aboutsummaryrefslogtreecommitdiff
path: root/src/arm64/codegen-arm64.cc
blob: 4fb9a2d93901e783fde2b38db8b87366ab374e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/arm64/codegen-arm64.h"

#if V8_TARGET_ARCH_ARM64

#include "src/arm64/simulator-arm64.h"
#include "src/codegen.h"
#include "src/macro-assembler.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
  return nullptr;
}


// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}


// -------------------------------------------------------------------------
// Code generators

CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
  USE(isolate);
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  // The sequence of instructions that is patched out for aging code is the
  // following boilerplate stack-building prologue that is found both in
  // FUNCTION and OPTIMIZED_FUNCTION code:
  PatchingAssembler patcher(isolate, young_sequence_.start(),
                            young_sequence_.length() / kInstructionSize);
  // The young sequence is the frame setup code for FUNCTION code types. It is
  // generated by FullCodeGenerator::Generate.
  MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);

#ifdef DEBUG
  const int length = kCodeAgeStubEntryOffset / kInstructionSize;
  DCHECK(old_sequence_.length() >= kCodeAgeStubEntryOffset);
  PatchingAssembler patcher_old(isolate, old_sequence_.start(), length);
  MacroAssembler::EmitCodeAgeSequence(&patcher_old, NULL);
#endif
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return memcmp(candidate, old_sequence_.start(), kCodeAgeStubEntryOffset) == 0;
}
#endif


bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  return MacroAssembler::IsYoungSequence(isolate, sequence);
}

Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
  if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;

  byte* target = sequence + kCodeAgeStubEntryOffset;
  Code* stub = GetCodeFromTargetAddress(Memory::Address_at(target));
  return GetAgeOfCodeAgeStub(stub);
}

void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
                                Code::Age age) {
  PatchingAssembler patcher(isolate, sequence,
                            kNoCodeAgeSequenceLength / kInstructionSize);
  if (age == kNoAgeCodeAge) {
    MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
  } else {
    Code* stub = GetCodeAgeStub(isolate, age);
    MacroAssembler::EmitCodeAgeSequence(&patcher, stub);
  }
}


void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  DCHECK(string.Is64Bits() && index.Is32Bits() && result.Is64Bits());
  Label indirect_string_loaded;
  __ Bind(&indirect_string_loaded);

  // Fetch the instance type of the receiver into result register.
  __ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ TestAndBranchIfAllClear(result, kIsIndirectStringMask, &check_sequential);

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string, thin_string;
  __ And(result, result, kStringRepresentationMask);
  __ Cmp(result, kConsStringTag);
  __ B(eq, &cons_string);
  __ Cmp(result, kThinStringTag);
  __ B(eq, &thin_string);

  // Handle slices.
  __ Ldr(result.W(),
         UntagSmiFieldMemOperand(string, SlicedString::kOffsetOffset));
  __ Ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ Add(index, index, result.W());
  __ B(&indirect_string_loaded);

  // Handle thin strings.
  __ Bind(&thin_string);
  __ Ldr(string, FieldMemOperand(string, ThinString::kActualOffset));
  __ B(&indirect_string_loaded);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ Bind(&cons_string);
  __ Ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ JumpIfNotRoot(result, Heap::kempty_stringRootIndex, call_runtime);
  // Get the first of the two strings and load its instance type.
  __ Ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
  __ B(&indirect_string_loaded);

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ Bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ TestAndBranchIfAnySet(result, kStringRepresentationMask, &external_string);

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ Add(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
  __ B(&check_encoding);

  // Handle external strings.
  __ Bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ Tst(result, kIsIndirectStringMask);
    __ Assert(eq, kExternalStringExpectedButNotFound);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  // TestAndBranchIfAnySet can emit Tbnz. Do not use it because call_runtime
  // can be bound far away in deferred code.
  __ Tst(result, kShortExternalStringMask);
  __ B(ne, call_runtime);
  __ Ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label one_byte, done;
  __ Bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ TestAndBranchIfAnySet(result, kStringEncodingMask, &one_byte);
  // Two-byte string.
  __ Ldrh(result, MemOperand(string, index, SXTW, 1));
  __ B(&done);
  __ Bind(&one_byte);
  // One-byte string.
  __ Ldrb(result, MemOperand(string, index, SXTW));
  __ Bind(&done);
}

#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_ARM64