// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "safepoint-table.h" #include "deoptimizer.h" #include "disasm.h" #include "macro-assembler.h" #include "zone-inl.h" namespace v8 { namespace internal { bool SafepointEntry::HasRegisters() const { ASSERT(is_valid()); ASSERT(IsAligned(kNumSafepointRegisters, kBitsPerByte)); const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2; for (int i = 0; i < num_reg_bytes; i++) { if (bits_[i] != SafepointTable::kNoRegisters) return true; } return false; } bool SafepointEntry::HasRegisterAt(int reg_index) const { ASSERT(is_valid()); ASSERT(reg_index >= 0 && reg_index < kNumSafepointRegisters); int byte_index = reg_index >> kBitsPerByteLog2; int bit_index = reg_index & (kBitsPerByte - 1); return (bits_[byte_index] & (1 << bit_index)) != 0; } SafepointTable::SafepointTable(Code* code) { ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION); code_ = code; Address header = code->instruction_start() + code->safepoint_table_offset(); length_ = Memory::uint32_at(header + kLengthOffset); entry_size_ = Memory::uint32_at(header + kEntrySizeOffset); pc_and_deoptimization_indexes_ = header + kHeaderSize; entries_ = pc_and_deoptimization_indexes_ + (length_ * kPcAndDeoptimizationIndexSize); ASSERT(entry_size_ > 0); STATIC_ASSERT(SafepointEntry::DeoptimizationIndexField::kMax == Safepoint::kNoDeoptimizationIndex); } SafepointEntry SafepointTable::FindEntry(Address pc) const { unsigned pc_offset = static_cast(pc - code_->instruction_start()); for (unsigned i = 0; i < length(); i++) { // TODO(kasperl): Replace the linear search with binary search. if (GetPcOffset(i) == pc_offset) return GetEntry(i); } return SafepointEntry(); } void SafepointTable::PrintEntry(unsigned index) const { disasm::NameConverter converter; SafepointEntry entry = GetEntry(index); uint8_t* bits = entry.bits(); // Print the stack slot bits. if (entry_size_ > 0) { ASSERT(IsAligned(kNumSafepointRegisters, kBitsPerByte)); const int first = kNumSafepointRegisters >> kBitsPerByteLog2; int last = entry_size_ - 1; for (int i = first; i < last; i++) PrintBits(bits[i], kBitsPerByte); int last_bits = code_->stack_slots() - ((last - first) * kBitsPerByte); PrintBits(bits[last], last_bits); // Print the registers (if any). if (!entry.HasRegisters()) return; for (int j = 0; j < kNumSafepointRegisters; j++) { if (entry.HasRegisterAt(j)) { PrintF(" | %s", converter.NameOfCPURegister(j)); } } } } void SafepointTable::PrintBits(uint8_t byte, int digits) { ASSERT(digits >= 0 && digits <= kBitsPerByte); for (int i = 0; i < digits; i++) { PrintF("%c", ((byte & (1 << i)) == 0) ? '0' : '1'); } } void Safepoint::DefinePointerRegister(Register reg) { registers_->Add(reg.code()); } Safepoint SafepointTableBuilder::DefineSafepoint( Assembler* assembler, Safepoint::Kind kind, int arguments, int deoptimization_index) { ASSERT(deoptimization_index != -1); ASSERT(arguments >= 0); DeoptimizationInfo pc_and_deoptimization_index; pc_and_deoptimization_index.pc = assembler->pc_offset(); pc_and_deoptimization_index.deoptimization_index = deoptimization_index; pc_and_deoptimization_index.pc_after_gap = assembler->pc_offset(); pc_and_deoptimization_index.arguments = arguments; pc_and_deoptimization_index.has_doubles = (kind & Safepoint::kWithDoubles); deoptimization_info_.Add(pc_and_deoptimization_index); indexes_.Add(new ZoneList(8)); registers_.Add((kind & Safepoint::kWithRegisters) ? new ZoneList(4) : NULL); return Safepoint(indexes_.last(), registers_.last()); } unsigned SafepointTableBuilder::GetCodeOffset() const { ASSERT(emitted_); return offset_; } void SafepointTableBuilder::Emit(Assembler* assembler, int bits_per_entry) { // For lazy deoptimization we need space to patch a call after every call. // Ensure there is always space for such patching, even if the code ends // in a call. int target_offset = assembler->pc_offset() + Deoptimizer::patch_size(); while (assembler->pc_offset() < target_offset) { assembler->nop(); } // Make sure the safepoint table is properly aligned. Pad with nops. assembler->Align(kIntSize); assembler->RecordComment(";;; Safepoint table."); offset_ = assembler->pc_offset(); // Take the register bits into account. bits_per_entry += kNumSafepointRegisters; // Compute the number of bytes per safepoint entry. int bytes_per_entry = RoundUp(bits_per_entry, kBitsPerByte) >> kBitsPerByteLog2; // Emit the table header. int length = deoptimization_info_.length(); assembler->dd(length); assembler->dd(bytes_per_entry); // Emit sorted table of pc offsets together with deoptimization indexes and // pc after gap information. for (int i = 0; i < length; i++) { assembler->dd(deoptimization_info_[i].pc); assembler->dd(EncodeExceptPC(deoptimization_info_[i])); } // Emit table of bitmaps. ZoneList bits(bytes_per_entry); for (int i = 0; i < length; i++) { ZoneList* indexes = indexes_[i]; ZoneList* registers = registers_[i]; bits.Clear(); bits.AddBlock(0, bytes_per_entry); // Run through the registers (if any). ASSERT(IsAligned(kNumSafepointRegisters, kBitsPerByte)); if (registers == NULL) { const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2; for (int j = 0; j < num_reg_bytes; j++) { bits[j] = SafepointTable::kNoRegisters; } } else { for (int j = 0; j < registers->length(); j++) { int index = registers->at(j); ASSERT(index >= 0 && index < kNumSafepointRegisters); int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); bits[byte_index] |= (1 << bit_index); } } // Run through the indexes and build a bitmap. for (int j = 0; j < indexes->length(); j++) { int index = bits_per_entry - 1 - indexes->at(j); int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); bits[byte_index] |= (1U << bit_index); } // Emit the bitmap for the current entry. for (int k = 0; k < bytes_per_entry; k++) { assembler->db(bits[k]); } } emitted_ = true; } uint32_t SafepointTableBuilder::EncodeExceptPC(const DeoptimizationInfo& info) { unsigned index = info.deoptimization_index; unsigned gap_size = info.pc_after_gap - info.pc; uint32_t encoding = SafepointEntry::DeoptimizationIndexField::encode(index); encoding |= SafepointEntry::GapCodeSizeField::encode(gap_size); encoding |= SafepointEntry::ArgumentsField::encode(info.arguments); encoding |= SafepointEntry::SaveDoublesField::encode(info.has_doubles); return encoding; } int SafepointTableBuilder::CountShortDeoptimizationIntervals(unsigned limit) { int result = 0; if (!deoptimization_info_.is_empty()) { unsigned previous_gap_end = deoptimization_info_[0].pc_after_gap; for (int i = 1, n = deoptimization_info_.length(); i < n; i++) { DeoptimizationInfo info = deoptimization_info_[i]; if (static_cast(info.deoptimization_index) != Safepoint::kNoDeoptimizationIndex) { if (previous_gap_end + limit > info.pc) { result++; } previous_gap_end = info.pc_after_gap; } } } return result; } } } // namespace v8::internal