aboutsummaryrefslogtreecommitdiff
path: root/src/ia32/assembler-ia32.h
blob: 79f412535431d205ca371cabf52c4acf61f4b0a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2011 the V8 project authors. All rights reserved.

// A light-weight IA32 Assembler.

#ifndef V8_IA32_ASSEMBLER_IA32_H_
#define V8_IA32_ASSEMBLER_IA32_H_

#include <deque>

#include "src/assembler.h"
#include "src/isolate.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

#define GENERAL_REGISTERS(V) \
  V(eax)                     \
  V(ecx)                     \
  V(edx)                     \
  V(ebx)                     \
  V(esp)                     \
  V(ebp)                     \
  V(esi)                     \
  V(edi)

#define ALLOCATABLE_GENERAL_REGISTERS(V) \
  V(eax)                                 \
  V(ecx)                                 \
  V(edx)                                 \
  V(ebx)                                 \
  V(esi)                                 \
  V(edi)

#define DOUBLE_REGISTERS(V) \
  V(xmm0)                   \
  V(xmm1)                   \
  V(xmm2)                   \
  V(xmm3)                   \
  V(xmm4)                   \
  V(xmm5)                   \
  V(xmm6)                   \
  V(xmm7)

#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS

#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
  V(xmm1)                               \
  V(xmm2)                               \
  V(xmm3)                               \
  V(xmm4)                               \
  V(xmm5)                               \
  V(xmm6)                               \
  V(xmm7)

// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
//
struct Register {
  enum Code {
#define REGISTER_CODE(R) kCode_##R,
    GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
        kAfterLast,
    kCode_no_reg = -1
  };

  static const int kNumRegisters = Code::kAfterLast;

  static Register from_code(int code) {
    DCHECK(code >= 0);
    DCHECK(code < kNumRegisters);
    Register r = {code};
    return r;
  }
  bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
  bool is(Register reg) const { return reg_code == reg.reg_code; }
  int code() const {
    DCHECK(is_valid());
    return reg_code;
  }
  int bit() const {
    DCHECK(is_valid());
    return 1 << reg_code;
  }

  bool is_byte_register() const { return reg_code <= 3; }

  // Unfortunately we can't make this private in a struct.
  int reg_code;
};


#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_reg = {Register::kCode_no_reg};

static const bool kSimpleFPAliasing = true;

struct XMMRegister {
  enum Code {
#define REGISTER_CODE(R) kCode_##R,
    DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
        kAfterLast,
    kCode_no_reg = -1
  };

  static const int kMaxNumRegisters = Code::kAfterLast;

  static XMMRegister from_code(int code) {
    XMMRegister result = {code};
    return result;
  }

  bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }

  int code() const {
    DCHECK(is_valid());
    return reg_code;
  }

  bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }

  int reg_code;
};

typedef XMMRegister FloatRegister;

typedef XMMRegister DoubleRegister;

typedef XMMRegister Simd128Register;

#define DECLARE_REGISTER(R) \
  const DoubleRegister R = {DoubleRegister::kCode_##R};
DOUBLE_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};

enum Condition {
  // any value < 0 is considered no_condition
  no_condition  = -1,

  overflow      =  0,
  no_overflow   =  1,
  below         =  2,
  above_equal   =  3,
  equal         =  4,
  not_equal     =  5,
  below_equal   =  6,
  above         =  7,
  negative      =  8,
  positive      =  9,
  parity_even   = 10,
  parity_odd    = 11,
  less          = 12,
  greater_equal = 13,
  less_equal    = 14,
  greater       = 15,

  // aliases
  carry         = below,
  not_carry     = above_equal,
  zero          = equal,
  not_zero      = not_equal,
  sign          = negative,
  not_sign      = positive
};


// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
  return static_cast<Condition>(cc ^ 1);
}


// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cc) {
  switch (cc) {
    case below:
      return above;
    case above:
      return below;
    case above_equal:
      return below_equal;
    case below_equal:
      return above_equal;
    case less:
      return greater;
    case greater:
      return less;
    case greater_equal:
      return less_equal;
    case less_equal:
      return greater_equal;
    default:
      return cc;
  }
}


enum RoundingMode {
  kRoundToNearest = 0x0,
  kRoundDown = 0x1,
  kRoundUp = 0x2,
  kRoundToZero = 0x3
};


// -----------------------------------------------------------------------------
// Machine instruction Immediates

class Immediate BASE_EMBEDDED {
 public:
  inline explicit Immediate(int x);
  inline explicit Immediate(const ExternalReference& ext);
  inline explicit Immediate(Handle<Object> handle);
  inline explicit Immediate(Smi* value);
  inline explicit Immediate(Address addr);
  inline explicit Immediate(Address x, RelocInfo::Mode rmode);

  static Immediate CodeRelativeOffset(Label* label) {
    return Immediate(label);
  }

  bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
  bool is_int8() const {
    return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
  }
  bool is_uint8() const {
    return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
  }
  bool is_int16() const {
    return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
  }
  bool is_uint16() const {
    return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
  }

 private:
  inline explicit Immediate(Label* value);

  int x_;
  RelocInfo::Mode rmode_;

  friend class Operand;
  friend class Assembler;
  friend class MacroAssembler;
};


// -----------------------------------------------------------------------------
// Machine instruction Operands

enum ScaleFactor {
  times_1 = 0,
  times_2 = 1,
  times_4 = 2,
  times_8 = 3,
  times_int_size = times_4,
  times_half_pointer_size = times_2,
  times_pointer_size = times_4,
  times_twice_pointer_size = times_8
};


class Operand BASE_EMBEDDED {
 public:
  // reg
  INLINE(explicit Operand(Register reg));

  // XMM reg
  INLINE(explicit Operand(XMMRegister xmm_reg));

  // [disp/r]
  INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));

  // [disp/r]
  INLINE(explicit Operand(Immediate imm));

  // [base + disp/r]
  explicit Operand(Register base, int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE32);

  // [base + index*scale + disp/r]
  explicit Operand(Register base,
                   Register index,
                   ScaleFactor scale,
                   int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE32);

  // [index*scale + disp/r]
  explicit Operand(Register index,
                   ScaleFactor scale,
                   int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE32);

  static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
    return Operand(index, scale, reinterpret_cast<int32_t>(table),
                   RelocInfo::INTERNAL_REFERENCE);
  }

  static Operand StaticVariable(const ExternalReference& ext) {
    return Operand(reinterpret_cast<int32_t>(ext.address()),
                   RelocInfo::EXTERNAL_REFERENCE);
  }

  static Operand StaticArray(Register index,
                             ScaleFactor scale,
                             const ExternalReference& arr) {
    return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
                   RelocInfo::EXTERNAL_REFERENCE);
  }

  static Operand ForCell(Handle<Cell> cell) {
    AllowDeferredHandleDereference embedding_raw_address;
    return Operand(reinterpret_cast<int32_t>(cell.location()),
                   RelocInfo::CELL);
  }

  static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
    return Operand(base, imm.x_, imm.rmode_);
  }

  // Returns true if this Operand is a wrapper for the specified register.
  bool is_reg(Register reg) const;

  // Returns true if this Operand is a wrapper for one register.
  bool is_reg_only() const;

  // Asserts that this Operand is a wrapper for one register and returns the
  // register.
  Register reg() const;

 private:
  // Set the ModRM byte without an encoded 'reg' register. The
  // register is encoded later as part of the emit_operand operation.
  inline void set_modrm(int mod, Register rm);

  inline void set_sib(ScaleFactor scale, Register index, Register base);
  inline void set_disp8(int8_t disp);
  inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);

  byte buf_[6];
  // The number of bytes in buf_.
  unsigned int len_;
  // Only valid if len_ > 4.
  RelocInfo::Mode rmode_;

  friend class Assembler;
  friend class MacroAssembler;
};


// -----------------------------------------------------------------------------
// A Displacement describes the 32bit immediate field of an instruction which
// may be used together with a Label in order to refer to a yet unknown code
// position. Displacements stored in the instruction stream are used to describe
// the instruction and to chain a list of instructions using the same Label.
// A Displacement contains 2 different fields:
//
// next field: position of next displacement in the chain (0 = end of list)
// type field: instruction type
//
// A next value of null (0) indicates the end of a chain (note that there can
// be no displacement at position zero, because there is always at least one
// instruction byte before the displacement).
//
// Displacement _data field layout
//
// |31.....2|1......0|
// [  next  |  type  |

class Displacement BASE_EMBEDDED {
 public:
  enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };

  int data() const { return data_; }
  Type type() const { return TypeField::decode(data_); }
  void next(Label* L) const {
    int n = NextField::decode(data_);
    n > 0 ? L->link_to(n) : L->Unuse();
  }
  void link_to(Label* L) { init(L, type()); }

  explicit Displacement(int data) { data_ = data; }

  Displacement(Label* L, Type type) { init(L, type); }

  void print() {
    PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
                       NextField::decode(data_));
  }

 private:
  int data_;

  class TypeField: public BitField<Type, 0, 2> {};
  class NextField: public BitField<int,  2, 32-2> {};

  void init(Label* L, Type type);
};


class Assembler : public AssemblerBase {
 private:
  // We check before assembling an instruction that there is sufficient
  // space to write an instruction and its relocation information.
  // The relocation writer's position must be kGap bytes above the end of
  // the generated instructions. This leaves enough space for the
  // longest possible ia32 instruction, 15 bytes, and the longest possible
  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
  // (There is a 15 byte limit on ia32 instruction length that rules out some
  // otherwise valid instructions.)
  // This allows for a single, fast space check per instruction.
  static const int kGap = 32;

 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is NULL, the assembler allocates and grows its own
  // buffer, and buffer_size determines the initial buffer size. The buffer is
  // owned by the assembler and deallocated upon destruction of the assembler.
  //
  // If the provided buffer is not NULL, the assembler uses the provided buffer
  // for code generation and assumes its size to be buffer_size. If the buffer
  // is too small, a fatal error occurs. No deallocation of the buffer is done
  // upon destruction of the assembler.
  // TODO(vitalyr): the assembler does not need an isolate.
  Assembler(Isolate* isolate, void* buffer, int buffer_size);
  virtual ~Assembler() { }

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(CodeDesc* desc);

  // Read/Modify the code target in the branch/call instruction at pc.
  inline static Address target_address_at(Address pc, Address constant_pool);
  inline static void set_target_address_at(
      Isolate* isolate, Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
  static inline Address target_address_at(Address pc, Code* code) {
    Address constant_pool = code ? code->constant_pool() : NULL;
    return target_address_at(pc, constant_pool);
  }
  static inline void set_target_address_at(
      Isolate* isolate, Address pc, Code* code, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
    Address constant_pool = code ? code->constant_pool() : NULL;
    set_target_address_at(isolate, pc, constant_pool, target);
  }

  // Return the code target address at a call site from the return address
  // of that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  // This sets the branch destination (which is in the instruction on x86).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Isolate* isolate, Address instruction_payload, Code* code,
      Address target) {
    set_target_address_at(isolate, instruction_payload, code, target);
  }

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Isolate* isolate, Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  static const int kSpecialTargetSize = kPointerSize;

  // Distance between the address of the code target in the call instruction
  // and the return address
  static const int kCallTargetAddressOffset = kPointerSize;

  static const int kCallInstructionLength = 5;

  // The debug break slot must be able to contain a call instruction.
  static const int kDebugBreakSlotLength = kCallInstructionLength;

  // Distance between start of patched debug break slot and the emitted address
  // to jump to.
  static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.

  // One byte opcode for test al, 0xXX.
  static const byte kTestAlByte = 0xA8;
  // One byte opcode for nop.
  static const byte kNopByte = 0x90;

  // One byte opcode for a short unconditional jump.
  static const byte kJmpShortOpcode = 0xEB;
  // One byte prefix for a short conditional jump.
  static const byte kJccShortPrefix = 0x70;
  static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
  static const byte kJcShortOpcode = kJccShortPrefix | carry;
  static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
  static const byte kJzShortOpcode = kJccShortPrefix | zero;


  // ---------------------------------------------------------------------------
  // Code generation
  //
  // - function names correspond one-to-one to ia32 instruction mnemonics
  // - unless specified otherwise, instructions operate on 32bit operands
  // - instructions on 8bit (byte) operands/registers have a trailing '_b'
  // - instructions on 16bit (word) operands/registers have a trailing '_w'
  // - naming conflicts with C++ keywords are resolved via a trailing '_'

  // NOTE ON INTERFACE: Currently, the interface is not very consistent
  // in the sense that some operations (e.g. mov()) can be called in more
  // the one way to generate the same instruction: The Register argument
  // can in some cases be replaced with an Operand(Register) argument.
  // This should be cleaned up and made more orthogonal. The questions
  // is: should we always use Operands instead of Registers where an
  // Operand is possible, or should we have a Register (overloaded) form
  // instead? We must be careful to make sure that the selected instruction
  // is obvious from the parameters to avoid hard-to-find code generation
  // bugs.

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2.
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  void Nop(int bytes = 1);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Stack
  void pushad();
  void popad();

  void pushfd();
  void popfd();

  void push(const Immediate& x);
  void push_imm32(int32_t imm32);
  void push(Register src);
  void push(const Operand& src);

  void pop(Register dst);
  void pop(const Operand& dst);

  void enter(const Immediate& size);
  void leave();

  // Moves
  void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
  void mov_b(Register dst, const Operand& src);
  void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
  void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
  void mov_b(const Operand& dst, const Immediate& src);
  void mov_b(const Operand& dst, Register src);

  void mov_w(Register dst, const Operand& src);
  void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
  void mov_w(const Operand& dst, const Immediate& src);
  void mov_w(const Operand& dst, Register src);

  void mov(Register dst, int32_t imm32);
  void mov(Register dst, const Immediate& x);
  void mov(Register dst, Handle<Object> handle);
  void mov(Register dst, const Operand& src);
  void mov(Register dst, Register src);
  void mov(const Operand& dst, const Immediate& x);
  void mov(const Operand& dst, Handle<Object> handle);
  void mov(const Operand& dst, Register src);

  void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
  void movsx_b(Register dst, const Operand& src);

  void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
  void movsx_w(Register dst, const Operand& src);

  void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
  void movzx_b(Register dst, const Operand& src);

  void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
  void movzx_w(Register dst, const Operand& src);

  // Conditional moves
  void cmov(Condition cc, Register dst, Register src) {
    cmov(cc, dst, Operand(src));
  }
  void cmov(Condition cc, Register dst, const Operand& src);

  // Flag management.
  void cld();

  // Repetitive string instructions.
  void rep_movs();
  void rep_stos();
  void stos();

  // Exchange
  void xchg(Register dst, Register src);
  void xchg(Register dst, const Operand& src);
  void xchg_b(Register reg, const Operand& op);
  void xchg_w(Register reg, const Operand& op);

  // Lock prefix
  void lock();

  // CompareExchange
  void cmpxchg(const Operand& dst, Register src);
  void cmpxchg_b(const Operand& dst, Register src);
  void cmpxchg_w(const Operand& dst, Register src);

  // Arithmetics
  void adc(Register dst, int32_t imm32);
  void adc(Register dst, const Operand& src);

  void add(Register dst, Register src) { add(dst, Operand(src)); }
  void add(Register dst, const Operand& src);
  void add(const Operand& dst, Register src);
  void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
  void add(const Operand& dst, const Immediate& x);

  void and_(Register dst, int32_t imm32);
  void and_(Register dst, const Immediate& x);
  void and_(Register dst, Register src) { and_(dst, Operand(src)); }
  void and_(Register dst, const Operand& src);
  void and_(const Operand& dst, Register src);
  void and_(const Operand& dst, const Immediate& x);

  void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
  void cmpb(const Operand& op, Immediate imm8);
  void cmpb(Register reg, const Operand& op);
  void cmpb(const Operand& op, Register reg);
  void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
  void cmpb_al(const Operand& op);
  void cmpw_ax(const Operand& op);
  void cmpw(const Operand& dst, Immediate src);
  void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
  void cmpw(Register dst, const Operand& src);
  void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
  void cmpw(const Operand& dst, Register src);
  void cmp(Register reg, int32_t imm32);
  void cmp(Register reg, Handle<Object> handle);
  void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
  void cmp(Register reg, const Operand& op);
  void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
  void cmp(const Operand& op, Register reg);
  void cmp(const Operand& op, const Immediate& imm);
  void cmp(const Operand& op, Handle<Object> handle);

  void dec_b(Register dst);
  void dec_b(const Operand& dst);

  void dec(Register dst);
  void dec(const Operand& dst);

  void cdq();

  void idiv(Register src) { idiv(Operand(src)); }
  void idiv(const Operand& src);
  void div(Register src) { div(Operand(src)); }
  void div(const Operand& src);

  // Signed multiply instructions.
  void imul(Register src);                               // edx:eax = eax * src.
  void imul(Register dst, Register src) { imul(dst, Operand(src)); }
  void imul(Register dst, const Operand& src);           // dst = dst * src.
  void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
  void imul(Register dst, const Operand& src, int32_t imm32);

  void inc(Register dst);
  void inc(const Operand& dst);

  void lea(Register dst, const Operand& src);

  // Unsigned multiply instruction.
  void mul(Register src);                                // edx:eax = eax * reg.

  void neg(Register dst);
  void neg(const Operand& dst);

  void not_(Register dst);
  void not_(const Operand& dst);

  void or_(Register dst, int32_t imm32);
  void or_(Register dst, Register src) { or_(dst, Operand(src)); }
  void or_(Register dst, const Operand& src);
  void or_(const Operand& dst, Register src);
  void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
  void or_(const Operand& dst, const Immediate& x);

  void rcl(Register dst, uint8_t imm8);
  void rcr(Register dst, uint8_t imm8);

  void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
  void ror(const Operand& dst, uint8_t imm8);
  void ror_cl(Register dst) { ror_cl(Operand(dst)); }
  void ror_cl(const Operand& dst);

  void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
  void sar(const Operand& dst, uint8_t imm8);
  void sar_cl(Register dst) { sar_cl(Operand(dst)); }
  void sar_cl(const Operand& dst);

  void sbb(Register dst, const Operand& src);

  void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
  void shl(const Operand& dst, uint8_t imm8);
  void shl_cl(Register dst) { shl_cl(Operand(dst)); }
  void shl_cl(const Operand& dst);
  void shld(Register dst, Register src, uint8_t shift);
  void shld_cl(Register dst, Register src);

  void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
  void shr(const Operand& dst, uint8_t imm8);
  void shr_cl(Register dst) { shr_cl(Operand(dst)); }
  void shr_cl(const Operand& dst);
  void shrd(Register dst, Register src, uint8_t shift);
  void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
  void shrd_cl(const Operand& dst, Register src);

  void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
  void sub(const Operand& dst, const Immediate& x);
  void sub(Register dst, Register src) { sub(dst, Operand(src)); }
  void sub(Register dst, const Operand& src);
  void sub(const Operand& dst, Register src);

  void test(Register reg, const Immediate& imm);
  void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
  void test(Register reg, const Operand& op);
  void test(const Operand& op, const Immediate& imm);
  void test(const Operand& op, Register reg) { test(reg, op); }
  void test_b(Register reg, const Operand& op);
  void test_b(Register reg, Immediate imm8);
  void test_b(const Operand& op, Immediate imm8);
  void test_b(const Operand& op, Register reg) { test_b(reg, op); }
  void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
  void test_w(Register reg, const Operand& op);
  void test_w(Register reg, Immediate imm16);
  void test_w(const Operand& op, Immediate imm16);
  void test_w(const Operand& op, Register reg) { test_w(reg, op); }
  void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }

  void xor_(Register dst, int32_t imm32);
  void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
  void xor_(Register dst, const Operand& src);
  void xor_(const Operand& dst, Register src);
  void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
  void xor_(const Operand& dst, const Immediate& x);

  // Bit operations.
  void bt(const Operand& dst, Register src);
  void bts(Register dst, Register src) { bts(Operand(dst), src); }
  void bts(const Operand& dst, Register src);
  void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
  void bsr(Register dst, const Operand& src);
  void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
  void bsf(Register dst, const Operand& src);

  // Miscellaneous
  void hlt();
  void int3();
  void nop();
  void ret(int imm16);
  void ud2();

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Calls
  void call(Label* L);
  void call(byte* entry, RelocInfo::Mode rmode);
  int CallSize(const Operand& adr);
  void call(Register reg) { call(Operand(reg)); }
  void call(const Operand& adr);
  int CallSize(Handle<Code> code, RelocInfo::Mode mode);
  void call(Handle<Code> code,
            RelocInfo::Mode rmode,
            TypeFeedbackId id = TypeFeedbackId::None());

  // Jumps
  // unconditional jump to L
  void jmp(Label* L, Label::Distance distance = Label::kFar);
  void jmp(byte* entry, RelocInfo::Mode rmode);
  void jmp(Register reg) { jmp(Operand(reg)); }
  void jmp(const Operand& adr);
  void jmp(Handle<Code> code, RelocInfo::Mode rmode);

  // Conditional jumps
  void j(Condition cc,
         Label* L,
         Label::Distance distance = Label::kFar);
  void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
  void j(Condition cc, Handle<Code> code,
         RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);

  // Floating-point operations
  void fld(int i);
  void fstp(int i);

  void fld1();
  void fldz();
  void fldpi();
  void fldln2();

  void fld_s(const Operand& adr);
  void fld_d(const Operand& adr);

  void fstp_s(const Operand& adr);
  void fst_s(const Operand& adr);
  void fstp_d(const Operand& adr);
  void fst_d(const Operand& adr);

  void fild_s(const Operand& adr);
  void fild_d(const Operand& adr);

  void fist_s(const Operand& adr);

  void fistp_s(const Operand& adr);
  void fistp_d(const Operand& adr);

  // The fisttp instructions require SSE3.
  void fisttp_s(const Operand& adr);
  void fisttp_d(const Operand& adr);

  void fabs();
  void fchs();
  void fcos();
  void fsin();
  void fptan();
  void fyl2x();
  void f2xm1();
  void fscale();
  void fninit();

  void fadd(int i);
  void fadd_i(int i);
  void fsub(int i);
  void fsub_i(int i);
  void fmul(int i);
  void fmul_i(int i);
  void fdiv(int i);
  void fdiv_i(int i);

  void fisub_s(const Operand& adr);

  void faddp(int i = 1);
  void fsubp(int i = 1);
  void fsubrp(int i = 1);
  void fmulp(int i = 1);
  void fdivp(int i = 1);
  void fprem();
  void fprem1();

  void fxch(int i = 1);
  void fincstp();
  void ffree(int i = 0);

  void ftst();
  void fucomp(int i);
  void fucompp();
  void fucomi(int i);
  void fucomip();
  void fcompp();
  void fnstsw_ax();
  void fwait();
  void fnclex();

  void frndint();

  void sahf();
  void setcc(Condition cc, Register reg);

  void cpuid();

  // SSE instructions
  void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
  void addss(XMMRegister dst, const Operand& src);
  void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
  void subss(XMMRegister dst, const Operand& src);
  void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
  void mulss(XMMRegister dst, const Operand& src);
  void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
  void divss(XMMRegister dst, const Operand& src);
  void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
  void sqrtss(XMMRegister dst, const Operand& src);

  void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
  void ucomiss(XMMRegister dst, const Operand& src);
  void movaps(XMMRegister dst, XMMRegister src);
  void movups(XMMRegister dst, XMMRegister src);
  void movups(XMMRegister dst, const Operand& src);
  void movups(const Operand& dst, XMMRegister src);
  void shufps(XMMRegister dst, XMMRegister src, byte imm8);

  void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
  void maxss(XMMRegister dst, const Operand& src);
  void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
  void minss(XMMRegister dst, const Operand& src);

  void andps(XMMRegister dst, const Operand& src);
  void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
  void xorps(XMMRegister dst, const Operand& src);
  void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
  void orps(XMMRegister dst, const Operand& src);
  void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }

  void addps(XMMRegister dst, const Operand& src);
  void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
  void subps(XMMRegister dst, const Operand& src);
  void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
  void mulps(XMMRegister dst, const Operand& src);
  void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
  void divps(XMMRegister dst, const Operand& src);
  void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }

  // SSE2 instructions
  void cvttss2si(Register dst, const Operand& src);
  void cvttss2si(Register dst, XMMRegister src) {
    cvttss2si(dst, Operand(src));
  }
  void cvttsd2si(Register dst, const Operand& src);
  void cvttsd2si(Register dst, XMMRegister src) {
    cvttsd2si(dst, Operand(src));
  }
  void cvtsd2si(Register dst, XMMRegister src);

  void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
  void cvtsi2ss(XMMRegister dst, const Operand& src);
  void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
  void cvtsi2sd(XMMRegister dst, const Operand& src);
  void cvtss2sd(XMMRegister dst, const Operand& src);
  void cvtss2sd(XMMRegister dst, XMMRegister src) {
    cvtss2sd(dst, Operand(src));
  }
  void cvtsd2ss(XMMRegister dst, const Operand& src);
  void cvtsd2ss(XMMRegister dst, XMMRegister src) {
    cvtsd2ss(dst, Operand(src));
  }
  void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
  void addsd(XMMRegister dst, const Operand& src);
  void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
  void subsd(XMMRegister dst, const Operand& src);
  void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
  void mulsd(XMMRegister dst, const Operand& src);
  void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
  void divsd(XMMRegister dst, const Operand& src);
  void xorpd(XMMRegister dst, XMMRegister src);
  void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
  void sqrtsd(XMMRegister dst, const Operand& src);

  void andpd(XMMRegister dst, XMMRegister src);
  void orpd(XMMRegister dst, XMMRegister src);

  void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
  void ucomisd(XMMRegister dst, const Operand& src);

  void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
  void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);

  void movmskpd(Register dst, XMMRegister src);
  void movmskps(Register dst, XMMRegister src);

  void cmpltsd(XMMRegister dst, XMMRegister src);
  void pcmpeqd(XMMRegister dst, XMMRegister src);

  void punpckldq(XMMRegister dst, XMMRegister src);
  void punpckhdq(XMMRegister dst, XMMRegister src);

  void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
  void maxsd(XMMRegister dst, const Operand& src);
  void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
  void minsd(XMMRegister dst, const Operand& src);

  void movdqa(XMMRegister dst, const Operand& src);
  void movdqa(const Operand& dst, XMMRegister src);
  void movdqu(XMMRegister dst, const Operand& src);
  void movdqu(const Operand& dst, XMMRegister src);
  void movdq(bool aligned, XMMRegister dst, const Operand& src) {
    if (aligned) {
      movdqa(dst, src);
    } else {
      movdqu(dst, src);
    }
  }

  void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
  void movd(XMMRegister dst, const Operand& src);
  void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
  void movd(const Operand& dst, XMMRegister src);
  void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
  void movsd(XMMRegister dst, const Operand& src);
  void movsd(const Operand& dst, XMMRegister src);


  void movss(XMMRegister dst, const Operand& src);
  void movss(const Operand& dst, XMMRegister src);
  void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
  void extractps(Register dst, XMMRegister src, byte imm8);

  void pand(XMMRegister dst, XMMRegister src);
  void pxor(XMMRegister dst, XMMRegister src);
  void por(XMMRegister dst, XMMRegister src);
  void ptest(XMMRegister dst, XMMRegister src);

  void pslld(XMMRegister reg, int8_t shift);
  void psrld(XMMRegister reg, int8_t shift);
  void psllq(XMMRegister reg, int8_t shift);
  void psllq(XMMRegister dst, XMMRegister src);
  void psrlq(XMMRegister reg, int8_t shift);
  void psrlq(XMMRegister dst, XMMRegister src);
  void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
  void pextrd(Register dst, XMMRegister src, int8_t offset) {
    pextrd(Operand(dst), src, offset);
  }
  void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
  void pinsrd(XMMRegister dst, Register src, int8_t offset) {
    pinsrd(dst, Operand(src), offset);
  }
  void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);

  // AVX instructions
  void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd132sd(dst, src1, Operand(src2));
  }
  void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd213sd(dst, src1, Operand(src2));
  }
  void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd231sd(dst, src1, Operand(src2));
  }
  void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0x99, dst, src1, src2);
  }
  void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xa9, dst, src1, src2);
  }
  void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xb9, dst, src1, src2);
  }
  void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub132sd(dst, src1, Operand(src2));
  }
  void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub213sd(dst, src1, Operand(src2));
  }
  void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub231sd(dst, src1, Operand(src2));
  }
  void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0x9b, dst, src1, src2);
  }
  void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xab, dst, src1, src2);
  }
  void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xbb, dst, src1, src2);
  }
  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd132sd(dst, src1, Operand(src2));
  }
  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd213sd(dst, src1, Operand(src2));
  }
  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd231sd(dst, src1, Operand(src2));
  }
  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0x9d, dst, src1, src2);
  }
  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xad, dst, src1, src2);
  }
  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xbd, dst, src1, src2);
  }
  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub132sd(dst, src1, Operand(src2));
  }
  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub213sd(dst, src1, Operand(src2));
  }
  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub231sd(dst, src1, Operand(src2));
  }
  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0x9f, dst, src1, src2);
  }
  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xaf, dst, src1, src2);
  }
  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmasd(0xbf, dst, src1, src2);
  }
  void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);

  void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd132ss(dst, src1, Operand(src2));
  }
  void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd213ss(dst, src1, Operand(src2));
  }
  void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd231ss(dst, src1, Operand(src2));
  }
  void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0x99, dst, src1, src2);
  }
  void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xa9, dst, src1, src2);
  }
  void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xb9, dst, src1, src2);
  }
  void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub132ss(dst, src1, Operand(src2));
  }
  void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub213ss(dst, src1, Operand(src2));
  }
  void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub231ss(dst, src1, Operand(src2));
  }
  void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0x9b, dst, src1, src2);
  }
  void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xab, dst, src1, src2);
  }
  void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xbb, dst, src1, src2);
  }
  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd132ss(dst, src1, Operand(src2));
  }
  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd213ss(dst, src1, Operand(src2));
  }
  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd231ss(dst, src1, Operand(src2));
  }
  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0x9d, dst, src1, src2);
  }
  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xad, dst, src1, src2);
  }
  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xbd, dst, src1, src2);
  }
  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub132ss(dst, src1, Operand(src2));
  }
  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub213ss(dst, src1, Operand(src2));
  }
  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub231ss(dst, src1, Operand(src2));
  }
  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0x9f, dst, src1, src2);
  }
  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xaf, dst, src1, src2);
  }
  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vfmass(0xbf, dst, src1, src2);
  }
  void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);

  void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vaddsd(dst, src1, Operand(src2));
  }
  void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x58, dst, src1, src2);
  }
  void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsubsd(dst, src1, Operand(src2));
  }
  void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x5c, dst, src1, src2);
  }
  void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmulsd(dst, src1, Operand(src2));
  }
  void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x59, dst, src1, src2);
  }
  void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vdivsd(dst, src1, Operand(src2));
  }
  void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x5e, dst, src1, src2);
  }
  void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmaxsd(dst, src1, Operand(src2));
  }
  void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x5f, dst, src1, src2);
  }
  void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vminsd(dst, src1, Operand(src2));
  }
  void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vsd(0x5d, dst, src1, src2);
  }
  void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);

  void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vaddss(dst, src1, Operand(src2));
  }
  void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x58, dst, src1, src2);
  }
  void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsubss(dst, src1, Operand(src2));
  }
  void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x5c, dst, src1, src2);
  }
  void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmulss(dst, src1, Operand(src2));
  }
  void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x59, dst, src1, src2);
  }
  void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vdivss(dst, src1, Operand(src2));
  }
  void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x5e, dst, src1, src2);
  }
  void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmaxss(dst, src1, Operand(src2));
  }
  void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x5f, dst, src1, src2);
  }
  void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vminss(dst, src1, Operand(src2));
  }
  void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
    vss(0x5d, dst, src1, src2);
  }
  void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);

  // BMI instruction
  void andn(Register dst, Register src1, Register src2) {
    andn(dst, src1, Operand(src2));
  }
  void andn(Register dst, Register src1, const Operand& src2) {
    bmi1(0xf2, dst, src1, src2);
  }
  void bextr(Register dst, Register src1, Register src2) {
    bextr(dst, Operand(src1), src2);
  }
  void bextr(Register dst, const Operand& src1, Register src2) {
    bmi1(0xf7, dst, src2, src1);
  }
  void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
  void blsi(Register dst, const Operand& src) {
    Register ireg = {3};
    bmi1(0xf3, ireg, dst, src);
  }
  void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
  void blsmsk(Register dst, const Operand& src) {
    Register ireg = {2};
    bmi1(0xf3, ireg, dst, src);
  }
  void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
  void blsr(Register dst, const Operand& src) {
    Register ireg = {1};
    bmi1(0xf3, ireg, dst, src);
  }
  void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
  void tzcnt(Register dst, const Operand& src);

  void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
  void lzcnt(Register dst, const Operand& src);

  void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
  void popcnt(Register dst, const Operand& src);

  void bzhi(Register dst, Register src1, Register src2) {
    bzhi(dst, Operand(src1), src2);
  }
  void bzhi(Register dst, const Operand& src1, Register src2) {
    bmi2(kNone, 0xf5, dst, src2, src1);
  }
  void mulx(Register dst1, Register dst2, Register src) {
    mulx(dst1, dst2, Operand(src));
  }
  void mulx(Register dst1, Register dst2, const Operand& src) {
    bmi2(kF2, 0xf6, dst1, dst2, src);
  }
  void pdep(Register dst, Register src1, Register src2) {
    pdep(dst, src1, Operand(src2));
  }
  void pdep(Register dst, Register src1, const Operand& src2) {
    bmi2(kF2, 0xf5, dst, src1, src2);
  }
  void pext(Register dst, Register src1, Register src2) {
    pext(dst, src1, Operand(src2));
  }
  void pext(Register dst, Register src1, const Operand& src2) {
    bmi2(kF3, 0xf5, dst, src1, src2);
  }
  void sarx(Register dst, Register src1, Register src2) {
    sarx(dst, Operand(src1), src2);
  }
  void sarx(Register dst, const Operand& src1, Register src2) {
    bmi2(kF3, 0xf7, dst, src2, src1);
  }
  void shlx(Register dst, Register src1, Register src2) {
    shlx(dst, Operand(src1), src2);
  }
  void shlx(Register dst, const Operand& src1, Register src2) {
    bmi2(k66, 0xf7, dst, src2, src1);
  }
  void shrx(Register dst, Register src1, Register src2) {
    shrx(dst, Operand(src1), src2);
  }
  void shrx(Register dst, const Operand& src1, Register src2) {
    bmi2(kF2, 0xf7, dst, src2, src1);
  }
  void rorx(Register dst, Register src, byte imm8) {
    rorx(dst, Operand(src), imm8);
  }
  void rorx(Register dst, const Operand& src, byte imm8);

#define PACKED_OP_LIST(V) \
  V(and, 0x54)            \
  V(xor, 0x57)

#define AVX_PACKED_OP_DECLARE(name, opcode)                                  \
  void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
    vps(opcode, dst, src1, Operand(src2));                                   \
  }                                                                          \
  void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
    vps(opcode, dst, src1, src2);                                            \
  }                                                                          \
  void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
    vpd(opcode, dst, src1, Operand(src2));                                   \
  }                                                                          \
  void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
    vpd(opcode, dst, src1, src2);                                            \
  }

  PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
  void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
  void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
  void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
  void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);

  // Prefetch src position into cache level.
  // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
  // non-temporal
  void prefetch(const Operand& src, int level);
  // TODO(lrn): Need SFENCE for movnt?

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Mark generator continuation.
  void RecordGeneratorContinuation();

  // Mark address of a debug break slot.
  void RecordDebugBreakSlot(RelocInfo::Mode mode);

  // Record a comment relocation entry that can be used by a disassembler.
  // Use --code-comments to enable.
  void RecordComment(const char* msg);

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  // Writes a single byte or word of data in the code stream.  Used for
  // inline tables, e.g., jump-tables.
  void db(uint8_t data);
  void dd(uint32_t data);
  void dq(uint64_t data);
  void dp(uintptr_t data) { dd(data); }
  void dd(Label* label);

  // Check if there is less than kGap bytes available in the buffer.
  // If this is the case, we need to grow the buffer before emitting
  // an instruction or relocation information.
  inline bool buffer_overflow() const {
    return pc_ >= reloc_info_writer.pos() - kGap;
  }

  // Get the number of bytes available in the buffer.
  inline int available_space() const { return reloc_info_writer.pos() - pc_; }

  static bool IsNop(Address addr);

  int relocation_writer_size() {
    return (buffer_ + buffer_size_) - reloc_info_writer.pos();
  }

  // Avoid overflows for displacements etc.
  static const int kMaximalBufferSize = 512*MB;

  byte byte_at(int pos) { return buffer_[pos]; }
  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }

  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
                                          ConstantPoolEntry::Access access,
                                          ConstantPoolEntry::Type type) {
    // No embedded constant pool support.
    UNREACHABLE();
  }

 protected:
  void emit_sse_operand(XMMRegister reg, const Operand& adr);
  void emit_sse_operand(XMMRegister dst, XMMRegister src);
  void emit_sse_operand(Register dst, XMMRegister src);
  void emit_sse_operand(XMMRegister dst, Register src);

  byte* addr_at(int pos) { return buffer_ + pos; }


 private:
  uint32_t long_at(int pos)  {
    return *reinterpret_cast<uint32_t*>(addr_at(pos));
  }
  void long_at_put(int pos, uint32_t x)  {
    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
  }

  // code emission
  void GrowBuffer();
  inline void emit(uint32_t x);
  inline void emit(Handle<Object> handle);
  inline void emit(uint32_t x,
                   RelocInfo::Mode rmode,
                   TypeFeedbackId id = TypeFeedbackId::None());
  inline void emit(Handle<Code> code,
                   RelocInfo::Mode rmode,
                   TypeFeedbackId id = TypeFeedbackId::None());
  inline void emit(const Immediate& x);
  inline void emit_b(Immediate x);
  inline void emit_w(const Immediate& x);
  inline void emit_q(uint64_t x);

  // Emit the code-object-relative offset of the label's position
  inline void emit_code_relative_offset(Label* label);

  // instruction generation
  void emit_arith_b(int op1, int op2, Register dst, int imm8);

  // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
  // with a given destination expression and an immediate operand.  It attempts
  // to use the shortest encoding possible.
  // sel specifies the /n in the modrm byte (see the Intel PRM).
  void emit_arith(int sel, Operand dst, const Immediate& x);

  void emit_operand(Register reg, const Operand& adr);

  void emit_label(Label* label);

  void emit_farith(int b1, int b2, int i);

  // Emit vex prefix
  enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
  enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
  enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
  enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
  inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
                              LeadingOpcode m, VexW w);
  inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
                              LeadingOpcode m, VexW w);

  // labels
  void print(Label* L);
  void bind_to(Label* L, int pos);

  // displacements
  inline Displacement disp_at(Label* L);
  inline void disp_at_put(Label* L, Displacement disp);
  inline void emit_disp(Label* L, Displacement::Type type);
  inline void emit_near_disp(Label* L);

  // Most BMI instructions are similiar.
  void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
  void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
            const Operand& rm);

  // record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  friend class CodePatcher;
  friend class EnsureSpace;

  // Internal reference positions, required for (potential) patching in
  // GrowBuffer(); contains only those internal references whose labels
  // are already bound.
  std::deque<int> internal_reference_positions_;

  // code generation
  RelocInfoWriter reloc_info_writer;
};


// Helper class that ensures that there is enough space for generating
// instructions and relocation information.  The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
    space_before_ = assembler_->available_space();
#endif
  }

#ifdef DEBUG
  ~EnsureSpace() {
    int bytes_generated = space_before_ - assembler_->available_space();
    DCHECK(bytes_generated < assembler_->kGap);
  }
#endif

 private:
  Assembler* assembler_;
#ifdef DEBUG
  int space_before_;
#endif
};

}  // namespace internal
}  // namespace v8

#endif  // V8_IA32_ASSEMBLER_IA32_H_