// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "code-stubs.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "parser.h" #include "scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (ie, ourselves) // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FullCodeGenerator::Generate(CompilationInfo* info) { ASSERT(info_ == NULL); info_ = info; SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS Function. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = scope()->num_stack_slots(); if (locals_count == 1) { __ PushRoot(Heap::kUndefinedValueRootIndex); } else if (locals_count > 1) { __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); for (int i = 0; i < locals_count; i++) { __ push(rdx); } } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is still in rdi. __ push(rdi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewContext, 1); } function_in_register = false; // Context is returned in both rax and rsi. It replaces the context // passed to us. It's saved in the stack and kept live in rsi. __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); // Copy any necessary parameters into the context. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->AsSlot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movq(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(slot->index()); __ movq(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers all involved // registers, so we have use a third register to avoid // clobbering rsi. __ movq(rcx, rsi); __ RecordWrite(rcx, context_offset, rax, rbx); } } } // Possibly allocate an arguments object. Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); if (function_in_register) { __ push(rdi); } else { __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // The receiver is just before the parameters on the caller's stack. int offset = scope()->num_parameters() * kPointerSize; __ lea(rdx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset)); __ push(rdx); __ Push(Smi::FromInt(scope()->num_parameters())); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); // Store new arguments object in both "arguments" and ".arguments" slots. __ movq(rcx, rax); Move(arguments->AsSlot(), rax, rbx, rdx); Slot* dot_arguments_slot = scope()->arguments_shadow()->AsSlot(); Move(dot_arguments_slot, rcx, rbx, rdx); } { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { EmitDeclaration(scope()->function(), Variable::CONST, NULL); } // Visit all the explicit declarations unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { scope()->VisitIllegalRedeclaration(this); } else { VisitDeclarations(scope()->declarations()); } } { Comment cmnt(masm_, "[ Stack check"); NearLabel ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the body. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); EmitReturnSequence(); } } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movq(rsp, rbp); __ pop(rbp); __ ret((scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. We // have just generated "movq rsp, rbp; pop rbp; ret k" with length 7 // (3 + 1 + 3). const int kPadding = Assembler::kJSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Assembler::kJSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } } FullCodeGenerator::ConstantOperand FullCodeGenerator::GetConstantOperand( Token::Value op, Expression* left, Expression* right) { ASSERT(ShouldInlineSmiCase(op)); return kNoConstants; } void FullCodeGenerator::EffectContext::Plug(Slot* slot) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(Slot* slot) const { MemOperand slot_operand = codegen()->EmitSlotSearch(slot, result_register()); __ movq(result_register(), slot_operand); } void FullCodeGenerator::StackValueContext::Plug(Slot* slot) const { MemOperand slot_operand = codegen()->EmitSlotSearch(slot, result_register()); __ push(slot_operand); } void FullCodeGenerator::TestContext::Plug(Slot* slot) const { codegen()->Move(result_register(), slot); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ PushRoot(index); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { __ jmp(false_label_); } else if (index == Heap::kTrueValueRootIndex) { __ jmp(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(true_label_, false_label_, fall_through_); } } void FullCodeGenerator::EffectContext::Plug(Handle lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle lit) const { __ Move(result_register(), lit); } void FullCodeGenerator::StackValueContext::Plug(Handle lit) const { __ Push(lit); } void FullCodeGenerator::TestContext::Plug(Handle lit) const { ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { __ jmp(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { __ jmp(false_label_); } else { __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { __ jmp(false_label_); } else { __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ Move(result_register(), lit); codegen()->DoTest(true_label_, false_label_, fall_through_); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { ASSERT(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); if (count > 1) __ Drop(count - 1); __ movq(Operand(rsp, 0), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT_EQ(materialize_true, materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { NearLabel done; __ bind(materialize_true); __ Move(result_register(), Factory::true_value()); __ jmp(&done); __ bind(materialize_false); __ Move(result_register(), Factory::false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { NearLabel done; __ bind(materialize_true); __ Push(Factory::true_value()); __ jmp(&done); __ bind(materialize_false); __ Push(Factory::false_value()); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_false == false_label_); ASSERT(materialize_true == true_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ PushRoot(value_root_index); } void FullCodeGenerator::TestContext::Plug(bool flag) const { if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Label* if_true, Label* if_false, Label* fall_through) { // Emit the inlined tests assumed by the stub. __ CompareRoot(result_register(), Heap::kUndefinedValueRootIndex); __ j(equal, if_false); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(result_register(), Heap::kFalseValueRootIndex); __ j(equal, if_false); ASSERT_EQ(0, kSmiTag); __ SmiCompare(result_register(), Smi::FromInt(0)); __ j(equal, if_false); Condition is_smi = masm_->CheckSmi(result_register()); __ j(is_smi, if_true); // Call the ToBoolean stub for all other cases. ToBooleanStub stub; __ push(result_register()); __ CallStub(&stub); __ testq(rax, rax); // The stub returns nonzero for true. Split(not_zero, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: return Operand(rbp, SlotOffset(slot)); case Slot::CONTEXT: { int context_chain_length = scope()->ContextChainLength(slot->var()->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, slot->index()); } case Slot::LOOKUP: UNREACHABLE(); } UNREACHABLE(); return Operand(rax, 0); } void FullCodeGenerator::Move(Register destination, Slot* source) { MemOperand location = EmitSlotSearch(source, destination); __ movq(destination, location); } void FullCodeGenerator::Move(Slot* dst, Register src, Register scratch1, Register scratch2) { ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented. ASSERT(!scratch1.is(src) && !scratch2.is(src)); MemOperand location = EmitSlotSearch(dst, scratch1); __ movq(location, src); // Emit the write barrier code if the location is in the heap. if (dst->type() == Slot::CONTEXT) { int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize; __ RecordWrite(scratch1, offset, src, scratch2); } } void FullCodeGenerator::EmitDeclaration(Variable* variable, Variable::Mode mode, FunctionLiteral* function) { Comment cmnt(masm_, "[ Declaration"); ASSERT(variable != NULL); // Must have been resolved. Slot* slot = variable->AsSlot(); Property* prop = variable->AsProperty(); if (slot != NULL) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (mode == Variable::CONST) { __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(Operand(rbp, SlotOffset(slot)), kScratchRegister); } else if (function != NULL) { VisitForAccumulatorValue(function); __ movq(Operand(rbp, SlotOffset(slot)), result_register()); } break; case Slot::CONTEXT: // We bypass the general EmitSlotSearch because we know more about // this specific context. // The variable in the decl always resides in the current context. ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ movq(rbx, ContextOperand(rsi, Context::FCONTEXT_INDEX)); __ cmpq(rbx, rsi); __ Check(equal, "Unexpected declaration in current context."); } if (mode == Variable::CONST) { __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(ContextOperand(rsi, slot->index()), kScratchRegister); // No write barrier since the hole value is in old space. } else if (function != NULL) { VisitForAccumulatorValue(function); __ movq(ContextOperand(rsi, slot->index()), result_register()); int offset = Context::SlotOffset(slot->index()); __ movq(rbx, rsi); __ RecordWrite(rbx, offset, result_register(), rcx); } break; case Slot::LOOKUP: { __ push(rsi); __ Push(variable->name()); // Declaration nodes are always introduced in one of two modes. ASSERT(mode == Variable::VAR || mode == Variable::CONST); PropertyAttributes attr = (mode == Variable::VAR) ? NONE : READ_ONLY; __ Push(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (mode == Variable::CONST) { __ PushRoot(Heap::kTheHoleValueRootIndex); } else if (function != NULL) { VisitForStackValue(function); } else { __ Push(Smi::FromInt(0)); // no initial value! } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } else if (prop != NULL) { if (function != NULL || mode == Variable::CONST) { // We are declaring a function or constant that rewrites to a // property. Use (keyed) IC to set the initial value. VisitForStackValue(prop->obj()); if (function != NULL) { VisitForStackValue(prop->key()); VisitForAccumulatorValue(function); __ pop(rcx); } else { VisitForAccumulatorValue(prop->key()); __ movq(rcx, result_register()); __ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex); } __ pop(rdx); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } } } void FullCodeGenerator::VisitDeclaration(Declaration* decl) { EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun()); } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ push(rsi); // The context is the first argument. __ Push(pairs); __ Push(Smi::FromInt(is_eval() ? 1 : 0)); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ movq(rdx, Operand(rsp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); if (inline_smi_code) { Label slow_case; __ JumpIfNotBothSmi(rdx, rax, &slow_case); __ SmiCompare(rdx, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()->entry_label()); __ bind(&slow_case); } CompareFlags flags = inline_smi_code ? NO_SMI_COMPARE_IN_STUB : NO_COMPARE_FLAGS; CompareStub stub(equal, true, flags); __ CallStub(&stub); __ testq(rax, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()->entry_label()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_target()); } else { __ jmp(default_clause->body_target()->entry_label()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()->entry_label()); VisitStatements(clause->statements()); } __ bind(nested_statement.break_target()); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. Both SpiderMonkey and JSC // ignore null and undefined in contrast to the specification; see // ECMA-262 section 12.6.4. VisitForAccumulatorValue(stmt->enumerable()); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, &exit); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, &exit); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(rax, &convert); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, &done_convert); __ bind(&convert); __ push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ bind(&done_convert); __ push(rax); // BUG(867): Check cache validity in generated code. This is a fast // case for the JSObject::IsSimpleEnum cache validity checks. If we // cannot guarantee cache validity, call the runtime system to check // cache validity or get the property names in a fixed array. // Get the set of properties to enumerate. __ push(rax); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. NearLabel fixed_array; __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kMetaMapRootIndex); __ j(not_equal, &fixed_array); // We got a map in register rax. Get the enumeration cache from it. __ movq(rcx, FieldOperand(rax, Map::kInstanceDescriptorsOffset)); __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset)); __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Setup the four remaining stack slots. __ push(rax); // Map. __ push(rdx); // Enumeration cache. __ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset)); __ push(rax); // Enumeration cache length (as smi). __ Push(Smi::FromInt(0)); // Initial index. __ jmp(&loop); // We got a fixed array in register rax. Iterate through that. __ bind(&fixed_array); __ Push(Smi::FromInt(0)); // Map (0) - force slow check. __ push(rax); __ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset)); __ push(rax); // Fixed array length (as smi). __ Push(Smi::FromInt(0)); // Initial index. // Generate code for doing the condition check. __ bind(&loop); __ movq(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index. __ cmpq(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_target()); // Get the current entry of the array into register rbx. __ movq(rbx, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a zero map in the // permanent slow case into register rdx. __ movq(rdx, Operand(rsp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. NearLabel update_each; __ movq(rcx, Operand(rsp, 4 * kPointerSize)); __ cmpq(rdx, FieldOperand(rcx, HeapObject::kMapOffset)); __ j(equal, &update_each); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ push(rcx); // Enumerable. __ push(rbx); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ SmiCompare(rax, Smi::FromInt(0)); __ j(equal, loop_statement.continue_target()); __ movq(rbx, rax); // Update the 'each' property or variable from the possibly filtered // entry in register rbx. __ bind(&update_each); __ movq(result_register(), rbx); // Perform the assignment as if via '='. EmitAssignment(stmt->each()); // Generate code for the body of the loop. Label stack_limit_hit, stack_check_done; Visit(stmt->body()); __ StackLimitCheck(&stack_limit_hit); __ bind(&stack_check_done); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_target()); __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1)); __ jmp(&loop); // Slow case for the stack limit check. StackCheckStub stack_check_stub; __ bind(&stack_limit_hit); __ CallStub(&stack_check_stub); __ jmp(&stack_check_done); // Remove the pointers stored on the stack. __ bind(loop_statement.break_target()); __ addq(rsp, Immediate(5 * kPointerSize)); // Exit and decrement the loop depth. __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub; __ Push(info); __ CallStub(&stub); } else { __ push(rsi); __ Push(info); __ CallRuntime(Runtime::kNewClosure, 2); } context()->Plug(rax); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr->var()); } void FullCodeGenerator::EmitLoadGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, Label* slow) { Register context = rsi; Register temp = rdx; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } // Load next context in chain. __ movq(temp, ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(temp, FieldOperand(temp, JSFunction::kContextOffset)); // Walk the rest of the chain without clobbering rsi. context = temp; } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. NearLabel next, fast; if (!context.is(temp)) { __ movq(temp, context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); __ bind(&next); // Terminate at global context. __ cmpq(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset)); __ j(equal, &fast); // Check that extension is NULL. __ cmpq(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // Load next context in chain. __ movq(temp, ContextOperand(temp, Context::CLOSURE_INDEX)); __ movq(temp, FieldOperand(temp, JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } // All extension objects were empty and it is safe to use a global // load IC call. __ movq(rax, CodeGenerator::GlobalObject()); __ Move(rcx, slot->var()->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; EmitCallIC(ic, mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions( Slot* slot, Label* slow) { ASSERT(slot->type() == Slot::CONTEXT); Register context = rsi; Register temp = rbx; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } __ movq(temp, ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(temp, FieldOperand(temp, JSFunction::kContextOffset)); // Walk the rest of the chain without clobbering rsi. context = temp; } } // Check that last extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); __ movq(temp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(temp, slot->index()); } void FullCodeGenerator::EmitDynamicLoadFromSlotFastCase( Slot* slot, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { EmitLoadGlobalSlotCheckExtensions(slot, typeof_state, slow); __ jmp(done); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); if (potential_slot != NULL) { // Generate fast case for locals that rewrite to slots. __ movq(rax, ContextSlotOperandCheckExtensions(potential_slot, slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, done); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } __ jmp(done); } else if (rewrite != NULL) { // Generate fast case for calls of an argument function. Property* property = rewrite->AsProperty(); if (property != NULL) { VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); Literal* key_literal = property->key()->AsLiteral(); if (obj_proxy != NULL && key_literal != NULL && obj_proxy->IsArguments() && key_literal->handle()->IsSmi()) { // Load arguments object if there are no eval-introduced // variables. Then load the argument from the arguments // object using keyed load. __ movq(rdx, ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), slow)); __ Move(rax, key_literal->handle()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); __ jmp(done); } } } } } void FullCodeGenerator::EmitVariableLoad(Variable* var) { // Four cases: non-this global variables, lookup slots, all other // types of slots, and parameters that rewrite to explicit property // accesses on the arguments object. Slot* slot = var->AsSlot(); Property* property = var->AsProperty(); if (var->is_global() && !var->is_this()) { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in rcx and the global // object on the stack. __ Move(rcx, var->name()); __ movq(rax, CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT); context()->Plug(rax); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLoadFromSlotFastCase(slot, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); Comment cmnt(masm_, "Lookup slot"); __ push(rsi); // Context. __ Push(var->name()); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ bind(&done); context()->Plug(rax); } else if (slot != NULL) { Comment cmnt(masm_, (slot->type() == Slot::CONTEXT) ? "Context slot" : "Stack slot"); if (var->mode() == Variable::CONST) { // Constants may be the hole value if they have not been initialized. // Unhole them. NearLabel done; MemOperand slot_operand = EmitSlotSearch(slot, rax); __ movq(rax, slot_operand); __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ bind(&done); context()->Plug(rax); } else { context()->Plug(slot); } } else { Comment cmnt(masm_, "Rewritten parameter"); ASSERT_NOT_NULL(property); // Rewritten parameter accesses are of the form "slot[literal]". // Assert that the object is in a slot. Variable* object_var = property->obj()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(object_var); Slot* object_slot = object_var->AsSlot(); ASSERT_NOT_NULL(object_slot); // Load the object. MemOperand object_loc = EmitSlotSearch(object_slot, rax); __ movq(rdx, object_loc); // Assert that the key is a smi. Literal* key_literal = property->key()->AsLiteral(); ASSERT_NOT_NULL(key_literal); ASSERT(key_literal->handle()->IsSmi()); // Load the key. __ Move(rax, key_literal->handle()); // Do a keyed property load. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); context()->Plug(rax); } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label materialized; // Registers will be used as follows: // rdi = JS function. // rcx = literals array. // rbx = regexp literal. // rax = regexp literal clone. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movq(rbx, FieldOperand(rcx, literal_offset)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &materialized); // Create regexp literal using runtime function // Result will be in rax. __ push(rcx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->pattern()); __ Push(expr->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ movq(rbx, rax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(rbx); __ Push(Smi::FromInt(size)); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ pop(rbx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ movq(rdx, FieldOperand(rbx, i)); __ movq(rcx, FieldOperand(rbx, i + kPointerSize)); __ movq(FieldOperand(rax, i), rdx); __ movq(FieldOperand(rax, i + kPointerSize), rcx); } if ((size % (2 * kPointerSize)) != 0) { __ movq(rdx, FieldOperand(rbx, size - kPointerSize)); __ movq(FieldOperand(rax, size - kPointerSize), rdx); } context()->Plug(rax); } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rdi, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->constant_properties()); __ Push(Smi::FromInt(expr->fast_elements() ? 1 : 0)); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in rax. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { VisitForAccumulatorValue(value); __ Move(rcx, key->handle()); __ movq(rdx, Operand(rsp, 0)); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); __ CallRuntime(Runtime::kSetProperty, 3); break; case ObjectLiteral::Property::SETTER: case ObjectLiteral::Property::GETTER: __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(key); __ Push(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0)); VisitForStackValue(value); __ CallRuntime(Runtime::kDefineAccessor, 4); break; } } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); ZoneList* subexprs = expr->values(); int length = subexprs->length(); __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->constant_elements()); if (expr->constant_elements()->map() == Heap::fixed_cow_array_map()) { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); __ CallStub(&stub); __ IncrementCounter(&Counters::cow_arrays_created_stub, 1); } else if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::CLONE_ELEMENTS, length); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(rax); result_saved = true; } VisitForAccumulatorValue(subexpr); // Store the subexpression value in the array's elements. __ movq(rbx, Operand(rsp, 0)); // Copy of array literal. __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ movq(FieldOperand(rbx, offset), result_register()); // Update the write barrier for the array store. __ RecordWrite(rbx, offset, result_register(), rcx); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // on the left-hand side. if (!expr->target()->IsValidLeftHandSide()) { VisitForEffect(expr->target()); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* property = expr->target()->AsProperty(); if (property != NULL) { assign_type = (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForAccumulatorValue(property->obj()); __ push(result_register()); } else { VisitForStackValue(property->obj()); } break; case KEYED_PROPERTY: if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForAccumulatorValue(property->key()); __ movq(rdx, Operand(rsp, 0)); __ push(rax); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()->var()); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); break; } } Token::Value op = expr->binary_op(); ConstantOperand constant = ShouldInlineSmiCase(op) ? GetConstantOperand(op, expr->target(), expr->value()) : kNoConstants; ASSERT(constant == kRightConstant || constant == kNoConstants); if (constant == kNoConstants) { __ push(rax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); } OverwriteMode mode = expr->value()->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE; SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr, op, mode, expr->target(), expr->value(), constant); } else { EmitBinaryOp(op, mode); } } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ Move(rcx, key->handle()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitInlineSmiBinaryOp(Expression* expr, Token::Value op, OverwriteMode mode, Expression* left, Expression* right, ConstantOperand constant) { ASSERT(constant == kNoConstants); // Only handled case. // Do combined smi check of the operands. Left operand is on the // stack (popped into rdx). Right operand is in rax but moved into // rcx to make the shifts easier. Label done, stub_call, smi_case; __ pop(rdx); __ movq(rcx, rax); Condition smi = masm()->CheckBothSmi(rdx, rax); __ j(smi, &smi_case); __ bind(&stub_call); GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); if (stub.ArgsInRegistersSupported()) { stub.GenerateCall(masm_, rdx, rcx); } else { __ push(rdx); __ push(rcx); __ CallStub(&stub); } __ jmp(&done); __ bind(&smi_case); switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(rax, rdx, rcx); break; case Token::SHL: __ SmiShiftLeft(rax, rdx, rcx); break; case Token::SHR: __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call); break; case Token::ADD: __ SmiAdd(rax, rdx, rcx, &stub_call); break; case Token::SUB: __ SmiSub(rax, rdx, rcx, &stub_call); break; case Token::MUL: __ SmiMul(rax, rdx, rcx, &stub_call); break; case Token::BIT_OR: __ SmiOr(rax, rdx, rcx); break; case Token::BIT_AND: __ SmiAnd(rax, rdx, rcx); break; case Token::BIT_XOR: __ SmiXor(rax, rdx, rcx); break; default: UNREACHABLE(); break; } __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitBinaryOp(Token::Value op, OverwriteMode mode) { GenericBinaryOpStub stub(op, mode, NO_GENERIC_BINARY_FLAGS); if (stub.ArgsInRegistersSupported()) { __ pop(rdx); stub.GenerateCall(masm_, rdx, rax); } else { __ push(result_register()); __ CallStub(&stub); } context()->Plug(rax); } void FullCodeGenerator::EmitAssignment(Expression* expr) { // Invalid left-hand sides are rewritten to have a 'throw // ReferenceError' on the left-hand side. if (!expr->IsValidLeftHandSide()) { VisitForEffect(expr); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ push(rax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ movq(rdx, rax); __ pop(rax); // Restore value. __ Move(rcx, prop->key()->AsLiteral()->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); break; } case KEYED_PROPERTY: { __ push(rax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ movq(rcx, rax); __ pop(rdx); __ pop(rax); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); break; } } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { // Left-hand sides that rewrite to explicit property accesses do not reach // here. ASSERT(var != NULL); ASSERT(var->is_global() || var->AsSlot() != NULL); if (var->is_global()) { ASSERT(!var->is_this()); // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in rax, variable name in // rcx, and the global object on the stack. __ Move(rcx, var->name()); __ movq(rdx, CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } else if (var->mode() != Variable::CONST || op == Token::INIT_CONST) { // Perform the assignment for non-const variables and for initialization // of const variables. Const assignments are simply skipped. Label done; Slot* slot = var->AsSlot(); switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ movq(rdx, Operand(rbp, SlotOffset(slot))); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done); } // Perform the assignment. __ movq(Operand(rbp, SlotOffset(slot)), rax); break; case Slot::CONTEXT: { MemOperand target = EmitSlotSearch(slot, rcx); if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ movq(rdx, target); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done); } // Perform the assignment and issue the write barrier. __ movq(target, rax); // The value of the assignment is in rax. RecordWrite clobbers its // register arguments. __ movq(rdx, rax); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ RecordWrite(rcx, offset, rdx, rbx); break; } case Slot::LOOKUP: // Call the runtime for the assignment. The runtime will ignore // const reinitialization. __ push(rax); // Value. __ push(rsi); // Context. __ Push(var->name()); if (op == Token::INIT_CONST) { // The runtime will ignore const redeclaration. __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { __ CallRuntime(Runtime::kStoreContextSlot, 3); } break; } __ bind(&done); } context()->Plug(rax); } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ push(Operand(rsp, kPointerSize)); // Receiver is now under value. __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ Move(rcx, prop->key()->AsLiteral()->handle()); if (expr->ends_initialization_block()) { __ movq(rdx, Operand(rsp, 0)); } else { __ pop(rdx); } Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(rax); // Result of assignment, saved even if not needed. __ push(Operand(rsp, kPointerSize)); // Receiver is under value. __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); context()->DropAndPlug(1, rax); } else { context()->Plug(rax); } } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ push(Operand(rsp, 2 * kPointerSize)); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } __ pop(rcx); if (expr->ends_initialization_block()) { __ movq(rdx, Operand(rsp, 0)); // Leave receiver on the stack for later. } else { __ pop(rdx); } // Record source code position before IC call. SetSourcePosition(expr->position()); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ pop(rdx); __ push(rax); // Result of assignment, saved even if not needed. __ push(rdx); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); } context()->Plug(rax); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { VisitForAccumulatorValue(expr->obj()); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ pop(rdx); EmitKeyedPropertyLoad(expr); } context()->Plug(rax); } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } __ Move(rcx, name); // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); EmitCallIC(ic, mode); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, Expression* key, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(key); __ movq(rcx, rax); // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeKeyedCallInitialize(arg_count, in_loop); EmitCallIC(ic, mode); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Record source position for debugger. SetSourcePosition(expr->position()); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, rax); } void FullCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. The we call the resolved function using the given // arguments. VisitForStackValue(fun); __ PushRoot(Heap::kUndefinedValueRootIndex); // Reserved receiver slot. // Push the arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push copy of the function - found below the arguments. __ push(Operand(rsp, (arg_count + 1) * kPointerSize)); // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ push(Operand(rsp, arg_count * kPointerSize)); } else { __ PushRoot(Heap::kUndefinedValueRootIndex); } // Push the receiver of the enclosing function and do runtime call. __ push(Operand(rbp, (2 + scope()->num_parameters()) * kPointerSize)); __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); // The runtime call returns a pair of values in rax (function) and // rdx (receiver). Touch up the stack with the right values. __ movq(Operand(rsp, (arg_count + 0) * kPointerSize), rdx); __ movq(Operand(rsp, (arg_count + 1) * kPointerSize), rax); // Record source position for debugger. SetSourcePosition(expr->position()); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } else if (var != NULL && !var->is_this() && var->is_global()) { // Call to a global variable. // Push global object as receiver for the call IC lookup. __ push(CodeGenerator::GlobalObject()); EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->AsSlot() != NULL && var->AsSlot()->type() == Slot::LOOKUP) { // Call to a lookup slot (dynamically introduced variable). Label slow, done; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLoadFromSlotFastCase(var->AsSlot(), NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); // Call the runtime to find the function to call (returned in rax) // and the object holding it (returned in rdx). __ push(context_register()); __ Push(var->name()); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ push(rax); // Function. __ push(rdx); // Receiver. // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { NearLabel call; __ jmp(&call); __ bind(&done); // Push function. __ push(rax); // Push global receiver. __ movq(rbx, CodeGenerator::GlobalObject()); __ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); __ bind(&call); } EmitCallWithStub(expr); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. VisitForStackValue(prop->obj()); EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET); } else { // Call to a keyed property. // For a synthetic property use keyed load IC followed by function call, // for a regular property use KeyedCallIC. VisitForStackValue(prop->obj()); if (prop->is_synthetic()) { VisitForAccumulatorValue(prop->key()); __ movq(rdx, Operand(rsp, 0)); // Record source code position for IC call. SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // Pop receiver. __ pop(rbx); // Push result (function). __ push(rax); // Push receiver object on stack. __ movq(rcx, CodeGenerator::GlobalObject()); __ push(FieldOperand(rcx, GlobalObject::kGlobalReceiverOffset)); EmitCallWithStub(expr); } else { EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET); } } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the fast code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_full_codegen(true); } VisitForStackValue(fun); // Load global receiver object. __ movq(rbx, CodeGenerator::GlobalObject()); __ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Emit function call. EmitCallWithStub(expr); } } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into rdi and rax. __ Set(rax, arg_count); __ movq(rdi, Operand(rsp, arg_count * kPointerSize)); Handle construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); context()->Plug(rax); } void FullCodeGenerator::EmitIsSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Condition non_negative_smi = masm()->CheckNonNegativeSmi(rax); Split(non_negative_smi, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ movzxbq(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ cmpq(rbx, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(below, if_false); __ cmpq(rbx, Immediate(LAST_JS_OBJECT_TYPE)); Split(below_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Just indicate false, as %_IsStringWrapperSafeForDefaultValueOf() is only // used in a few functions in runtime.js which should not normally be hit by // this compiler. __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(ZoneList* args) { ASSERT(args->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ movq(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ SmiCompare(Operand(rax, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker); __ movq(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ SmiCompare(Operand(rax, StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(ZoneList* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ pop(rbx); __ cmpq(rax, rbx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(ZoneList* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. VisitForAccumulatorValue(args->at(0)); __ movq(rdx, rax); __ Move(rax, Smi::FromInt(scope()->num_parameters())); ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitArgumentsLength(ZoneList* args) { ASSERT(args->length() == 0); NearLabel exit; // Get the number of formal parameters. __ Move(rax, Smi::FromInt(scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &exit); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ movq(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); if (FLAG_debug_code) __ AbortIfNotSmi(rax); context()->Plug(rax); } void FullCodeGenerator::EmitClassOf(ZoneList* args) { ASSERT(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ JumpIfSmi(rax, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); // Map is now in rax. __ j(below, &null); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpInstanceType(rax, JS_FUNCTION_TYPE); __ j(equal, &function); // Check if the constructor in the map is a function. __ movq(rax, FieldOperand(rax, Map::kConstructorOffset)); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &non_function_constructor); // rax now contains the constructor function. Grab the // instance class name from there. __ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); __ movq(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done); // Functions have class 'Function'. __ bind(&function); __ Move(rax, Factory::function_class_symbol()); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ Move(rax, Factory::Object_symbol()); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(rax, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitLog(ZoneList* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (CodeGenerator::ShouldGenerateLog(args->at(0))) { VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); context()->Plug(rax); } void FullCodeGenerator::EmitRandomHeapNumber(ZoneList* args) { ASSERT(args->length() == 0); Label slow_allocate_heapnumber; Label heapnumber_allocated; __ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ movq(rbx, rax); __ bind(&heapnumber_allocated); // Return a random uint32 number in rax. // The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs. __ PrepareCallCFunction(0); __ CallCFunction(ExternalReference::random_uint32_function(), 0); // Convert 32 random bits in rax to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). __ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single. __ movd(xmm1, rcx); __ movd(xmm0, rax); __ cvtss2sd(xmm1, xmm1); __ xorpd(xmm0, xmm1); __ subsd(xmm0, xmm1); __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rbx); context()->Plug(rax); } void FullCodeGenerator::EmitSubString(ZoneList* args) { // Load the arguments on the stack and call the stub. SubStringStub stub; ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpExec(ZoneList* args) { // Load the arguments on the stack and call the stub. RegExpExecStub stub; ASSERT(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitValueOf(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(rax, &done); // If the object is not a value type, return the object. __ CmpObjectType(rax, JS_VALUE_TYPE, rbx); __ j(not_equal, &done); __ movq(rax, FieldOperand(rax, JSValue::kValueOffset)); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitMathPow(ZoneList* args) { // Load the arguments on the stack and call the runtime function. ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); __ CallRuntime(Runtime::kMath_pow, 2); context()->Plug(rax); } void FullCodeGenerator::EmitSetValueOf(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ pop(rbx); // rax = value. rbx = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(rbx, &done); // If the object is not a value type, return the value. __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx); __ j(not_equal, &done); // Store the value. __ movq(FieldOperand(rbx, JSValue::kValueOffset), rax); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ movq(rdx, rax); __ RecordWrite(rbx, JSValue::kValueOffset, rdx, rcx); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitNumberToString(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. VisitForStackValue(args->at(0)); NumberToStringStub stub; __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCharFromCode(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(rax, rbx); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(rbx); } void FullCodeGenerator::EmitStringCharCodeAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register scratch = rcx; Register result = rdx; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register scratch1 = rcx; Register scratch2 = rdx; Register result = rax; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch1, scratch2, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kEmptyStringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ Move(result, Smi::FromInt(0)); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCompare(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub; __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathSin(ZoneList* args) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::SIN); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathCos(ZoneList* args) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::COS); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathSqrt(ZoneList* args) { // Load the argument on the stack and call the runtime function. ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallRuntime(Runtime::kMath_sqrt, 1); context()->Plug(rax); } void FullCodeGenerator::EmitCallFunction(ZoneList* args) { ASSERT(args->length() >= 2); int arg_count = args->length() - 2; // For receiver and function. VisitForStackValue(args->at(0)); // Receiver. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i + 1)); } VisitForAccumulatorValue(args->at(arg_count + 1)); // Function. // InvokeFunction requires function in rdi. Move it in there. if (!result_register().is(rdi)) __ movq(rdi, result_register()); ParameterCount count(arg_count); __ InvokeFunction(rdi, count, CALL_FUNCTION); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpConstructResult(ZoneList* args) { ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kRegExpConstructResult, 3); context()->Plug(rax); } void FullCodeGenerator::EmitSwapElements(ZoneList* args) { ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kSwapElements, 3); context()->Plug(rax); } void FullCodeGenerator::EmitGetFromCache(ZoneList* args) { ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle jsfunction_result_caches( Top::global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); context()->Plug(rax); return; } VisitForAccumulatorValue(args->at(1)); Register key = rax; Register cache = rbx; Register tmp = rcx; __ movq(cache, ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(cache, FieldOperand(cache, GlobalObject::kGlobalContextOffset)); __ movq(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ movq(cache, FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); NearLabel done, not_found; // tmp now holds finger offset as a smi. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movq(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset)); SmiIndex index = __ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2); __ cmpq(key, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize)); __ j(not_equal, ¬_found); __ movq(rax, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize + kPointerSize)); __ jmp(&done); __ bind(¬_found); // Call runtime to perform the lookup. __ push(cache); __ push(key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList* args) { ASSERT_EQ(2, args->length()); Register right = rax; Register left = rbx; Register tmp = rcx; VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ pop(left); NearLabel done, fail, ok; __ cmpq(left, right); __ j(equal, &ok); // Fail if either is a non-HeapObject. Condition either_smi = masm()->CheckEitherSmi(left, right, tmp); __ j(either_smi, &fail); __ j(zero, &fail); __ movq(tmp, FieldOperand(left, HeapObject::kMapOffset)); __ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset), Immediate(JS_REGEXP_TYPE)); __ j(not_equal, &fail); __ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset)); __ j(not_equal, &fail); __ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset)); __ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset)); __ j(equal, &ok); __ bind(&fail); __ Move(rax, Factory::false_value()); __ jmp(&done); __ bind(&ok); __ Move(rax, Factory::true_value()); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ testl(FieldOperand(rax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); __ j(zero, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); ASSERT(String::kHashShift >= kSmiTagSize); __ IndexFromHash(rax, rax); context()->Plug(rax); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Handle name = expr->name(); if (name->length() > 0 && name->Get(0) == '_') { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ movq(rax, CodeGenerator::GlobalObject()); __ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset)); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } if (expr->is_jsruntime()) { // Call the JS runtime function using a call IC. __ Move(rcx, expr->name()); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); EmitCallIC(ic, RelocInfo::CODE_TARGET); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } else { __ CallRuntime(expr->function(), arg_count); } context()->Plug(rax); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* prop = expr->expression()->AsProperty(); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (prop == NULL && var == NULL) { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } else if (var != NULL && !var->is_global() && var->AsSlot() != NULL && var->AsSlot()->type() != Slot::LOOKUP) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(false); } else { // Property or variable reference. Call the delete builtin with // object and property name as arguments. if (prop != NULL) { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); } else if (var->is_global()) { __ push(CodeGenerator::GlobalObject()); __ Push(var->name()); } else { // Non-global variable. Call the runtime to look up the context // where the variable was introduced. __ push(context_register()); __ Push(var->name()); __ CallRuntime(Runtime::kLookupContext, 2); __ push(rax); __ Push(var->name()); } __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(rax); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; // Notice that the labels are swapped. context()->PrepareTest(&materialize_true, &materialize_false, &if_false, &if_true, &fall_through); VisitForControl(expr->expression(), if_true, if_false, fall_through); context()->Plug(if_false, if_true); // Labels swapped. break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(rax); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForAccumulatorValue(expr->expression()); NearLabel no_conversion; Condition is_smi = masm_->CheckSmi(result_register()); __ j(is_smi, &no_conversion); __ push(result_register()); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ bind(&no_conversion); context()->Plug(result_register()); break; } case Token::SUB: { Comment cmt(masm_, "[ UnaryOperation (SUB)"); bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; GenericUnaryOpStub stub(Token::SUB, overwrite, NO_UNARY_FLAGS); // GenericUnaryOpStub expects the argument to be in the // accumulator register rax. VisitForAccumulatorValue(expr->expression()); __ CallStub(&stub); context()->Plug(rax); break; } case Token::BIT_NOT: { Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)"); // The generic unary operation stub expects the argument to be // in the accumulator register rax. VisitForAccumulatorValue(expr->expression()); Label done; bool inline_smi_case = ShouldInlineSmiCase(expr->op()); if (inline_smi_case) { Label call_stub; __ JumpIfNotSmi(rax, &call_stub); __ SmiNot(rax, rax); __ jmp(&done); __ bind(&call_stub); } bool overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode mode = overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; UnaryOpFlags flags = inline_smi_case ? NO_UNARY_SMI_CODE_IN_STUB : NO_UNARY_FLAGS; GenericUnaryOpStub stub(Token::BIT_NOT, mode, flags); __ CallStub(&stub); __ bind(&done); context()->Plug(rax); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); // Invalid left-hand-sides are rewritten to have a 'throw // ReferenceError' as the left-hand side. if (!expr->expression()->IsValidLeftHandSide()) { VisitForEffect(expr->expression()); return; } // Expression can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()->var()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ Push(Smi::FromInt(0)); } if (assign_type == NAMED_PROPERTY) { VisitForAccumulatorValue(prop->obj()); __ push(rax); // Copy of receiver, needed for later store. EmitNamedPropertyLoad(prop); } else { VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ movq(rdx, Operand(rsp, 0)); // Leave receiver on stack __ push(rax); // Copy of key, needed for later store. EmitKeyedPropertyLoad(prop); } } // Call ToNumber only if operand is not a smi. NearLabel no_conversion; Condition is_smi; is_smi = masm_->CheckSmi(rax); __ j(is_smi, &no_conversion); __ push(rax); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(rax); break; case NAMED_PROPERTY: __ movq(Operand(rsp, kPointerSize), rax); break; case KEYED_PROPERTY: __ movq(Operand(rsp, 2 * kPointerSize), rax); break; } } } // Inline smi case if we are in a loop. Label stub_call, done; if (ShouldInlineSmiCase(expr->op())) { if (expr->op() == Token::INC) { __ SmiAddConstant(rax, rax, Smi::FromInt(1)); } else { __ SmiSubConstant(rax, rax, Smi::FromInt(1)); } __ j(overflow, &stub_call); // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. is_smi = masm_->CheckSmi(rax); __ j(is_smi, &done); __ bind(&stub_call); // Call stub. Undo operation first. if (expr->op() == Token::INC) { __ SmiSubConstant(rax, rax, Smi::FromInt(1)); } else { __ SmiAddConstant(rax, rax, Smi::FromInt(1)); } } // Call stub for +1/-1. GenericBinaryOpStub stub(expr->binary_op(), NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS); stub.GenerateCall(masm_, rax, Smi::FromInt(1)); __ bind(&done); // Store the value returned in rax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); } // For all contexts except kEffect: We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); } break; case NAMED_PROPERTY: { __ Move(rcx, prop->key()->AsLiteral()->handle()); __ pop(rdx); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case KEYED_PROPERTY: { __ pop(rcx); __ pop(rdx); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); ASSERT(!context()->IsEffect()); ASSERT(!context()->IsTest()); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ Move(rcx, proxy->name()); __ movq(rax, CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. EmitCallIC(ic, RelocInfo::CODE_TARGET); context()->Plug(rax); } else if (proxy != NULL && proxy->var()->AsSlot() != NULL && proxy->var()->AsSlot()->type() == Slot::LOOKUP) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. Slot* slot = proxy->var()->AsSlot(); EmitDynamicLoadFromSlotFastCase(slot, INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ push(rsi); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ bind(&done); context()->Plug(rax); } else { // This expression cannot throw a reference error at the top level. Visit(expr); } } bool FullCodeGenerator::TryLiteralCompare(Token::Value op, Expression* left, Expression* right, Label* if_true, Label* if_false, Label* fall_through) { if (op != Token::EQ && op != Token::EQ_STRICT) return false; // Check for the pattern: typeof == . Literal* right_literal = right->AsLiteral(); if (right_literal == NULL) return false; Handle right_literal_value = right_literal->handle(); if (!right_literal_value->IsString()) return false; UnaryOperation* left_unary = left->AsUnaryOperation(); if (left_unary == NULL || left_unary->op() != Token::TYPEOF) return false; Handle check = Handle::cast(right_literal_value); { AccumulatorValueContext context(this); VisitForTypeofValue(left_unary->expression()); } if (check->Equals(Heap::number_symbol())) { Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_true); __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::string_symbol())) { Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_false); // Check for undetectable objects => false. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ CmpInstanceType(rdx, FIRST_NONSTRING_TYPE); Split(below, if_true, if_false, fall_through); } else if (check->Equals(Heap::boolean_symbol())) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(rax, Heap::kFalseValueRootIndex); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::undefined_symbol())) { __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, if_true); Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_false); // Check for undetectable objects => true. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (check->Equals(Heap::function_symbol())) { Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_false); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rdx); __ j(equal, if_true); // Regular expressions => 'function' (they are callable). __ CmpInstanceType(rdx, JS_REGEXP_TYPE); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::object_symbol())) { Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); // Regular expressions => 'function', not 'object'. __ CmpObjectType(rax, JS_REGEXP_TYPE, rdx); __ j(equal, if_false); // Check for undetectable objects => false. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); // Check for JS objects => true. __ CmpInstanceType(rdx, FIRST_JS_OBJECT_TYPE); __ j(below, if_false); __ CmpInstanceType(rdx, LAST_JS_OBJECT_TYPE); Split(below_equal, if_true, if_false, fall_through); } else { if (if_false != fall_through) __ jmp(if_false); } return true; } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // First we try a fast inlined version of the compare when one of // the operands is a literal. Token::Value op = expr->op(); Expression* left = expr->left(); Expression* right = expr->right(); if (TryLiteralCompare(op, left, right, if_true, if_false, fall_through)) { context()->Plug(if_true, if_false); return; } VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub; __ CallStub(&stub); __ testq(rax, rax); // The stub returns 0 for true. Split(zero, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through. case Token::EQ: cc = equal; __ pop(rdx); break; case Token::LT: cc = less; __ pop(rdx); break; case Token::GT: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = less; __ movq(rdx, result_register()); __ pop(rax); break; case Token::LTE: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = greater_equal; __ movq(rdx, result_register()); __ pop(rax); break; case Token::GTE: cc = greater_equal; __ pop(rdx); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } bool inline_smi_code = ShouldInlineSmiCase(op); if (inline_smi_code) { Label slow_case; __ JumpIfNotBothSmi(rax, rdx, &slow_case); __ SmiCompare(rdx, rax); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } CompareFlags flags = inline_smi_code ? NO_SMI_COMPARE_IN_STUB : NO_COMPARE_FLAGS; CompareStub stub(cc, strict, flags); __ CallStub(&stub); __ testq(rax, rax); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) { Comment cmnt(masm_, "[ CompareToNull"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(expr->expression()); __ CompareRoot(rax, Heap::kNullValueRootIndex); if (expr->is_strict()) { Split(equal, if_true, if_false, fall_through); } else { __ j(equal, if_true); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, if_true); Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, if_false); // It can be an undetectable object. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(rax); } Register FullCodeGenerator::result_register() { return rax; } Register FullCodeGenerator::context_register() { return rsi; } void FullCodeGenerator::EmitCallIC(Handle ic, RelocInfo::Mode mode) { ASSERT(mode == RelocInfo::CODE_TARGET || mode == RelocInfo::CODE_TARGET_CONTEXT); __ call(ic, mode); // If we're calling a (keyed) load or store stub, we have to mark // the call as containing no inlined code so we will not attempt to // patch it. switch (ic->kind()) { case Code::LOAD_IC: case Code::KEYED_LOAD_IC: case Code::STORE_IC: case Code::KEYED_STORE_IC: __ nop(); // Signals no inlined code. break; default: // Do nothing. break; } } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT(IsAligned(frame_offset, kPointerSize)); __ movq(Operand(rbp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ movq(dst, ContextOperand(rsi, context_index)); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); // Cook return address on top of stack (smi encoded Code* delta) __ movq(rdx, Operand(rsp, 0)); __ Move(rcx, masm_->CodeObject()); __ subq(rdx, rcx); __ Integer32ToSmi(rdx, rdx); __ movq(Operand(rsp, 0), rdx); // Store result register while executing finally block. __ push(result_register()); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); // Restore result register from stack. __ pop(result_register()); // Uncook return address. __ movq(rdx, Operand(rsp, 0)); __ SmiToInteger32(rdx, rdx); __ Move(rcx, masm_->CodeObject()); __ addq(rdx, rcx); __ movq(Operand(rsp, 0), rdx); // And return. __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64