aboutsummaryrefslogtreecommitdiff
path: root/src/compiler/state-values-utils.cc
blob: e8310d7d56ed95cb4ebaaa75b86ed56379ea9940 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/state-values-utils.h"

namespace v8 {
namespace internal {
namespace compiler {

StateValuesCache::StateValuesCache(JSGraph* js_graph)
    : js_graph_(js_graph),
      hash_map_(AreKeysEqual, ZoneHashMap::kDefaultHashMapCapacity,
                ZoneAllocationPolicy(zone())),
      working_space_(zone()),
      empty_state_values_(nullptr) {}


// static
bool StateValuesCache::AreKeysEqual(void* key1, void* key2) {
  NodeKey* node_key1 = reinterpret_cast<NodeKey*>(key1);
  NodeKey* node_key2 = reinterpret_cast<NodeKey*>(key2);

  if (node_key1->node == nullptr) {
    if (node_key2->node == nullptr) {
      return AreValueKeysEqual(reinterpret_cast<StateValuesKey*>(key1),
                               reinterpret_cast<StateValuesKey*>(key2));
    } else {
      return IsKeysEqualToNode(reinterpret_cast<StateValuesKey*>(key1),
                               node_key2->node);
    }
  } else {
    if (node_key2->node == nullptr) {
      // If the nodes are already processed, they must be the same.
      return IsKeysEqualToNode(reinterpret_cast<StateValuesKey*>(key2),
                               node_key1->node);
    } else {
      return node_key1->node == node_key2->node;
    }
  }
  UNREACHABLE();
}


// static
bool StateValuesCache::IsKeysEqualToNode(StateValuesKey* key, Node* node) {
  if (key->count != static_cast<size_t>(node->InputCount())) {
    return false;
  }
  for (size_t i = 0; i < key->count; i++) {
    if (key->values[i] != node->InputAt(static_cast<int>(i))) {
      return false;
    }
  }
  return true;
}


// static
bool StateValuesCache::AreValueKeysEqual(StateValuesKey* key1,
                                         StateValuesKey* key2) {
  if (key1->count != key2->count) {
    return false;
  }
  for (size_t i = 0; i < key1->count; i++) {
    if (key1->values[i] != key2->values[i]) {
      return false;
    }
  }
  return true;
}


Node* StateValuesCache::GetEmptyStateValues() {
  if (empty_state_values_ == nullptr) {
    empty_state_values_ = graph()->NewNode(common()->StateValues(0));
  }
  return empty_state_values_;
}


NodeVector* StateValuesCache::GetWorkingSpace(size_t level) {
  while (working_space_.size() <= level) {
    void* space = zone()->New(sizeof(NodeVector));
    working_space_.push_back(new (space)
                                 NodeVector(kMaxInputCount, nullptr, zone()));
  }
  return working_space_[level];
}

namespace {

int StateValuesHashKey(Node** nodes, size_t count) {
  size_t hash = count;
  for (size_t i = 0; i < count; i++) {
    hash = hash * 23 + nodes[i]->id();
  }
  return static_cast<int>(hash & 0x7fffffff);
}

}  // namespace


Node* StateValuesCache::GetValuesNodeFromCache(Node** nodes, size_t count) {
  StateValuesKey key(count, nodes);
  int hash = StateValuesHashKey(nodes, count);
  ZoneHashMap::Entry* lookup =
      hash_map_.LookupOrInsert(&key, hash, ZoneAllocationPolicy(zone()));
  DCHECK_NOT_NULL(lookup);
  Node* node;
  if (lookup->value == nullptr) {
    int input_count = static_cast<int>(count);
    node = graph()->NewNode(common()->StateValues(input_count), input_count,
                            nodes);
    NodeKey* new_key = new (zone()->New(sizeof(NodeKey))) NodeKey(node);
    lookup->key = new_key;
    lookup->value = node;
  } else {
    node = reinterpret_cast<Node*>(lookup->value);
  }
  return node;
}


class StateValuesCache::ValueArrayIterator {
 public:
  ValueArrayIterator(Node** values, size_t count)
      : values_(values), count_(count), current_(0) {}

  void Advance() {
    if (!done()) {
      current_++;
    }
  }

  bool done() { return current_ >= count_; }

  Node* node() {
    DCHECK(!done());
    return values_[current_];
  }

 private:
  Node** values_;
  size_t count_;
  size_t current_;
};


Node* StateValuesCache::BuildTree(ValueArrayIterator* it, size_t max_height) {
  if (max_height == 0) {
    Node* node = it->node();
    it->Advance();
    return node;
  }
  DCHECK(!it->done());

  NodeVector* buffer = GetWorkingSpace(max_height);
  size_t count = 0;
  for (; count < kMaxInputCount; count++) {
    if (it->done()) break;
    (*buffer)[count] = BuildTree(it, max_height - 1);
  }
  if (count == 1) {
    return (*buffer)[0];
  } else {
    return GetValuesNodeFromCache(&(buffer->front()), count);
  }
}


Node* StateValuesCache::GetNodeForValues(Node** values, size_t count) {
#if DEBUG
  for (size_t i = 0; i < count; i++) {
    DCHECK_NE(values[i]->opcode(), IrOpcode::kStateValues);
    DCHECK_NE(values[i]->opcode(), IrOpcode::kTypedStateValues);
  }
#endif
  if (count == 0) {
    return GetEmptyStateValues();
  }
  size_t height = 0;
  size_t max_nodes = 1;
  while (count > max_nodes) {
    height++;
    max_nodes *= kMaxInputCount;
  }

  ValueArrayIterator it(values, count);

  Node* tree = BuildTree(&it, height);

  // If the 'tree' is a single node, equip it with a StateValues wrapper.
  if (tree->opcode() != IrOpcode::kStateValues &&
      tree->opcode() != IrOpcode::kTypedStateValues) {
    tree = GetValuesNodeFromCache(&tree, 1);
  }

  return tree;
}


StateValuesAccess::iterator::iterator(Node* node) : current_depth_(0) {
  // A hacky way initialize - just set the index before the node we want
  // to process and then advance to it.
  stack_[current_depth_].node = node;
  stack_[current_depth_].index = -1;
  Advance();
}


StateValuesAccess::iterator::StatePos* StateValuesAccess::iterator::Top() {
  DCHECK(current_depth_ >= 0);
  DCHECK(current_depth_ < kMaxInlineDepth);
  return &(stack_[current_depth_]);
}


void StateValuesAccess::iterator::Push(Node* node) {
  current_depth_++;
  CHECK(current_depth_ < kMaxInlineDepth);
  stack_[current_depth_].node = node;
  stack_[current_depth_].index = 0;
}


void StateValuesAccess::iterator::Pop() {
  DCHECK(current_depth_ >= 0);
  current_depth_--;
}


bool StateValuesAccess::iterator::done() { return current_depth_ < 0; }


void StateValuesAccess::iterator::Advance() {
  // Advance the current index.
  Top()->index++;

  // Fix up the position to point to a valid node.
  while (true) {
    // TODO(jarin): Factor to a separate method.
    Node* node = Top()->node;
    int index = Top()->index;

    if (index >= node->InputCount()) {
      // Pop stack and move to the next sibling.
      Pop();
      if (done()) {
        // Stack is exhausted, we have reached the end.
        return;
      }
      Top()->index++;
    } else if (node->InputAt(index)->opcode() == IrOpcode::kStateValues ||
               node->InputAt(index)->opcode() == IrOpcode::kTypedStateValues) {
      // Nested state, we need to push to the stack.
      Push(node->InputAt(index));
    } else {
      // We are on a valid node, we can stop the iteration.
      return;
    }
  }
}


Node* StateValuesAccess::iterator::node() {
  return Top()->node->InputAt(Top()->index);
}


MachineType StateValuesAccess::iterator::type() {
  Node* state = Top()->node;
  if (state->opcode() == IrOpcode::kStateValues) {
    return MachineType::AnyTagged();
  } else {
    DCHECK_EQ(IrOpcode::kTypedStateValues, state->opcode());
    ZoneVector<MachineType> const* types = MachineTypesOf(state->op());
    return (*types)[Top()->index];
  }
}


bool StateValuesAccess::iterator::operator!=(iterator& other) {
  // We only allow comparison with end().
  CHECK(other.done());
  return !done();
}


StateValuesAccess::iterator& StateValuesAccess::iterator::operator++() {
  Advance();
  return *this;
}


StateValuesAccess::TypedNode StateValuesAccess::iterator::operator*() {
  return TypedNode(node(), type());
}


size_t StateValuesAccess::size() {
  size_t count = 0;
  for (int i = 0; i < node_->InputCount(); i++) {
    if (node_->InputAt(i)->opcode() == IrOpcode::kStateValues ||
        node_->InputAt(i)->opcode() == IrOpcode::kTypedStateValues) {
      count += StateValuesAccess(node_->InputAt(i)).size();
    } else {
      count++;
    }
  }
  return count;
}

}  // namespace compiler
}  // namespace internal
}  // namespace v8