if (!object->IsSmi()) { WRITE_FIELD( this, kInstanceDescriptorsOrBitField3Offset, Smi::FromInt(DescriptorArray::cast(object)->bit_field3_storage())); } } void Map::set_instance_descriptors(DescriptorArray* value, WriteBarrierMode mode) { Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset); if (value == isolate()->heap()->empty_descriptor_array()) { clear_instance_descriptors(); return; } else { if (object->IsSmi()) { value->set_bit_field3_storage(Smi::cast(object)->value()); } else { value->set_bit_field3_storage( DescriptorArray::cast(object)->bit_field3_storage()); } } ASSERT(!is_shared()); WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, value); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kInstanceDescriptorsOrBitField3Offset, mode); } int Map::bit_field3() { Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset); if (object->IsSmi()) { return Smi::cast(object)->value(); } else { return DescriptorArray::cast(object)->bit_field3_storage(); } } void Map::set_bit_field3(int value) { ASSERT(Smi::IsValid(value)); Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset); if (object->IsSmi()) { WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, Smi::FromInt(value)); } else { DescriptorArray::cast(object)->set_bit_field3_storage(value); } } ACCESSORS(Map, code_cache, Object, kCodeCacheOffset) ACCESSORS(Map, prototype_transitions, FixedArray, kPrototypeTransitionsOffset) ACCESSORS(Map, constructor, Object, kConstructorOffset) ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset) ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset) ACCESSORS_GCSAFE(JSFunction, next_function_link, Object, kNextFunctionLinkOffset) ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset) ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset) ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset) ACCESSORS(JSGlobalProxy, context, Object, kContextOffset) ACCESSORS(AccessorInfo, getter, Object, kGetterOffset) ACCESSORS(AccessorInfo, setter, Object, kSetterOffset) ACCESSORS(AccessorInfo, data, Object, kDataOffset) ACCESSORS(AccessorInfo, name, Object, kNameOffset) ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset) ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset) ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset) ACCESSORS(AccessCheckInfo, data, Object, kDataOffset) ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset) ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset) ACCESSORS(InterceptorInfo, query, Object, kQueryOffset) ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset) ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset) ACCESSORS(InterceptorInfo, data, Object, kDataOffset) ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset) ACCESSORS(CallHandlerInfo, data, Object, kDataOffset) ACCESSORS(TemplateInfo, tag, Object, kTagOffset) ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset) ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset) ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset) ACCESSORS(FunctionTemplateInfo, property_accessors, Object, kPropertyAccessorsOffset) ACCESSORS(FunctionTemplateInfo, prototype_template, Object, kPrototypeTemplateOffset) ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset) ACCESSORS(FunctionTemplateInfo, named_property_handler, Object, kNamedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object, kIndexedPropertyHandlerOffset) ACCESSORS(FunctionTemplateInfo, instance_template, Object, kInstanceTemplateOffset) ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset) ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset) ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object, kInstanceCallHandlerOffset) ACCESSORS(FunctionTemplateInfo, access_check_info, Object, kAccessCheckInfoOffset) ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset) ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset) ACCESSORS(ObjectTemplateInfo, internal_field_count, Object, kInternalFieldCountOffset) ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset) ACCESSORS(SignatureInfo, args, Object, kArgsOffset) ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset) ACCESSORS(Script, source, Object, kSourceOffset) ACCESSORS(Script, name, Object, kNameOffset) ACCESSORS(Script, id, Object, kIdOffset) ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset) ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset) ACCESSORS(Script, data, Object, kDataOffset) ACCESSORS(Script, context_data, Object, kContextOffset) ACCESSORS(Script, wrapper, Foreign, kWrapperOffset) ACCESSORS(Script, type, Smi, kTypeOffset) ACCESSORS(Script, compilation_type, Smi, kCompilationTypeOffset) ACCESSORS(Script, line_ends, Object, kLineEndsOffset) ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset) ACCESSORS(Script, eval_from_instructions_offset, Smi, kEvalFrominstructionsOffsetOffset) #ifdef ENABLE_DEBUGGER_SUPPORT ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex) ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex) ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex) ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex) ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex) ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex) ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex) ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex) #endif ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset) ACCESSORS_GCSAFE(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset) ACCESSORS_GCSAFE(SharedFunctionInfo, initial_map, Object, kInitialMapOffset) ACCESSORS(SharedFunctionInfo, instance_class_name, Object, kInstanceClassNameOffset) ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset) ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset) ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset) ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset) ACCESSORS(SharedFunctionInfo, this_property_assignments, Object, kThisPropertyAssignmentsOffset) BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype, kHiddenPrototypeBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check, kNeedsAccessCheckBit) BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype, kReadOnlyPrototypeBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression, kIsExpressionBit) BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel, kIsTopLevelBit) BOOL_GETTER(SharedFunctionInfo, compiler_hints, has_only_simple_this_property_assignments, kHasOnlySimpleThisPropertyAssignments) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, allows_lazy_compilation, kAllowLazyCompilation) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, uses_arguments, kUsesArguments) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, has_duplicate_parameters, kHasDuplicateParameters) #if V8_HOST_ARCH_32_BIT SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset) SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count, kFormalParameterCountOffset) SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset) SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) SMI_ACCESSORS(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count, kThisPropertyAssignmentsCountOffset) SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset) #else #define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == 0); \ int holder::name() { \ int value = READ_INT_FIELD(this, offset); \ ASSERT(kHeapObjectTag == 1); \ ASSERT((value & kHeapObjectTag) == 0); \ return value >> 1; \ } \ void holder::set_##name(int value) { \ ASSERT(kHeapObjectTag == 1); \ ASSERT((value & 0xC0000000) == 0xC0000000 || \ (value & 0xC0000000) == 0x000000000); \ WRITE_INT_FIELD(this, \ offset, \ (value << 1) & ~kHeapObjectTag); \ } #define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \ STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \ INT_ACCESSORS(holder, name, offset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, formal_parameter_count, kFormalParameterCountOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, expected_nof_properties, kExpectedNofPropertiesOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, start_position_and_type, kStartPositionAndTypeOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, function_token_position, kFunctionTokenPositionOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, compiler_hints, kCompilerHintsOffset) PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, this_property_assignments_count, kThisPropertyAssignmentsCountOffset) PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset) #endif int SharedFunctionInfo::construction_count() { return READ_BYTE_FIELD(this, kConstructionCountOffset); } void SharedFunctionInfo::set_construction_count(int value) { ASSERT(0 <= value && value < 256); WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast(value)); } BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, live_objects_may_exist, kLiveObjectsMayExist) bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() { return initial_map() != HEAP->undefined_value(); } BOOL_GETTER(SharedFunctionInfo, compiler_hints, optimization_disabled, kOptimizationDisabled) void SharedFunctionInfo::set_optimization_disabled(bool disable) { set_compiler_hints(BooleanBit::set(compiler_hints(), kOptimizationDisabled, disable)); // If disabling optimizations we reflect that in the code object so // it will not be counted as optimizable code. if ((code()->kind() == Code::FUNCTION) && disable) { code()->set_optimizable(false); } } BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, strict_mode, kStrictModeFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, name_should_print_as_anonymous, kNameShouldPrintAsAnonymous) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction) BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous) ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset) ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset) ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset) bool Script::HasValidSource() { Object* src = this->source(); if (!src->IsString()) return true; String* src_str = String::cast(src); if (!StringShape(src_str).IsExternal()) return true; if (src_str->IsAsciiRepresentation()) { return ExternalAsciiString::cast(src)->resource() != NULL; } else if (src_str->IsTwoByteRepresentation()) { return ExternalTwoByteString::cast(src)->resource() != NULL; } return true; } void SharedFunctionInfo::DontAdaptArguments() { ASSERT(code()->kind() == Code::BUILTIN); set_formal_parameter_count(kDontAdaptArgumentsSentinel); } int SharedFunctionInfo::start_position() { return start_position_and_type() >> kStartPositionShift; } void SharedFunctionInfo::set_start_position(int start_position) { set_start_position_and_type((start_position << kStartPositionShift) | (start_position_and_type() & ~kStartPositionMask)); } Code* SharedFunctionInfo::code() { return Code::cast(READ_FIELD(this, kCodeOffset)); } Code* SharedFunctionInfo::unchecked_code() { return reinterpret_cast(READ_FIELD(this, kCodeOffset)); } void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) { WRITE_FIELD(this, kCodeOffset, value); ASSERT(!Isolate::Current()->heap()->InNewSpace(value)); } SerializedScopeInfo* SharedFunctionInfo::scope_info() { return reinterpret_cast( READ_FIELD(this, kScopeInfoOffset)); } void SharedFunctionInfo::set_scope_info(SerializedScopeInfo* value, WriteBarrierMode mode) { WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast(value)); CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, mode); } Smi* SharedFunctionInfo::deopt_counter() { return reinterpret_cast(READ_FIELD(this, kDeoptCounterOffset)); } void SharedFunctionInfo::set_deopt_counter(Smi* value) { WRITE_FIELD(this, kDeoptCounterOffset, value); } bool SharedFunctionInfo::is_compiled() { return code() != Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile); } bool SharedFunctionInfo::IsApiFunction() { return function_data()->IsFunctionTemplateInfo(); } FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() { ASSERT(IsApiFunction()); return FunctionTemplateInfo::cast(function_data()); } bool SharedFunctionInfo::HasBuiltinFunctionId() { return function_data()->IsSmi(); } BuiltinFunctionId SharedFunctionInfo::builtin_function_id() { ASSERT(HasBuiltinFunctionId()); return static_cast(Smi::cast(function_data())->value()); } int SharedFunctionInfo::code_age() { return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask; } void SharedFunctionInfo::set_code_age(int code_age) { set_compiler_hints(compiler_hints() | ((code_age & kCodeAgeMask) << kCodeAgeShift)); } bool SharedFunctionInfo::has_deoptimization_support() { Code* code = this->code(); return code->kind() == Code::FUNCTION && code->has_deoptimization_support(); } bool JSFunction::IsBuiltin() { return context()->global()->IsJSBuiltinsObject(); } bool JSFunction::NeedsArgumentsAdaption() { return shared()->formal_parameter_count() != SharedFunctionInfo::kDontAdaptArgumentsSentinel; } bool JSFunction::IsOptimized() { return code()->kind() == Code::OPTIMIZED_FUNCTION; } bool JSFunction::IsOptimizable() { return code()->kind() == Code::FUNCTION && code()->optimizable(); } bool JSFunction::IsMarkedForLazyRecompilation() { return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile); } Code* JSFunction::code() { return Code::cast(unchecked_code()); } Code* JSFunction::unchecked_code() { return reinterpret_cast( Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset))); } void JSFunction::set_code(Code* value) { // Skip the write barrier because code is never in new space. ASSERT(!HEAP->InNewSpace(value)); Address entry = value->entry(); WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast(entry)); } void JSFunction::ReplaceCode(Code* code) { bool was_optimized = IsOptimized(); bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION; set_code(code); // Add/remove the function from the list of optimized functions for this // context based on the state change. if (!was_optimized && is_optimized) { context()->global_context()->AddOptimizedFunction(this); } if (was_optimized && !is_optimized) { context()->global_context()->RemoveOptimizedFunction(this); } } Context* JSFunction::context() { return Context::cast(READ_FIELD(this, kContextOffset)); } Object* JSFunction::unchecked_context() { return READ_FIELD(this, kContextOffset); } SharedFunctionInfo* JSFunction::unchecked_shared() { return reinterpret_cast( READ_FIELD(this, kSharedFunctionInfoOffset)); } void JSFunction::set_context(Object* value) { ASSERT(value->IsUndefined() || value->IsContext()); WRITE_FIELD(this, kContextOffset, value); WRITE_BARRIER(this, kContextOffset); } ACCESSORS(JSFunction, prototype_or_initial_map, Object, kPrototypeOrInitialMapOffset) Map* JSFunction::initial_map() { return Map::cast(prototype_or_initial_map()); } void JSFunction::set_initial_map(Map* value) { set_prototype_or_initial_map(value); } bool JSFunction::has_initial_map() { return prototype_or_initial_map()->IsMap(); } bool JSFunction::has_instance_prototype() { return has_initial_map() || !prototype_or_initial_map()->IsTheHole(); } bool JSFunction::has_prototype() { return map()->has_non_instance_prototype() || has_instance_prototype(); } Object* JSFunction::instance_prototype() { ASSERT(has_instance_prototype()); if (has_initial_map()) return initial_map()->prototype(); // When there is no initial map and the prototype is a JSObject, the // initial map field is used for the prototype field. return prototype_or_initial_map(); } Object* JSFunction::prototype() { ASSERT(has_prototype()); // If the function's prototype property has been set to a non-JSObject // value, that value is stored in the constructor field of the map. if (map()->has_non_instance_prototype()) return map()->constructor(); return instance_prototype(); } bool JSFunction::should_have_prototype() { return map()->function_with_prototype(); } bool JSFunction::is_compiled() { return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } int JSFunction::NumberOfLiterals() { return literals()->length(); } Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. return READ_FIELD(this, OffsetOfFunctionWithId(id)); } void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id, Object* value) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. WRITE_FIELD(this, OffsetOfFunctionWithId(id), value); WRITE_BARRIER(this, OffsetOfFunctionWithId(id)); } Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id))); } void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id, Code* value) { ASSERT(id < kJSBuiltinsCount); // id is unsigned. WRITE_FIELD(this, OffsetOfCodeWithId(id), value); ASSERT(!HEAP->InNewSpace(value)); } ACCESSORS(JSProxy, handler, Object, kHandlerOffset) ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset) ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset) void JSProxy::InitializeBody(int object_size, Object* value) { ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value)); for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) { WRITE_FIELD(this, offset, value); } } ACCESSORS(JSWeakMap, table, ObjectHashTable, kTableOffset) ACCESSORS_GCSAFE(JSWeakMap, next, Object, kNextOffset) ObjectHashTable* JSWeakMap::unchecked_table() { return reinterpret_cast(READ_FIELD(this, kTableOffset)); } Address Foreign::address() { return AddressFrom
(READ_INTPTR_FIELD(this, kAddressOffset)); } void Foreign::set_address(Address value) { WRITE_INTPTR_FIELD(this, kAddressOffset, OffsetFrom(value)); } ACCESSORS(JSValue, value, Object, kValueOffset) JSValue* JSValue::cast(Object* obj) { ASSERT(obj->IsJSValue()); ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize); return reinterpret_cast(obj); } ACCESSORS(JSMessageObject, type, String, kTypeOffset) ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset) ACCESSORS(JSMessageObject, script, Object, kScriptOffset) ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset) ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset) SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset) SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset) JSMessageObject* JSMessageObject::cast(Object* obj) { ASSERT(obj->IsJSMessageObject()); ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize); return reinterpret_cast(obj); } INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset) ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset) ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset) ACCESSORS(Code, next_code_flushing_candidate, Object, kNextCodeFlushingCandidateOffset) byte* Code::instruction_start() { return FIELD_ADDR(this, kHeaderSize); } byte* Code::instruction_end() { return instruction_start() + instruction_size(); } int Code::body_size() { return RoundUp(instruction_size(), kObjectAlignment); } FixedArray* Code::unchecked_deoptimization_data() { return reinterpret_cast( READ_FIELD(this, kDeoptimizationDataOffset)); } ByteArray* Code::unchecked_relocation_info() { return reinterpret_cast(READ_FIELD(this, kRelocationInfoOffset)); } byte* Code::relocation_start() { return unchecked_relocation_info()->GetDataStartAddress(); } int Code::relocation_size() { return unchecked_relocation_info()->length(); } byte* Code::entry() { return instruction_start(); } bool Code::contains(byte* pc) { return (instruction_start() <= pc) && (pc <= instruction_start() + instruction_size()); } ACCESSORS(JSArray, length, Object, kLengthOffset) ACCESSORS(JSRegExp, data, Object, kDataOffset) JSRegExp::Type JSRegExp::TypeTag() { Object* data = this->data(); if (data->IsUndefined()) return JSRegExp::NOT_COMPILED; Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex)); return static_cast(smi->value()); } JSRegExp::Type JSRegExp::TypeTagUnchecked() { Smi* smi = Smi::cast(DataAtUnchecked(kTagIndex)); return static_cast(smi->value()); } int JSRegExp::CaptureCount() { switch (TypeTag()) { case ATOM: return 0; case IRREGEXP: return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value(); default: UNREACHABLE(); return -1; } } JSRegExp::Flags JSRegExp::GetFlags() { ASSERT(this->data()->IsFixedArray()); Object* data = this->data(); Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex)); return Flags(smi->value()); } String* JSRegExp::Pattern() { ASSERT(this->data()->IsFixedArray()); Object* data = this->data(); String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex)); return pattern; } Object* JSRegExp::DataAt(int index) { ASSERT(TypeTag() != NOT_COMPILED); return FixedArray::cast(data())->get(index); } Object* JSRegExp::DataAtUnchecked(int index) { FixedArray* fa = reinterpret_cast(data()); int offset = FixedArray::kHeaderSize + index * kPointerSize; return READ_FIELD(fa, offset); } void JSRegExp::SetDataAt(int index, Object* value) { ASSERT(TypeTag() != NOT_COMPILED); ASSERT(index >= kDataIndex); // Only implementation data can be set this way. FixedArray::cast(data())->set(index, value); } void JSRegExp::SetDataAtUnchecked(int index, Object* value, Heap* heap) { ASSERT(index >= kDataIndex); // Only implementation data can be set this way. FixedArray* fa = reinterpret_cast(data()); if (value->IsSmi()) { fa->set_unchecked(index, Smi::cast(value)); } else { fa->set_unchecked(heap, index, value, SKIP_WRITE_BARRIER); } } ElementsKind JSObject::GetElementsKind() { ElementsKind kind = map()->elements_kind(); ASSERT((kind == FAST_ELEMENTS && (elements()->map() == GetHeap()->fixed_array_map() || elements()->map() == GetHeap()->fixed_cow_array_map())) || (kind == FAST_DOUBLE_ELEMENTS && elements()->IsFixedDoubleArray()) || (kind == DICTIONARY_ELEMENTS && elements()->IsFixedArray() && elements()->IsDictionary()) || (kind > DICTIONARY_ELEMENTS)); return kind; } ElementsAccessor* JSObject::GetElementsAccessor() { return ElementsAccessor::ForKind(GetElementsKind()); } bool JSObject::HasFastElements() { return GetElementsKind() == FAST_ELEMENTS; } bool JSObject::HasFastDoubleElements() { return GetElementsKind() == FAST_DOUBLE_ELEMENTS; } bool JSObject::HasDictionaryElements() { return GetElementsKind() == DICTIONARY_ELEMENTS; } bool JSObject::HasExternalArrayElements() { HeapObject* array = elements(); ASSERT(array != NULL); return array->IsExternalArray(); } #define EXTERNAL_ELEMENTS_CHECK(name, type) \ bool JSObject::HasExternal##name##Elements() { \ HeapObject* array = elements(); \ ASSERT(array != NULL); \ if (!array->IsHeapObject()) \ return false; \ return array->map()->instance_type() == type; \ } EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedShort, EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(UnsignedInt, EXTERNAL_UNSIGNED_INT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Float, EXTERNAL_FLOAT_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Double, EXTERNAL_DOUBLE_ARRAY_TYPE) EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE) bool JSObject::HasNamedInterceptor() { return map()->has_named_interceptor(); } bool JSObject::HasIndexedInterceptor() { return map()->has_indexed_interceptor(); } bool JSObject::AllowsSetElementsLength() { bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray(); ASSERT(result == !HasExternalArrayElements()); return result; } MaybeObject* JSObject::EnsureWritableFastElements() { ASSERT(HasFastElements()); FixedArray* elems = FixedArray::cast(elements()); Isolate* isolate = GetIsolate(); if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems; Object* writable_elems; { MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap( elems, isolate->heap()->fixed_array_map()); if (!maybe_writable_elems->ToObject(&writable_elems)) { return maybe_writable_elems; } } set_elements(FixedArray::cast(writable_elems)); isolate->counters()->cow_arrays_converted()->Increment(); return writable_elems; } StringDictionary* JSObject::property_dictionary() { ASSERT(!HasFastProperties()); return StringDictionary::cast(properties()); } NumberDictionary* JSObject::element_dictionary() { ASSERT(HasDictionaryElements()); return NumberDictionary::cast(elements()); } bool String::IsHashFieldComputed(uint32_t field) { return (field & kHashNotComputedMask) == 0; } bool String::HasHashCode() { return IsHashFieldComputed(hash_field()); } uint32_t String::Hash() { // Fast case: has hash code already been computed? uint32_t field = hash_field(); if (IsHashFieldComputed(field)) return field >> kHashShift; // Slow case: compute hash code and set it. return ComputeAndSetHash(); } StringHasher::StringHasher(int length) : length_(length), raw_running_hash_(0), array_index_(0), is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize), is_first_char_(true), is_valid_(true) { } bool StringHasher::has_trivial_hash() { return length_ > String::kMaxHashCalcLength; } void StringHasher::AddCharacter(uc32 c) { // Use the Jenkins one-at-a-time hash function to update the hash // for the given character. raw_running_hash_ += c; raw_running_hash_ += (raw_running_hash_ << 10); raw_running_hash_ ^= (raw_running_hash_ >> 6); // Incremental array index computation. if (is_array_index_) { if (c < '0' || c > '9') { is_array_index_ = false; } else { int d = c - '0'; if (is_first_char_) { is_first_char_ = false; if (c == '0' && length_ > 1) { is_array_index_ = false; return; } } if (array_index_ > 429496729U - ((d + 2) >> 3)) { is_array_index_ = false; } else { array_index_ = array_index_ * 10 + d; } } } } void StringHasher::AddCharacterNoIndex(uc32 c) { ASSERT(!is_array_index()); raw_running_hash_ += c; raw_running_hash_ += (raw_running_hash_ << 10); raw_running_hash_ ^= (raw_running_hash_ >> 6); } uint32_t StringHasher::GetHash() { // Get the calculated raw hash value and do some more bit ops to distribute // the hash further. Ensure that we never return zero as the hash value. uint32_t result = raw_running_hash_; result += (result << 3); result ^= (result >> 11); result += (result << 15); if (result == 0) { result = 27; } return result; } template uint32_t HashSequentialString(const schar* chars, int length) { StringHasher hasher(length); if (!hasher.has_trivial_hash()) { int i; for (i = 0; hasher.is_array_index() && (i < length); i++) { hasher.AddCharacter(chars[i]); } for (; i < length; i++) { hasher.AddCharacterNoIndex(chars[i]); } } return hasher.GetHashField(); } bool String::AsArrayIndex(uint32_t* index) { uint32_t field = hash_field(); if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) { return false; } return SlowAsArrayIndex(index); } Object* JSReceiver::GetPrototype() { return HeapObject::cast(this)->map()->prototype(); } bool JSReceiver::HasProperty(String* name) { if (IsJSProxy()) { return JSProxy::cast(this)->HasPropertyWithHandler(name); } return GetPropertyAttribute(name) != ABSENT; } bool JSReceiver::HasLocalProperty(String* name) { if (IsJSProxy()) { return JSProxy::cast(this)->HasPropertyWithHandler(name); } return GetLocalPropertyAttribute(name) != ABSENT; } PropertyAttributes JSReceiver::GetPropertyAttribute(String* key) { return GetPropertyAttributeWithReceiver(this, key); } // TODO(504): this may be useful in other places too where JSGlobalProxy // is used. Object* JSObject::BypassGlobalProxy() { if (IsJSGlobalProxy()) { Object* proto = GetPrototype(); if (proto->IsNull()) return GetHeap()->undefined_value(); ASSERT(proto->IsJSGlobalObject()); return proto; } return this; } bool JSObject::HasHiddenPropertiesObject() { ASSERT(!IsJSGlobalProxy()); return GetPropertyAttributePostInterceptor(this, GetHeap()->hidden_symbol(), false) != ABSENT; } Object* JSObject::GetHiddenPropertiesObject() { ASSERT(!IsJSGlobalProxy()); PropertyAttributes attributes; // You can't install a getter on a property indexed by the hidden symbol, // so we can be sure that GetLocalPropertyPostInterceptor returns a real // object. Object* result = GetLocalPropertyPostInterceptor(this, GetHeap()->hidden_symbol(), &attributes)->ToObjectUnchecked(); return result; } MaybeObject* JSObject::SetHiddenPropertiesObject(Object* hidden_obj) { ASSERT(!IsJSGlobalProxy()); return SetPropertyPostInterceptor(GetHeap()->hidden_symbol(), hidden_obj, DONT_ENUM, kNonStrictMode); } bool JSObject::HasHiddenProperties() { return !GetHiddenProperties(OMIT_CREATION)->ToObjectChecked()->IsUndefined(); } bool JSObject::HasElement(uint32_t index) { return HasElementWithReceiver(this, index); } bool AccessorInfo::all_can_read() { return BooleanBit::get(flag(), kAllCanReadBit); } void AccessorInfo::set_all_can_read(bool value) { set_flag(BooleanBit::set(flag(), kAllCanReadBit, value)); } bool AccessorInfo::all_can_write() { return BooleanBit::get(flag(), kAllCanWriteBit); } void AccessorInfo::set_all_can_write(bool value) { set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value)); } bool AccessorInfo::prohibits_overwriting() { return BooleanBit::get(flag(), kProhibitsOverwritingBit); } void AccessorInfo::set_prohibits_overwriting(bool value) { set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value)); } PropertyAttributes AccessorInfo::property_attributes() { return AttributesField::decode(static_cast(flag()->value())); } void AccessorInfo::set_property_attributes(PropertyAttributes attributes) { set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes))); } template void Dictionary::SetEntry(int entry, Object* key, Object* value) { SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0))); } template void Dictionary::SetEntry(int entry, Object* key, Object* value, PropertyDetails details) { ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0); int index = HashTable::EntryToIndex(entry); AssertNoAllocation no_gc; WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc); FixedArray::set(index, key, mode); FixedArray::set(index+1, value, mode); FixedArray::fast_set(this, index+2, details.AsSmi()); } bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { ASSERT(other->IsNumber()); return key == static_cast(other->Number()); } uint32_t NumberDictionaryShape::Hash(uint32_t key) { return ComputeIntegerHash(key); } uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) { ASSERT(other->IsNumber()); return ComputeIntegerHash(static_cast(other->Number())); } MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) { return Isolate::Current()->heap()->NumberFromUint32(key); } bool StringDictionaryShape::IsMatch(String* key, Object* other) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (key->Hash() != String::cast(other)->Hash()) return false; return key->Equals(String::cast(other)); } uint32_t StringDictionaryShape::Hash(String* key) { return key->Hash(); } uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) { return String::cast(other)->Hash(); } MaybeObject* StringDictionaryShape::AsObject(String* key) { return key; } bool ObjectHashTableShape::IsMatch(JSObject* key, Object* other) { return key == JSObject::cast(other); } uint32_t ObjectHashTableShape::Hash(JSObject* key) { MaybeObject* maybe_hash = key->GetIdentityHash(JSObject::OMIT_CREATION); ASSERT(!maybe_hash->IsFailure()); return Smi::cast(maybe_hash->ToObjectUnchecked())->value(); } uint32_t ObjectHashTableShape::HashForObject(JSObject* key, Object* other) { MaybeObject* maybe_hash = JSObject::cast(other)->GetIdentityHash( JSObject::OMIT_CREATION); ASSERT(!maybe_hash->IsFailure()); return Smi::cast(maybe_hash->ToObjectUnchecked())->value(); } MaybeObject* ObjectHashTableShape::AsObject(JSObject* key) { return key; } void ObjectHashTable::RemoveEntry(int entry) { RemoveEntry(entry, GetHeap()); } void Map::ClearCodeCache(Heap* heap) { // No write barrier is needed since empty_fixed_array is not in new space. // Please note this function is used during marking: // - MarkCompactCollector::MarkUnmarkedObject ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array())); WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array()); } void JSArray::EnsureSize(int required_size) { ASSERT(HasFastElements()); FixedArray* elts = FixedArray::cast(elements()); const int kArraySizeThatFitsComfortablyInNewSpace = 128; if (elts->length() < required_size) { // Doubling in size would be overkill, but leave some slack to avoid // constantly growing. Expand(required_size + (required_size >> 3)); // It's a performance benefit to keep a frequently used array in new-space. } else if (!GetHeap()->new_space()->Contains(elts) && required_size < kArraySizeThatFitsComfortablyInNewSpace) { // Expand will allocate a new backing store in new space even if the size // we asked for isn't larger than what we had before. Expand(required_size); } } void JSArray::set_length(Smi* length) { set_length(static_cast(length), SKIP_WRITE_BARRIER); } void JSArray::SetContent(FixedArray* storage) { set_length(Smi::FromInt(storage->length())); set_elements(storage); } MaybeObject* FixedArray::Copy() { if (length() == 0) return this; return GetHeap()->CopyFixedArray(this); } Relocatable::Relocatable(Isolate* isolate) { ASSERT(isolate == Isolate::Current()); isolate_ = isolate; prev_ = isolate->relocatable_top(); isolate->set_relocatable_top(this); } Relocatable::~Relocatable() { ASSERT(isolate_ == Isolate::Current()); ASSERT_EQ(isolate_->relocatable_top(), this); isolate_->set_relocatable_top(prev_); } int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) { return map->instance_size(); } void Foreign::ForeignIterateBody(ObjectVisitor* v) { v->VisitExternalReference( reinterpret_cast
(FIELD_ADDR(this, kAddressOffset))); } template void Foreign::ForeignIterateBody() { StaticVisitor::VisitExternalReference( reinterpret_cast
(FIELD_ADDR(this, kAddressOffset))); } void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalAsciiStringResource Resource; v->VisitExternalAsciiString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } template void ExternalAsciiString::ExternalAsciiStringIterateBody() { typedef v8::String::ExternalAsciiStringResource Resource; StaticVisitor::VisitExternalAsciiString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) { typedef v8::String::ExternalStringResource Resource; v->VisitExternalTwoByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } template void ExternalTwoByteString::ExternalTwoByteStringIterateBody() { typedef v8::String::ExternalStringResource Resource; StaticVisitor::VisitExternalTwoByteString( reinterpret_cast(FIELD_ADDR(this, kResourceOffset))); } #define SLOT_ADDR(obj, offset) \ reinterpret_cast((obj)->address() + offset) template void FixedBodyDescriptor::IterateBody( HeapObject* obj, ObjectVisitor* v) { v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset)); } template void FlexibleBodyDescriptor::IterateBody(HeapObject* obj, int object_size, ObjectVisitor* v) { v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size)); } #undef SLOT_ADDR #undef CAST_ACCESSOR #undef INT_ACCESSORS #undef SMI_ACCESSORS #undef ACCESSORS #undef FIELD_ADDR #undef READ_FIELD #undef WRITE_FIELD #undef WRITE_BARRIER #undef CONDITIONAL_WRITE_BARRIER #undef READ_MEMADDR_FIELD #undef WRITE_MEMADDR_FIELD #undef READ_DOUBLE_FIELD #undef WRITE_DOUBLE_FIELD #undef READ_INT_FIELD #undef WRITE_INT_FIELD #undef READ_SHORT_FIELD #undef WRITE_SHORT_FIELD #undef READ_BYTE_FIELD #undef WRITE_BYTE_FIELD } } // namespace v8::internal #endif // V8_OBJECTS_INL_H_