aboutsummaryrefslogtreecommitdiff
path: root/src/heap/store-buffer.cc
blob: 974b85e1c875e5ea7afe6e7152674fc82b229137 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/store-buffer.h"

#include <algorithm>

#include "src/counters.h"
#include "src/heap/incremental-marking.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/v8.h"

namespace v8 {
namespace internal {

StoreBuffer::StoreBuffer(Heap* heap)
    : heap_(heap), top_(nullptr), current_(0), virtual_memory_(nullptr) {
  for (int i = 0; i < kStoreBuffers; i++) {
    start_[i] = nullptr;
    limit_[i] = nullptr;
    lazy_top_[i] = nullptr;
  }
  task_running_ = false;
}

void StoreBuffer::SetUp() {
  // Allocate 3x the buffer size, so that we can start the new store buffer
  // aligned to 2x the size.  This lets us use a bit test to detect the end of
  // the area.
  virtual_memory_ = new base::VirtualMemory(kStoreBufferSize * 3);
  uintptr_t start_as_int =
      reinterpret_cast<uintptr_t>(virtual_memory_->address());
  start_[0] =
      reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize));
  limit_[0] = start_[0] + (kStoreBufferSize / kPointerSize);
  start_[1] = limit_[0];
  limit_[1] = start_[1] + (kStoreBufferSize / kPointerSize);

  Address* vm_limit = reinterpret_cast<Address*>(
      reinterpret_cast<char*>(virtual_memory_->address()) +
      virtual_memory_->size());

  USE(vm_limit);
  for (int i = 0; i < kStoreBuffers; i++) {
    DCHECK(reinterpret_cast<Address>(start_[i]) >= virtual_memory_->address());
    DCHECK(reinterpret_cast<Address>(limit_[i]) >= virtual_memory_->address());
    DCHECK(start_[i] <= vm_limit);
    DCHECK(limit_[i] <= vm_limit);
    DCHECK((reinterpret_cast<uintptr_t>(limit_[i]) & kStoreBufferMask) == 0);
  }

  if (!virtual_memory_->Commit(reinterpret_cast<Address>(start_[0]),
                               kStoreBufferSize * kStoreBuffers,
                               false)) {  // Not executable.
    V8::FatalProcessOutOfMemory("StoreBuffer::SetUp");
  }
  current_ = 0;
  top_ = start_[current_];
}


void StoreBuffer::TearDown() {
  delete virtual_memory_;
  top_ = nullptr;
  for (int i = 0; i < kStoreBuffers; i++) {
    start_[i] = nullptr;
    limit_[i] = nullptr;
    lazy_top_[i] = nullptr;
  }
}


void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
  isolate->heap()->store_buffer()->FlipStoreBuffers();
  isolate->counters()->store_buffer_overflows()->Increment();
}

void StoreBuffer::FlipStoreBuffers() {
  base::LockGuard<base::Mutex> guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  lazy_top_[current_] = top_;
  current_ = other;
  top_ = start_[current_];

  if (!task_running_) {
    task_running_ = true;
    Task* task = new Task(heap_->isolate(), this);
    V8::GetCurrentPlatform()->CallOnBackgroundThread(
        task, v8::Platform::kShortRunningTask);
  }
}

void StoreBuffer::MoveEntriesToRememberedSet(int index) {
  if (!lazy_top_[index]) return;
  DCHECK_GE(index, 0);
  DCHECK_LT(index, kStoreBuffers);
  for (Address* current = start_[index]; current < lazy_top_[index];
       current++) {
    DCHECK(!heap_->code_space()->Contains(*current));
    Address addr = *current;
    Page* page = Page::FromAnyPointerAddress(heap_, addr);
    if (IsDeletionAddress(addr)) {
      current++;
      Address end = *current;
      DCHECK(!IsDeletionAddress(end));
      addr = UnmarkDeletionAddress(addr);
      if (end) {
        RememberedSet<OLD_TO_NEW>::RemoveRange(page, addr, end,
                                               SlotSet::PREFREE_EMPTY_BUCKETS);
      } else {
        RememberedSet<OLD_TO_NEW>::Remove(page, addr);
      }
    } else {
      DCHECK(!IsDeletionAddress(addr));
      RememberedSet<OLD_TO_NEW>::Insert(page, addr);
    }
  }
  lazy_top_[index] = nullptr;
}

void StoreBuffer::MoveAllEntriesToRememberedSet() {
  base::LockGuard<base::Mutex> guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  lazy_top_[current_] = top_;
  MoveEntriesToRememberedSet(current_);
  top_ = start_[current_];
}

void StoreBuffer::ConcurrentlyProcessStoreBuffer() {
  base::LockGuard<base::Mutex> guard(&mutex_);
  int other = (current_ + 1) % kStoreBuffers;
  MoveEntriesToRememberedSet(other);
  task_running_ = false;
}

void StoreBuffer::DeleteEntry(Address start, Address end) {
  // Deletions coming from the GC are directly deleted from the remembered
  // set. Deletions coming from the runtime are added to the store buffer
  // to allow concurrent processing.
  if (heap_->gc_state() == Heap::NOT_IN_GC) {
    if (top_ + sizeof(Address) * 2 > limit_[current_]) {
      StoreBufferOverflow(heap_->isolate());
    }
    *top_ = MarkDeletionAddress(start);
    top_++;
    *top_ = end;
    top_++;
  } else {
    // In GC the store buffer has to be empty at any time.
    DCHECK(Empty());
    Page* page = Page::FromAddress(start);
    if (end) {
      RememberedSet<OLD_TO_NEW>::RemoveRange(page, start, end,
                                             SlotSet::PREFREE_EMPTY_BUCKETS);
    } else {
      RememberedSet<OLD_TO_NEW>::Remove(page, start);
    }
  }
}
}  // namespace internal
}  // namespace v8