aboutsummaryrefslogtreecommitdiff
path: root/src/counters.cc
blob: 5089eb22e8ba397dc7108af37071dd2a74915cde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/counters.h"

#include <iomanip>

#include "src/base/platform/platform.h"
#include "src/isolate.h"
#include "src/log-inl.h"
#include "src/log.h"

namespace v8 {
namespace internal {

StatsTable::StatsTable()
    : lookup_function_(NULL),
      create_histogram_function_(NULL),
      add_histogram_sample_function_(NULL) {}


int* StatsCounter::FindLocationInStatsTable() const {
  return isolate_->stats_table()->FindLocation(name_);
}


void Histogram::AddSample(int sample) {
  if (Enabled()) {
    isolate()->stats_table()->AddHistogramSample(histogram_, sample);
  }
}

void* Histogram::CreateHistogram() const {
  return isolate()->stats_table()->
      CreateHistogram(name_, min_, max_, num_buckets_);
}


// Start the timer.
void HistogramTimer::Start() {
  if (Enabled()) {
    timer_.Start();
  }
  Logger::CallEventLogger(isolate(), name(), Logger::START, true);
}


// Stop the timer and record the results.
void HistogramTimer::Stop() {
  if (Enabled()) {
    int64_t sample = resolution_ == MICROSECOND
                         ? timer_.Elapsed().InMicroseconds()
                         : timer_.Elapsed().InMilliseconds();
    // Compute the delta between start and stop, in microseconds.
    AddSample(static_cast<int>(sample));
    timer_.Stop();
  }
  Logger::CallEventLogger(isolate(), name(), Logger::END, true);
}


Counters::Counters(Isolate* isolate) {
#define HR(name, caption, min, max, num_buckets) \
  name##_ = Histogram(#caption, min, max, num_buckets, isolate);
  HISTOGRAM_RANGE_LIST(HR)
#undef HR

#define HT(name, caption, max, res) \
  name##_ = HistogramTimer(#caption, 0, max, HistogramTimer::res, 50, isolate);
    HISTOGRAM_TIMER_LIST(HT)
#undef HT

#define AHT(name, caption) \
  name##_ = AggregatableHistogramTimer(#caption, 0, 10000000, 50, isolate);
    AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT)
#undef AHT

#define HP(name, caption) \
    name##_ = Histogram(#caption, 0, 101, 100, isolate);
    HISTOGRAM_PERCENTAGE_LIST(HP)
#undef HP


// Exponential histogram assigns bucket limits to points
// p[1], p[2], ... p[n] such that p[i+1] / p[i] = constant.
// The constant factor is equal to the n-th root of (high / low),
// where the n is the number of buckets, the low is the lower limit,
// the high is the upper limit.
// For n = 50, low = 1000, high = 500000: the factor = 1.13.
#define HM(name, caption) \
    name##_ = Histogram(#caption, 1000, 500000, 50, isolate);
  HISTOGRAM_LEGACY_MEMORY_LIST(HM)
#undef HM
// For n = 100, low = 4000, high = 2000000: the factor = 1.06.
#define HM(name, caption) \
  name##_ = Histogram(#caption, 4000, 2000000, 100, isolate);
  HISTOGRAM_MEMORY_LIST(HM)
#undef HM

#define HM(name, caption) \
  aggregated_##name##_ = AggregatedMemoryHistogram<Histogram>(&name##_);
    HISTOGRAM_MEMORY_LIST(HM)
#undef HM

#define SC(name, caption) \
    name##_ = StatsCounter(isolate, "c:" #caption);

    STATS_COUNTER_LIST_1(SC)
    STATS_COUNTER_LIST_2(SC)
#undef SC

#define SC(name) \
    count_of_##name##_ = StatsCounter(isolate, "c:" "V8.CountOf_" #name); \
    size_of_##name##_ = StatsCounter(isolate, "c:" "V8.SizeOf_" #name);
    INSTANCE_TYPE_LIST(SC)
#undef SC

#define SC(name) \
    count_of_CODE_TYPE_##name##_ = \
        StatsCounter(isolate, "c:" "V8.CountOf_CODE_TYPE-" #name); \
    size_of_CODE_TYPE_##name##_ = \
        StatsCounter(isolate, "c:" "V8.SizeOf_CODE_TYPE-" #name);
    CODE_KIND_LIST(SC)
#undef SC

#define SC(name) \
    count_of_FIXED_ARRAY_##name##_ = \
        StatsCounter(isolate, "c:" "V8.CountOf_FIXED_ARRAY-" #name); \
    size_of_FIXED_ARRAY_##name##_ = \
        StatsCounter(isolate, "c:" "V8.SizeOf_FIXED_ARRAY-" #name);
    FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC)
#undef SC

#define SC(name) \
    count_of_CODE_AGE_##name##_ = \
        StatsCounter(isolate, "c:" "V8.CountOf_CODE_AGE-" #name); \
    size_of_CODE_AGE_##name##_ = \
        StatsCounter(isolate, "c:" "V8.SizeOf_CODE_AGE-" #name);
    CODE_AGE_LIST_COMPLETE(SC)
#undef SC
}


void Counters::ResetCounters() {
#define SC(name, caption) name##_.Reset();
  STATS_COUNTER_LIST_1(SC)
  STATS_COUNTER_LIST_2(SC)
#undef SC

#define SC(name)              \
  count_of_##name##_.Reset(); \
  size_of_##name##_.Reset();
  INSTANCE_TYPE_LIST(SC)
#undef SC

#define SC(name)                        \
  count_of_CODE_TYPE_##name##_.Reset(); \
  size_of_CODE_TYPE_##name##_.Reset();
  CODE_KIND_LIST(SC)
#undef SC

#define SC(name)                          \
  count_of_FIXED_ARRAY_##name##_.Reset(); \
  size_of_FIXED_ARRAY_##name##_.Reset();
  FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC)
#undef SC

#define SC(name)                       \
  count_of_CODE_AGE_##name##_.Reset(); \
  size_of_CODE_AGE_##name##_.Reset();
  CODE_AGE_LIST_COMPLETE(SC)
#undef SC
}


void Counters::ResetHistograms() {
#define HR(name, caption, min, max, num_buckets) name##_.Reset();
  HISTOGRAM_RANGE_LIST(HR)
#undef HR

#define HT(name, caption, max, res) name##_.Reset();
    HISTOGRAM_TIMER_LIST(HT)
#undef HT

#define AHT(name, caption) name##_.Reset();
    AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT)
#undef AHT

#define HP(name, caption) name##_.Reset();
    HISTOGRAM_PERCENTAGE_LIST(HP)
#undef HP

#define HM(name, caption) name##_.Reset();
    HISTOGRAM_LEGACY_MEMORY_LIST(HM)
#undef HM
}

class RuntimeCallStatEntries {
 public:
  void Print(std::ostream& os) {
    if (total_call_count == 0) return;
    std::sort(entries.rbegin(), entries.rend());
    os << std::setw(50) << "Runtime Function/C++ Builtin" << std::setw(12)
       << "Time" << std::setw(18) << "Count" << std::endl
       << std::string(88, '=') << std::endl;
    for (Entry& entry : entries) {
      entry.SetTotal(total_time, total_call_count);
      entry.Print(os);
    }
    os << std::string(88, '-') << std::endl;
    Entry("Total", total_time, total_call_count).Print(os);
  }

  // By default, the compiler will usually inline this, which results in a large
  // binary size increase: std::vector::push_back expands to a large amount of
  // instructions, and this function is invoked repeatedly by macros.
  V8_NOINLINE void Add(RuntimeCallCounter* counter) {
    if (counter->count == 0) return;
    entries.push_back(Entry(counter->name, counter->time, counter->count));
    total_time += counter->time;
    total_call_count += counter->count;
  }

 private:
  class Entry {
   public:
    Entry(const char* name, base::TimeDelta time, uint64_t count)
        : name_(name),
          time_(time.InMicroseconds()),
          count_(count),
          time_percent_(100),
          count_percent_(100) {}

    bool operator<(const Entry& other) const {
      if (time_ < other.time_) return true;
      if (time_ > other.time_) return false;
      return count_ < other.count_;
    }

    V8_NOINLINE void Print(std::ostream& os) {
      os.precision(2);
      os << std::fixed << std::setprecision(2);
      os << std::setw(50) << name_;
      os << std::setw(10) << static_cast<double>(time_) / 1000 << "ms ";
      os << std::setw(6) << time_percent_ << "%";
      os << std::setw(10) << count_ << " ";
      os << std::setw(6) << count_percent_ << "%";
      os << std::endl;
    }

    V8_NOINLINE void SetTotal(base::TimeDelta total_time,
                              uint64_t total_count) {
      if (total_time.InMicroseconds() == 0) {
        time_percent_ = 0;
      } else {
        time_percent_ = 100.0 * time_ / total_time.InMicroseconds();
      }
      count_percent_ = 100.0 * count_ / total_count;
    }

   private:
    const char* name_;
    int64_t time_;
    uint64_t count_;
    double time_percent_;
    double count_percent_;
  };

  uint64_t total_call_count = 0;
  base::TimeDelta total_time;
  std::vector<Entry> entries;
};

void RuntimeCallCounter::Reset() {
  count = 0;
  time = base::TimeDelta();
}

void RuntimeCallCounter::Dump(v8::tracing::TracedValue* value) {
  value->BeginArray(name);
  value->AppendLongInteger(count);
  value->AppendLongInteger(time.InMicroseconds());
  value->EndArray();
}

void RuntimeCallCounter::Add(RuntimeCallCounter* other) {
  count += other->count;
  time += other->time;
}

// static
const RuntimeCallStats::CounterId RuntimeCallStats::counters[] = {
#define CALL_RUNTIME_COUNTER(name) &RuntimeCallStats::name,
    FOR_EACH_MANUAL_COUNTER(CALL_RUNTIME_COUNTER)  //
#undef CALL_RUNTIME_COUNTER
#define CALL_RUNTIME_COUNTER(name, nargs, ressize) \
  &RuntimeCallStats::Runtime_##name,          //
    FOR_EACH_INTRINSIC(CALL_RUNTIME_COUNTER)  //
#undef CALL_RUNTIME_COUNTER
#define CALL_BUILTIN_COUNTER(name) &RuntimeCallStats::Builtin_##name,
    BUILTIN_LIST_C(CALL_BUILTIN_COUNTER)  //
#undef CALL_BUILTIN_COUNTER
#define CALL_BUILTIN_COUNTER(name) &RuntimeCallStats::API_##name,
    FOR_EACH_API_COUNTER(CALL_BUILTIN_COUNTER)  //
#undef CALL_BUILTIN_COUNTER
#define CALL_BUILTIN_COUNTER(name) &RuntimeCallStats::Handler_##name,
    FOR_EACH_HANDLER_COUNTER(CALL_BUILTIN_COUNTER)
#undef CALL_BUILTIN_COUNTER
};

// static
void RuntimeCallStats::Enter(RuntimeCallStats* stats, RuntimeCallTimer* timer,
                             CounterId counter_id) {
  RuntimeCallCounter* counter = &(stats->*counter_id);
  DCHECK(counter->name != nullptr);
  timer->Start(counter, stats->current_timer_.Value());
  stats->current_timer_.SetValue(timer);
}

// static
void RuntimeCallStats::Leave(RuntimeCallStats* stats, RuntimeCallTimer* timer) {
  if (stats->current_timer_.Value() == timer) {
    stats->current_timer_.SetValue(timer->Stop());
  } else {
    // Must be a Threading cctest. Walk the chain of Timers to find the
    // buried one that's leaving. We don't care about keeping nested timings
    // accurate, just avoid crashing by keeping the chain intact.
    RuntimeCallTimer* next = stats->current_timer_.Value();
    while (next && next->parent() != timer) next = next->parent();
    if (next == nullptr) return;
    next->parent_.SetValue(timer->Stop());
  }
}

void RuntimeCallStats::Add(RuntimeCallStats* other) {
  for (const RuntimeCallStats::CounterId counter_id :
       RuntimeCallStats::counters) {
    RuntimeCallCounter* counter = &(this->*counter_id);
    RuntimeCallCounter* other_counter = &(other->*counter_id);
    counter->Add(other_counter);
  }
}

// static
void RuntimeCallStats::CorrectCurrentCounterId(RuntimeCallStats* stats,
                                               CounterId counter_id) {
  RuntimeCallTimer* timer = stats->current_timer_.Value();
  // When RCS are enabled dynamically there might be no current timer set up.
  if (timer == nullptr) return;
  timer->counter_ = &(stats->*counter_id);
}

void RuntimeCallStats::Print(std::ostream& os) {
  RuntimeCallStatEntries entries;
  if (current_timer_.Value() != nullptr) {
    current_timer_.Value()->Elapsed();
  }
  for (const RuntimeCallStats::CounterId counter_id :
       RuntimeCallStats::counters) {
    RuntimeCallCounter* counter = &(this->*counter_id);
    entries.Add(counter);
  }
  entries.Print(os);
}

void RuntimeCallStats::Reset() {
  if (V8_LIKELY(FLAG_runtime_stats == 0)) return;

  // In tracing, we only what to trace the time spent on top level trace events,
  // if runtime counter stack is not empty, we should clear the whole runtime
  // counter stack, and then reset counters so that we can dump counters into
  // top level trace events accurately.
  while (current_timer_.Value()) {
    current_timer_.SetValue(current_timer_.Value()->Stop());
  }

  for (const RuntimeCallStats::CounterId counter_id :
       RuntimeCallStats::counters) {
    RuntimeCallCounter* counter = &(this->*counter_id);
    counter->Reset();
  }

  in_use_ = true;
}

void RuntimeCallStats::Dump(v8::tracing::TracedValue* value) {
  for (const RuntimeCallStats::CounterId counter_id :
       RuntimeCallStats::counters) {
    RuntimeCallCounter* counter = &(this->*counter_id);
    if (counter->count > 0) counter->Dump(value);
  }

  in_use_ = false;
}

}  // namespace internal
}  // namespace v8