aboutsummaryrefslogtreecommitdiff
path: root/src/arm/constants-arm.h
blob: 123c5e7972006b9bab51d4e64ca1fc05e43823d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_ARM_CONSTANTS_ARM_H_
#define V8_ARM_CONSTANTS_ARM_H_

// The simulator emulates the EABI so we define the USE_ARM_EABI macro if we
// are not running on real ARM hardware.  One reason for this is that the
// old ABI uses fp registers in the calling convention and the simulator does
// not simulate fp registers or coroutine instructions.
#if defined(__ARM_EABI__) || !defined(__arm__)
# define USE_ARM_EABI 1
#endif

// This means that interwork-compatible jump instructions are generated.  We
// want to generate them on the simulator too so it makes snapshots that can
// be used on real hardware.
#if defined(__THUMB_INTERWORK__) || !defined(__arm__)
# define USE_THUMB_INTERWORK 1
#endif

#if defined(__ARM_ARCH_7A__) || \
    defined(__ARM_ARCH_7R__) || \
    defined(__ARM_ARCH_7__)
# define CAN_USE_ARMV7_INSTRUCTIONS 1
#endif

#if defined(__ARM_ARCH_6__) ||   \
    defined(__ARM_ARCH_6J__) ||  \
    defined(__ARM_ARCH_6K__) ||  \
    defined(__ARM_ARCH_6Z__) ||  \
    defined(__ARM_ARCH_6ZK__) || \
    defined(__ARM_ARCH_6T2__) || \
    defined(CAN_USE_ARMV7_INSTRUCTIONS)
# define CAN_USE_ARMV6_INSTRUCTIONS 1
#endif

#if defined(__ARM_ARCH_5T__)            || \
    defined(__ARM_ARCH_5TE__)           || \
    defined(CAN_USE_ARMV6_INSTRUCTIONS)
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1
#endif

// Simulator should support ARM5 instructions and unaligned access by default.
#if !defined(__arm__)
# define CAN_USE_ARMV5_INSTRUCTIONS 1
# define CAN_USE_THUMB_INSTRUCTIONS 1

# ifndef CAN_USE_UNALIGNED_ACCESSES
#  define CAN_USE_UNALIGNED_ACCESSES 1
# endif

#endif

#if CAN_USE_UNALIGNED_ACCESSES
#define V8_TARGET_CAN_READ_UNALIGNED 1
#endif

// Using blx may yield better code, so use it when required or when available
#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
#define USE_BLX 1
#endif

namespace assembler {
namespace arm {

// Number of registers in normal ARM mode.
static const int kNumRegisters = 16;

// VFP support.
static const int kNumVFPSingleRegisters = 32;
static const int kNumVFPDoubleRegisters = 16;
static const int kNumVFPRegisters =
    kNumVFPSingleRegisters + kNumVFPDoubleRegisters;

// PC is register 15.
static const int kPCRegister = 15;
static const int kNoRegister = -1;

// Defines constants and accessor classes to assemble, disassemble and
// simulate ARM instructions.
//
// Section references in the code refer to the "ARM Architecture Reference
// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
//
// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.

typedef unsigned char byte;

// Values for the condition field as defined in section A3.2
enum Condition {
  no_condition = -1,
  EQ =  0,  // equal
  NE =  1,  // not equal
  CS =  2,  // carry set/unsigned higher or same
  CC =  3,  // carry clear/unsigned lower
  MI =  4,  // minus/negative
  PL =  5,  // plus/positive or zero
  VS =  6,  // overflow
  VC =  7,  // no overflow
  HI =  8,  // unsigned higher
  LS =  9,  // unsigned lower or same
  GE = 10,  // signed greater than or equal
  LT = 11,  // signed less than
  GT = 12,  // signed greater than
  LE = 13,  // signed less than or equal
  AL = 14,  // always (unconditional)
  special_condition = 15,  // special condition (refer to section A3.2.1)
  max_condition = 16
};


// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
// as defined in section A3.4
enum Opcode {
  no_operand = -1,
  AND =  0,  // Logical AND
  EOR =  1,  // Logical Exclusive OR
  SUB =  2,  // Subtract
  RSB =  3,  // Reverse Subtract
  ADD =  4,  // Add
  ADC =  5,  // Add with Carry
  SBC =  6,  // Subtract with Carry
  RSC =  7,  // Reverse Subtract with Carry
  TST =  8,  // Test
  TEQ =  9,  // Test Equivalence
  CMP = 10,  // Compare
  CMN = 11,  // Compare Negated
  ORR = 12,  // Logical (inclusive) OR
  MOV = 13,  // Move
  BIC = 14,  // Bit Clear
  MVN = 15,  // Move Not
  max_operand = 16
};


// The bits for bit 7-4 for some type 0 miscellaneous instructions.
enum MiscInstructionsBits74 {
  // With bits 22-21 01.
  BX   =  1,
  BXJ  =  2,
  BLX  =  3,
  BKPT =  7,

  // With bits 22-21 11.
  CLZ  =  1
};


// Shifter types for Data-processing operands as defined in section A5.1.2.
enum Shift {
  no_shift = -1,
  LSL = 0,  // Logical shift left
  LSR = 1,  // Logical shift right
  ASR = 2,  // Arithmetic shift right
  ROR = 3,  // Rotate right
  max_shift = 4
};


// Special Software Interrupt codes when used in the presence of the ARM
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
  // transition to C code
  call_rt_redirected = 0x10,
  // break point
  break_point = 0x20,
  // stop
  stop = 1 << 23
};
static const int32_t kStopCodeMask = stop - 1;
static const uint32_t kMaxStopCode = stop - 1;


// Type of VFP register. Determines register encoding.
enum VFPRegPrecision {
  kSinglePrecision = 0,
  kDoublePrecision = 1
};


typedef int32_t instr_t;


// The class Instr enables access to individual fields defined in the ARM
// architecture instruction set encoding as described in figure A3-1.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
//   Instr* instr = Instr::At(ptr);
//   int type = instr->TypeField();
//   return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instr {
 public:
  enum {
    kInstrSize = 4,
    kInstrSizeLog2 = 2,
    kPCReadOffset = 8
  };

  // Get the raw instruction bits.
  inline instr_t InstructionBits() const {
    return *reinterpret_cast<const instr_t*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(instr_t value) {
    *reinterpret_cast<instr_t*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const {
    return (InstructionBits() >> nr) & 1;
  }

  // Read a bit field out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }


  // Accessors for the different named fields used in the ARM encoding.
  // The naming of these accessor corresponds to figure A3-1.
  // Generally applicable fields
  inline Condition ConditionField() const {
    return static_cast<Condition>(Bits(31, 28));
  }
  inline int TypeField() const { return Bits(27, 25); }

  inline int RnField() const { return Bits(19, 16); }
  inline int RdField() const { return Bits(15, 12); }

  inline int CoprocessorField() const { return Bits(11, 8); }
  // Support for VFP.
  // Vn(19-16) | Vd(15-12) |  Vm(3-0)
  inline int VnField() const { return Bits(19, 16); }
  inline int VmField() const { return Bits(3, 0); }
  inline int VdField() const { return Bits(15, 12); }
  inline int NField() const { return Bit(7); }
  inline int MField() const { return Bit(5); }
  inline int DField() const { return Bit(22); }
  inline int RtField() const { return Bits(15, 12); }
  inline int PField() const { return Bit(24); }
  inline int UField() const { return Bit(23); }
  inline int Opc1Field() const { return (Bit(23) << 2) | Bits(21, 20); }
  inline int Opc2Field() const { return Bits(19, 16); }
  inline int Opc3Field() const { return Bits(7, 6); }
  inline int SzField() const { return Bit(8); }
  inline int VLField() const { return Bit(20); }
  inline int VCField() const { return Bit(8); }
  inline int VAField() const { return Bits(23, 21); }
  inline int VBField() const { return Bits(6, 5); }
  inline int VFPNRegCode(VFPRegPrecision pre) {
    return VFPGlueRegCode(pre, 16, 7);
  }
  inline int VFPMRegCode(VFPRegPrecision pre) {
    return VFPGlueRegCode(pre, 0, 5);
  }
  inline int VFPDRegCode(VFPRegPrecision pre) {
    return VFPGlueRegCode(pre, 12, 22);
  }

  // Fields used in Data processing instructions
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(Bits(24, 21));
  }
  inline int SField() const { return Bit(20); }
    // with register
  inline int RmField() const { return Bits(3, 0); }
  inline Shift ShiftField() const { return static_cast<Shift>(Bits(6, 5)); }
  inline int RegShiftField() const { return Bit(4); }
  inline int RsField() const { return Bits(11, 8); }
  inline int ShiftAmountField() const { return Bits(11, 7); }
    // with immediate
  inline int RotateField() const { return Bits(11, 8); }
  inline int Immed8Field() const { return Bits(7, 0); }
  inline int Immed4Field() const { return Bits(19, 16); }
  inline int ImmedMovwMovtField() const {
      return Immed4Field() << 12 | Offset12Field(); }

  // Fields used in Load/Store instructions
  inline int PUField() const { return Bits(24, 23); }
  inline int  BField() const { return Bit(22); }
  inline int  WField() const { return Bit(21); }
  inline int  LField() const { return Bit(20); }
    // with register uses same fields as Data processing instructions above
    // with immediate
  inline int Offset12Field() const { return Bits(11, 0); }
    // multiple
  inline int RlistField() const { return Bits(15, 0); }
    // extra loads and stores
  inline int SignField() const { return Bit(6); }
  inline int HField() const { return Bit(5); }
  inline int ImmedHField() const { return Bits(11, 8); }
  inline int ImmedLField() const { return Bits(3, 0); }

  // Fields used in Branch instructions
  inline int LinkField() const { return Bit(24); }
  inline int SImmed24Field() const { return ((InstructionBits() << 8) >> 8); }

  // Fields used in Software interrupt instructions
  inline SoftwareInterruptCodes SvcField() const {
    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
  }

  // Test for special encodings of type 0 instructions (extra loads and stores,
  // as well as multiplications).
  inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }

  // Test for miscellaneous instructions encodings of type 0 instructions.
  inline bool IsMiscType0() const { return (Bit(24) == 1)
                                           && (Bit(23) == 0)
                                           && (Bit(20) == 0)
                                           && ((Bit(7) == 0)); }

  // Special accessors that test for existence of a value.
  inline bool HasS()    const { return SField() == 1; }
  inline bool HasB()    const { return BField() == 1; }
  inline bool HasW()    const { return WField() == 1; }
  inline bool HasL()    const { return LField() == 1; }
  inline bool HasU()    const { return UField() == 1; }
  inline bool HasSign() const { return SignField() == 1; }
  inline bool HasH()    const { return HField() == 1; }
  inline bool HasLink() const { return LinkField() == 1; }

  // Decoding the double immediate in the vmov instruction.
  double DoubleImmedVmov() const;

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instr.
  // Use the At(pc) function to create references to Instr.
  static Instr* At(byte* pc) { return reinterpret_cast<Instr*>(pc); }

 private:
  // Join split register codes, depending on single or double precision.
  // four_bit is the position of the least-significant bit of the four
  // bit specifier. one_bit is the position of the additional single bit
  // specifier.
  inline int VFPGlueRegCode(VFPRegPrecision pre, int four_bit, int one_bit) {
    if (pre == kSinglePrecision) {
      return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    }
    return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
  }

  // We need to prevent the creation of instances of class Instr.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instr);
};


// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
    const char* name;
  };

 private:
  static const char* names_[kNumRegisters];
  static const RegisterAlias aliases_[];
};

// Helper functions for converting between VFP register numbers and names.
class VFPRegisters {
 public:
  // Return the name of the register.
  static const char* Name(int reg, bool is_double);

  // Lookup the register number for the name provided.
  // Set flag pointed by is_double to true if register
  // is double-precision.
  static int Number(const char* name, bool* is_double);

 private:
  static const char* names_[kNumVFPRegisters];
};


} }  // namespace assembler::arm

#endif  // V8_ARM_CONSTANTS_ARM_H_