aboutsummaryrefslogtreecommitdiff
path: root/src/ia32/code-stubs-ia32.cc
blob: 1320d90e8b9e303699b2363d76a09993307b9652 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_IA32

#include "src/code-stubs.h"
#include "src/api-arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ia32/code-stubs-ia32.h"
#include "src/ia32/frames-ia32.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
  __ pop(ecx);
  __ mov(MemOperand(esp, eax, times_4, 0), edi);
  __ push(edi);
  __ push(ebx);
  __ push(ecx);
  __ add(eax, Immediate(3));
  __ TailCallRuntime(Runtime::kNewArray);
}

void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
                                               ExternalReference miss) {
  // Update the static counter each time a new code stub is generated.
  isolate()->counters()->code_stubs()->Increment();

  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
  int param_count = descriptor.GetRegisterParameterCount();
  {
    // Call the runtime system in a fresh internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);
    DCHECK(param_count == 0 ||
           eax.is(descriptor.GetRegisterParameter(param_count - 1)));
    // Push arguments
    for (int i = 0; i < param_count; ++i) {
      __ push(descriptor.GetRegisterParameter(i));
    }
    __ CallExternalReference(miss, param_count);
  }

  __ ret(0);
}


void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
  // We don't allow a GC during a store buffer overflow so there is no need to
  // store the registers in any particular way, but we do have to store and
  // restore them.
  __ pushad();
  if (save_doubles()) {
    __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
      XMMRegister reg = XMMRegister::from_code(i);
      __ movsd(Operand(esp, i * kDoubleSize), reg);
    }
  }
  const int argument_count = 1;

  AllowExternalCallThatCantCauseGC scope(masm);
  __ PrepareCallCFunction(argument_count, ecx);
  __ mov(Operand(esp, 0 * kPointerSize),
         Immediate(ExternalReference::isolate_address(isolate())));
  __ CallCFunction(
      ExternalReference::store_buffer_overflow_function(isolate()),
      argument_count);
  if (save_doubles()) {
    for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
      XMMRegister reg = XMMRegister::from_code(i);
      __ movsd(reg, Operand(esp, i * kDoubleSize));
    }
    __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
  }
  __ popad();
  __ ret(0);
}


class FloatingPointHelper : public AllStatic {
 public:
  enum ArgLocation {
    ARGS_ON_STACK,
    ARGS_IN_REGISTERS
  };

  // Code pattern for loading a floating point value. Input value must
  // be either a smi or a heap number object (fp value). Requirements:
  // operand in register number. Returns operand as floating point number
  // on FPU stack.
  static void LoadFloatOperand(MacroAssembler* masm, Register number);

  // Test if operands are smi or number objects (fp). Requirements:
  // operand_1 in eax, operand_2 in edx; falls through on float
  // operands, jumps to the non_float label otherwise.
  static void CheckFloatOperands(MacroAssembler* masm,
                                 Label* non_float,
                                 Register scratch);

  // Test if operands are numbers (smi or HeapNumber objects), and load
  // them into xmm0 and xmm1 if they are.  Jump to label not_numbers if
  // either operand is not a number.  Operands are in edx and eax.
  // Leaves operands unchanged.
  static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
};


void DoubleToIStub::Generate(MacroAssembler* masm) {
  Register input_reg = this->source();
  Register final_result_reg = this->destination();
  DCHECK(is_truncating());

  Label check_negative, process_64_bits, done, done_no_stash;

  int double_offset = offset();

  // Account for return address and saved regs if input is esp.
  if (input_reg.is(esp)) double_offset += 3 * kPointerSize;

  MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
  MemOperand exponent_operand(MemOperand(input_reg,
                                         double_offset + kDoubleSize / 2));

  Register scratch1;
  {
    Register scratch_candidates[3] = { ebx, edx, edi };
    for (int i = 0; i < 3; i++) {
      scratch1 = scratch_candidates[i];
      if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    }
  }
  // Since we must use ecx for shifts below, use some other register (eax)
  // to calculate the result if ecx is the requested return register.
  Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
  // Save ecx if it isn't the return register and therefore volatile, or if it
  // is the return register, then save the temp register we use in its stead for
  // the result.
  Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
  __ push(scratch1);
  __ push(save_reg);

  bool stash_exponent_copy = !input_reg.is(esp);
  __ mov(scratch1, mantissa_operand);
  if (CpuFeatures::IsSupported(SSE3)) {
    CpuFeatureScope scope(masm, SSE3);
    // Load x87 register with heap number.
    __ fld_d(mantissa_operand);
  }
  __ mov(ecx, exponent_operand);
  if (stash_exponent_copy) __ push(ecx);

  __ and_(ecx, HeapNumber::kExponentMask);
  __ shr(ecx, HeapNumber::kExponentShift);
  __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
  __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
  __ j(below, &process_64_bits);

  // Result is entirely in lower 32-bits of mantissa
  int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
  if (CpuFeatures::IsSupported(SSE3)) {
    __ fstp(0);
  }
  __ sub(ecx, Immediate(delta));
  __ xor_(result_reg, result_reg);
  __ cmp(ecx, Immediate(31));
  __ j(above, &done);
  __ shl_cl(scratch1);
  __ jmp(&check_negative);

  __ bind(&process_64_bits);
  if (CpuFeatures::IsSupported(SSE3)) {
    CpuFeatureScope scope(masm, SSE3);
    if (stash_exponent_copy) {
      // Already a copy of the exponent on the stack, overwrite it.
      STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
      __ sub(esp, Immediate(kDoubleSize / 2));
    } else {
      // Reserve space for 64 bit answer.
      __ sub(esp, Immediate(kDoubleSize));  // Nolint.
    }
    // Do conversion, which cannot fail because we checked the exponent.
    __ fisttp_d(Operand(esp, 0));
    __ mov(result_reg, Operand(esp, 0));  // Load low word of answer as result
    __ add(esp, Immediate(kDoubleSize));
    __ jmp(&done_no_stash);
  } else {
    // Result must be extracted from shifted 32-bit mantissa
    __ sub(ecx, Immediate(delta));
    __ neg(ecx);
    if (stash_exponent_copy) {
      __ mov(result_reg, MemOperand(esp, 0));
    } else {
      __ mov(result_reg, exponent_operand);
    }
    __ and_(result_reg,
            Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    __ add(result_reg,
           Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    __ shrd_cl(scratch1, result_reg);
    __ shr_cl(result_reg);
    __ test(ecx, Immediate(32));
    __ cmov(not_equal, scratch1, result_reg);
  }

  // If the double was negative, negate the integer result.
  __ bind(&check_negative);
  __ mov(result_reg, scratch1);
  __ neg(result_reg);
  if (stash_exponent_copy) {
    __ cmp(MemOperand(esp, 0), Immediate(0));
  } else {
    __ cmp(exponent_operand, Immediate(0));
  }
    __ cmov(greater, result_reg, scratch1);

  // Restore registers
  __ bind(&done);
  if (stash_exponent_copy) {
    __ add(esp, Immediate(kDoubleSize / 2));
  }
  __ bind(&done_no_stash);
  if (!final_result_reg.is(result_reg)) {
    DCHECK(final_result_reg.is(ecx));
    __ mov(final_result_reg, result_reg);
  }
  __ pop(save_reg);
  __ pop(scratch1);
  __ ret(0);
}


void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
                                           Register number) {
  Label load_smi, done;

  __ JumpIfSmi(number, &load_smi, Label::kNear);
  __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
  __ jmp(&done, Label::kNear);

  __ bind(&load_smi);
  __ SmiUntag(number);
  __ push(number);
  __ fild_s(Operand(esp, 0));
  __ pop(number);

  __ bind(&done);
}


void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
                                           Label* not_numbers) {
  Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
  // Load operand in edx into xmm0, or branch to not_numbers.
  __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
  Factory* factory = masm->isolate()->factory();
  __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
  __ j(not_equal, not_numbers);  // Argument in edx is not a number.
  __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
  __ bind(&load_eax);
  // Load operand in eax into xmm1, or branch to not_numbers.
  __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
  __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
  __ j(equal, &load_float_eax, Label::kNear);
  __ jmp(not_numbers);  // Argument in eax is not a number.
  __ bind(&load_smi_edx);
  __ SmiUntag(edx);  // Untag smi before converting to float.
  __ Cvtsi2sd(xmm0, edx);
  __ SmiTag(edx);  // Retag smi for heap number overwriting test.
  __ jmp(&load_eax);
  __ bind(&load_smi_eax);
  __ SmiUntag(eax);  // Untag smi before converting to float.
  __ Cvtsi2sd(xmm1, eax);
  __ SmiTag(eax);  // Retag smi for heap number overwriting test.
  __ jmp(&done, Label::kNear);
  __ bind(&load_float_eax);
  __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
  __ bind(&done);
}


void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
                                             Label* non_float,
                                             Register scratch) {
  Label test_other, done;
  // Test if both operands are floats or smi -> scratch=k_is_float;
  // Otherwise scratch = k_not_float.
  __ JumpIfSmi(edx, &test_other, Label::kNear);
  __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
  Factory* factory = masm->isolate()->factory();
  __ cmp(scratch, factory->heap_number_map());
  __ j(not_equal, non_float);  // argument in edx is not a number -> NaN

  __ bind(&test_other);
  __ JumpIfSmi(eax, &done, Label::kNear);
  __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
  __ cmp(scratch, factory->heap_number_map());
  __ j(not_equal, non_float);  // argument in eax is not a number -> NaN

  // Fall-through: Both operands are numbers.
  __ bind(&done);
}


void MathPowStub::Generate(MacroAssembler* masm) {
  const Register exponent = MathPowTaggedDescriptor::exponent();
  DCHECK(exponent.is(eax));
  const Register scratch = ecx;
  const XMMRegister double_result = xmm3;
  const XMMRegister double_base = xmm2;
  const XMMRegister double_exponent = xmm1;
  const XMMRegister double_scratch = xmm4;

  Label call_runtime, done, exponent_not_smi, int_exponent;

  // Save 1 in double_result - we need this several times later on.
  __ mov(scratch, Immediate(1));
  __ Cvtsi2sd(double_result, scratch);

  if (exponent_type() == TAGGED) {
    __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
    __ SmiUntag(exponent);
    __ jmp(&int_exponent);

    __ bind(&exponent_not_smi);
    __ movsd(double_exponent,
              FieldOperand(exponent, HeapNumber::kValueOffset));
  }

  if (exponent_type() != INTEGER) {
    Label fast_power, try_arithmetic_simplification;
    __ DoubleToI(exponent, double_exponent, double_scratch,
                 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
                 &try_arithmetic_simplification,
                 &try_arithmetic_simplification);
    __ jmp(&int_exponent);

    __ bind(&try_arithmetic_simplification);
    // Skip to runtime if possibly NaN (indicated by the indefinite integer).
    __ cvttsd2si(exponent, Operand(double_exponent));
    __ cmp(exponent, Immediate(0x1));
    __ j(overflow, &call_runtime);

    // Using FPU instructions to calculate power.
    Label fast_power_failed;
    __ bind(&fast_power);
    __ fnclex();  // Clear flags to catch exceptions later.
    // Transfer (B)ase and (E)xponent onto the FPU register stack.
    __ sub(esp, Immediate(kDoubleSize));
    __ movsd(Operand(esp, 0), double_exponent);
    __ fld_d(Operand(esp, 0));  // E
    __ movsd(Operand(esp, 0), double_base);
    __ fld_d(Operand(esp, 0));  // B, E

    // Exponent is in st(1) and base is in st(0)
    // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
    // FYL2X calculates st(1) * log2(st(0))
    __ fyl2x();    // X
    __ fld(0);     // X, X
    __ frndint();  // rnd(X), X
    __ fsub(1);    // rnd(X), X-rnd(X)
    __ fxch(1);    // X - rnd(X), rnd(X)
    // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
    __ f2xm1();    // 2^(X-rnd(X)) - 1, rnd(X)
    __ fld1();     // 1, 2^(X-rnd(X)) - 1, rnd(X)
    __ faddp(1);   // 2^(X-rnd(X)), rnd(X)
    // FSCALE calculates st(0) * 2^st(1)
    __ fscale();   // 2^X, rnd(X)
    __ fstp(1);    // 2^X
    // Bail out to runtime in case of exceptions in the status word.
    __ fnstsw_ax();
    __ test_b(eax,
              Immediate(0x5F));  // We check for all but precision exception.
    __ j(not_zero, &fast_power_failed, Label::kNear);
    __ fstp_d(Operand(esp, 0));
    __ movsd(double_result, Operand(esp, 0));
    __ add(esp, Immediate(kDoubleSize));
    __ jmp(&done);

    __ bind(&fast_power_failed);
    __ fninit();
    __ add(esp, Immediate(kDoubleSize));
    __ jmp(&call_runtime);
  }

  // Calculate power with integer exponent.
  __ bind(&int_exponent);
  const XMMRegister double_scratch2 = double_exponent;
  __ mov(scratch, exponent);  // Back up exponent.
  __ movsd(double_scratch, double_base);  // Back up base.
  __ movsd(double_scratch2, double_result);  // Load double_exponent with 1.

  // Get absolute value of exponent.
  Label no_neg, while_true, while_false;
  __ test(scratch, scratch);
  __ j(positive, &no_neg, Label::kNear);
  __ neg(scratch);
  __ bind(&no_neg);

  __ j(zero, &while_false, Label::kNear);
  __ shr(scratch, 1);
  // Above condition means CF==0 && ZF==0.  This means that the
  // bit that has been shifted out is 0 and the result is not 0.
  __ j(above, &while_true, Label::kNear);
  __ movsd(double_result, double_scratch);
  __ j(zero, &while_false, Label::kNear);

  __ bind(&while_true);
  __ shr(scratch, 1);
  __ mulsd(double_scratch, double_scratch);
  __ j(above, &while_true, Label::kNear);
  __ mulsd(double_result, double_scratch);
  __ j(not_zero, &while_true);

  __ bind(&while_false);
  // scratch has the original value of the exponent - if the exponent is
  // negative, return 1/result.
  __ test(exponent, exponent);
  __ j(positive, &done);
  __ divsd(double_scratch2, double_result);
  __ movsd(double_result, double_scratch2);
  // Test whether result is zero.  Bail out to check for subnormal result.
  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
  __ xorps(double_scratch2, double_scratch2);
  __ ucomisd(double_scratch2, double_result);  // Result cannot be NaN.
  // double_exponent aliased as double_scratch2 has already been overwritten
  // and may not have contained the exponent value in the first place when the
  // exponent is a smi.  We reset it with exponent value before bailing out.
  __ j(not_equal, &done);
  __ Cvtsi2sd(double_exponent, exponent);

  // Returning or bailing out.
  __ bind(&call_runtime);
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ PrepareCallCFunction(4, scratch);
    __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
    __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
    __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
                     4);
  }
  // Return value is in st(0) on ia32.
  // Store it into the (fixed) result register.
  __ sub(esp, Immediate(kDoubleSize));
  __ fstp_d(Operand(esp, 0));
  __ movsd(double_result, Operand(esp, 0));
  __ add(esp, Immediate(kDoubleSize));

  __ bind(&done);
  __ ret(0);
}

void RegExpExecStub::Generate(MacroAssembler* masm) {
  // Just jump directly to runtime if native RegExp is not selected at compile
  // time or if regexp entry in generated code is turned off runtime switch or
  // at compilation.
#ifdef V8_INTERPRETED_REGEXP
  __ TailCallRuntime(Runtime::kRegExpExec);
#else  // V8_INTERPRETED_REGEXP

  // Stack frame on entry.
  //  esp[0]: return address
  //  esp[4]: last_match_info (expected JSArray)
  //  esp[8]: previous index
  //  esp[12]: subject string
  //  esp[16]: JSRegExp object

  static const int kLastMatchInfoOffset = 1 * kPointerSize;
  static const int kPreviousIndexOffset = 2 * kPointerSize;
  static const int kSubjectOffset = 3 * kPointerSize;
  static const int kJSRegExpOffset = 4 * kPointerSize;

  Label runtime;
  Factory* factory = isolate()->factory();

  // Ensure that a RegExp stack is allocated.
  ExternalReference address_of_regexp_stack_memory_address =
      ExternalReference::address_of_regexp_stack_memory_address(isolate());
  ExternalReference address_of_regexp_stack_memory_size =
      ExternalReference::address_of_regexp_stack_memory_size(isolate());
  __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
  __ test(ebx, ebx);
  __ j(zero, &runtime);

  // Check that the first argument is a JSRegExp object.
  __ mov(eax, Operand(esp, kJSRegExpOffset));
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfSmi(eax, &runtime);
  __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
  __ j(not_equal, &runtime);

  // Check that the RegExp has been compiled (data contains a fixed array).
  __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
  if (FLAG_debug_code) {
    __ test(ecx, Immediate(kSmiTagMask));
    __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
    __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
  }

  // ecx: RegExp data (FixedArray)
  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
  __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
  __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
  __ j(not_equal, &runtime);

  // ecx: RegExp data (FixedArray)
  // Check that the number of captures fit in the static offsets vector buffer.
  __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
  // Check (number_of_captures + 1) * 2 <= offsets vector size
  // Or          number_of_captures * 2 <= offsets vector size - 2
  // Multiplying by 2 comes for free since edx is smi-tagged.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
  __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
  __ j(above, &runtime);

  // Reset offset for possibly sliced string.
  __ Move(edi, Immediate(0));
  __ mov(eax, Operand(esp, kSubjectOffset));
  __ JumpIfSmi(eax, &runtime);
  __ mov(edx, eax);  // Make a copy of the original subject string.

  // eax: subject string
  // edx: subject string
  // ecx: RegExp data (FixedArray)
  // Handle subject string according to its encoding and representation:
  // (1) Sequential two byte?  If yes, go to (9).
  // (2) Sequential one byte?  If yes, go to (5).
  // (3) Sequential or cons?  If not, go to (6).
  // (4) Cons string.  If the string is flat, replace subject with first string
  //     and go to (1). Otherwise bail out to runtime.
  // (5) One byte sequential.  Load regexp code for one byte.
  // (E) Carry on.
  /// [...]

  // Deferred code at the end of the stub:
  // (6) Long external string?  If not, go to (10).
  // (7) External string.  Make it, offset-wise, look like a sequential string.
  // (8) Is the external string one byte?  If yes, go to (5).
  // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
  // (10) Short external string or not a string?  If yes, bail out to runtime.
  // (11) Sliced or thin string.  Replace subject with parent. Go to (1).

  Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
      external_string /* 7 */, check_underlying /* 1 */,
      not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;

  __ bind(&check_underlying);
  // (1) Sequential two byte?  If yes, go to (9).
  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));

  __ and_(ebx, kIsNotStringMask |
               kStringRepresentationMask |
               kStringEncodingMask |
               kShortExternalStringMask);
  STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
  __ j(zero, &seq_two_byte_string);  // Go to (9).

  // (2) Sequential one byte?  If yes, go to (5).
  // Any other sequential string must be one byte.
  __ and_(ebx, Immediate(kIsNotStringMask |
                         kStringRepresentationMask |
                         kShortExternalStringMask));
  __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (5).

  // (3) Sequential or cons?  If not, go to (6).
  // We check whether the subject string is a cons, since sequential strings
  // have already been covered.
  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
  STATIC_ASSERT(kThinStringTag > kExternalStringTag);
  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
  __ cmp(ebx, Immediate(kExternalStringTag));
  __ j(greater_equal, &not_seq_nor_cons);  // Go to (6).

  // (4) Cons string.  Check that it's flat.
  // Replace subject with first string and reload instance type.
  __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
  __ j(not_equal, &runtime);
  __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
  __ jmp(&check_underlying);

  // eax: sequential subject string (or look-alike, external string)
  // edx: original subject string
  // ecx: RegExp data (FixedArray)
  // (5) One byte sequential.  Load regexp code for one byte.
  __ bind(&seq_one_byte_string);
  // Load previous index and check range before edx is overwritten.  We have
  // to use edx instead of eax here because it might have been only made to
  // look like a sequential string when it actually is an external string.
  __ mov(ebx, Operand(esp, kPreviousIndexOffset));
  __ JumpIfNotSmi(ebx, &runtime);
  __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
  __ j(above_equal, &runtime);
  __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
  __ Move(ecx, Immediate(1));  // Type is one byte.

  // (E) Carry on.  String handling is done.
  __ bind(&check_code);
  // edx: irregexp code
  // Check that the irregexp code has been generated for the actual string
  // encoding. If it has, the field contains a code object otherwise it contains
  // a smi (code flushing support).
  __ JumpIfSmi(edx, &runtime);

  // eax: subject string
  // ebx: previous index (smi)
  // edx: code
  // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
  // All checks done. Now push arguments for native regexp code.
  Counters* counters = isolate()->counters();
  __ IncrementCounter(counters->regexp_entry_native(), 1);

  // Isolates: note we add an additional parameter here (isolate pointer).
  static const int kRegExpExecuteArguments = 9;
  __ EnterApiExitFrame(kRegExpExecuteArguments);

  // Argument 9: Pass current isolate address.
  __ mov(Operand(esp, 8 * kPointerSize),
      Immediate(ExternalReference::isolate_address(isolate())));

  // Argument 8: Indicate that this is a direct call from JavaScript.
  __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));

  // Argument 7: Start (high end) of backtracking stack memory area.
  __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
  __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
  __ mov(Operand(esp, 6 * kPointerSize), esi);

  // Argument 6: Set the number of capture registers to zero to force global
  // regexps to behave as non-global.  This does not affect non-global regexps.
  __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));

  // Argument 5: static offsets vector buffer.
  __ mov(Operand(esp, 4 * kPointerSize),
         Immediate(ExternalReference::address_of_static_offsets_vector(
             isolate())));

  // Argument 2: Previous index.
  __ SmiUntag(ebx);
  __ mov(Operand(esp, 1 * kPointerSize), ebx);

  // Argument 1: Original subject string.
  // The original subject is in the previous stack frame. Therefore we have to
  // use ebp, which points exactly to one pointer size below the previous esp.
  // (Because creating a new stack frame pushes the previous ebp onto the stack
  // and thereby moves up esp by one kPointerSize.)
  __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
  __ mov(Operand(esp, 0 * kPointerSize), esi);

  // esi: original subject string
  // eax: underlying subject string
  // ebx: previous index
  // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
  // edx: code
  // Argument 4: End of string data
  // Argument 3: Start of string data
  // Prepare start and end index of the input.
  // Load the length from the original sliced string if that is the case.
  __ mov(esi, FieldOperand(esi, String::kLengthOffset));
  __ add(esi, edi);  // Calculate input end wrt offset.
  __ SmiUntag(edi);
  __ add(ebx, edi);  // Calculate input start wrt offset.

  // ebx: start index of the input string
  // esi: end index of the input string
  Label setup_two_byte, setup_rest;
  __ test(ecx, ecx);
  __ j(zero, &setup_two_byte, Label::kNear);
  __ SmiUntag(esi);
  __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
  __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
  __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
  __ jmp(&setup_rest, Label::kNear);

  __ bind(&setup_two_byte);
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
  __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
  __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
  __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.

  __ bind(&setup_rest);

  // Locate the code entry and call it.
  __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
  __ call(edx);

  // Drop arguments and come back to JS mode.
  __ LeaveApiExitFrame(true);

  // Check the result.
  Label success;
  __ cmp(eax, 1);
  // We expect exactly one result since we force the called regexp to behave
  // as non-global.
  __ j(equal, &success);
  Label failure;
  __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
  __ j(equal, &failure);
  __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
  // If not exception it can only be retry. Handle that in the runtime system.
  __ j(not_equal, &runtime);
  // Result must now be exception. If there is no pending exception already a
  // stack overflow (on the backtrack stack) was detected in RegExp code but
  // haven't created the exception yet. Handle that in the runtime system.
  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
  ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
                                      isolate());
  __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
  __ mov(eax, Operand::StaticVariable(pending_exception));
  __ cmp(edx, eax);
  __ j(equal, &runtime);

  // For exception, throw the exception again.
  __ TailCallRuntime(Runtime::kRegExpExecReThrow);

  __ bind(&failure);
  // For failure to match, return null.
  __ mov(eax, factory->null_value());
  __ ret(4 * kPointerSize);

  // Load RegExp data.
  __ bind(&success);
  __ mov(eax, Operand(esp, kJSRegExpOffset));
  __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
  __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
  // Calculate number of capture registers (number_of_captures + 1) * 2.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
  __ add(edx, Immediate(2));  // edx was a smi.

  // edx: Number of capture registers
  // Check that the last match info is a FixedArray.
  __ mov(ebx, Operand(esp, kLastMatchInfoOffset));
  __ JumpIfSmi(ebx, &runtime);
  // Check that the object has fast elements.
  __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
  __ cmp(eax, factory->fixed_array_map());
  __ j(not_equal, &runtime);
  // Check that the last match info has space for the capture registers and the
  // additional information.
  __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
  __ SmiUntag(eax);
  __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
  __ cmp(edx, eax);
  __ j(greater, &runtime);

  // ebx: last_match_info (FixedArray)
  // edx: number of capture registers
  // Store the capture count.
  __ SmiTag(edx);  // Number of capture registers to smi.
  __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx);
  __ SmiUntag(edx);  // Number of capture registers back from smi.
  // Store last subject and last input.
  __ mov(eax, Operand(esp, kSubjectOffset));
  __ mov(ecx, eax);
  __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax);
  __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi,
                      kDontSaveFPRegs);
  __ mov(eax, ecx);
  __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax);
  __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi,
                      kDontSaveFPRegs);

  // Get the static offsets vector filled by the native regexp code.
  ExternalReference address_of_static_offsets_vector =
      ExternalReference::address_of_static_offsets_vector(isolate());
  __ mov(ecx, Immediate(address_of_static_offsets_vector));

  // ebx: last_match_info (FixedArray)
  // ecx: offsets vector
  // edx: number of capture registers
  Label next_capture, done;
  // Capture register counter starts from number of capture registers and
  // counts down until wrapping after zero.
  __ bind(&next_capture);
  __ sub(edx, Immediate(1));
  __ j(negative, &done, Label::kNear);
  // Read the value from the static offsets vector buffer.
  __ mov(edi, Operand(ecx, edx, times_int_size, 0));
  __ SmiTag(edi);
  // Store the smi value in the last match info.
  __ mov(FieldOperand(ebx, edx, times_pointer_size,
                      RegExpMatchInfo::kFirstCaptureOffset),
         edi);
  __ jmp(&next_capture);
  __ bind(&done);

  // Return last match info.
  __ mov(eax, ebx);
  __ ret(4 * kPointerSize);

  // Do the runtime call to execute the regexp.
  __ bind(&runtime);
  __ TailCallRuntime(Runtime::kRegExpExec);

  // Deferred code for string handling.
  // (6) Long external string?  If not, go to (10).
  __ bind(&not_seq_nor_cons);
  // Compare flags are still set from (3).
  __ j(greater, &not_long_external, Label::kNear);  // Go to (10).

  // (7) External string.  Short external strings have been ruled out.
  __ bind(&external_string);
  // Reload instance type.
  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
  __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ test_b(ebx, Immediate(kIsIndirectStringMask));
    __ Assert(zero, kExternalStringExpectedButNotFound);
  }
  __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
  // Move the pointer so that offset-wise, it looks like a sequential string.
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  STATIC_ASSERT(kTwoByteStringTag == 0);
  // (8) Is the external string one byte?  If yes, go to (5).
  __ test_b(ebx, Immediate(kStringEncodingMask));
  __ j(not_zero, &seq_one_byte_string);  // Go to (5).

  // eax: sequential subject string (or look-alike, external string)
  // edx: original subject string
  // ecx: RegExp data (FixedArray)
  // (9) Two byte sequential.  Load regexp code for two byte. Go to (E).
  __ bind(&seq_two_byte_string);
  // Load previous index and check range before edx is overwritten.  We have
  // to use edx instead of eax here because it might have been only made to
  // look like a sequential string when it actually is an external string.
  __ mov(ebx, Operand(esp, kPreviousIndexOffset));
  __ JumpIfNotSmi(ebx, &runtime);
  __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
  __ j(above_equal, &runtime);
  __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
  __ Move(ecx, Immediate(0));  // Type is two byte.
  __ jmp(&check_code);  // Go to (E).

  // (10) Not a string or a short external string?  If yes, bail out to runtime.
  __ bind(&not_long_external);
  // Catch non-string subject or short external string.
  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
  __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
  __ j(not_zero, &runtime);

  // (11) Sliced or thin string.  Replace subject with parent.  Go to (1).
  Label thin_string;
  __ cmp(ebx, Immediate(kThinStringTag));
  __ j(equal, &thin_string, Label::kNear);
  // Load offset into edi and replace subject string with parent.
  __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
  __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
  __ jmp(&check_underlying);  // Go to (1).

  __ bind(&thin_string);
  __ mov(eax, FieldOperand(eax, ThinString::kActualOffset));
  __ jmp(&check_underlying);  // Go to (1).
#endif  // V8_INTERPRETED_REGEXP
}


static int NegativeComparisonResult(Condition cc) {
  DCHECK(cc != equal);
  DCHECK((cc == less) || (cc == less_equal)
      || (cc == greater) || (cc == greater_equal));
  return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}


static void CheckInputType(MacroAssembler* masm, Register input,
                           CompareICState::State expected, Label* fail) {
  Label ok;
  if (expected == CompareICState::SMI) {
    __ JumpIfNotSmi(input, fail);
  } else if (expected == CompareICState::NUMBER) {
    __ JumpIfSmi(input, &ok);
    __ cmp(FieldOperand(input, HeapObject::kMapOffset),
           Immediate(masm->isolate()->factory()->heap_number_map()));
    __ j(not_equal, fail);
  }
  // We could be strict about internalized/non-internalized here, but as long as
  // hydrogen doesn't care, the stub doesn't have to care either.
  __ bind(&ok);
}


static void BranchIfNotInternalizedString(MacroAssembler* masm,
                                          Label* label,
                                          Register object,
                                          Register scratch) {
  __ JumpIfSmi(object, label);
  __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
  __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
  __ j(not_zero, label);
}


void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
  Label runtime_call, check_unequal_objects;
  Condition cc = GetCondition();

  Label miss;
  CheckInputType(masm, edx, left(), &miss);
  CheckInputType(masm, eax, right(), &miss);

  // Compare two smis.
  Label non_smi, smi_done;
  __ mov(ecx, edx);
  __ or_(ecx, eax);
  __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
  __ sub(edx, eax);  // Return on the result of the subtraction.
  __ j(no_overflow, &smi_done, Label::kNear);
  __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
  __ bind(&smi_done);
  __ mov(eax, edx);
  __ ret(0);
  __ bind(&non_smi);

  // NOTICE! This code is only reached after a smi-fast-case check, so
  // it is certain that at least one operand isn't a smi.

  // Identical objects can be compared fast, but there are some tricky cases
  // for NaN and undefined.
  Label generic_heap_number_comparison;
  {
    Label not_identical;
    __ cmp(eax, edx);
    __ j(not_equal, &not_identical);

    if (cc != equal) {
      // Check for undefined.  undefined OP undefined is false even though
      // undefined == undefined.
      __ cmp(edx, isolate()->factory()->undefined_value());
      Label check_for_nan;
      __ j(not_equal, &check_for_nan, Label::kNear);
      __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
      __ ret(0);
      __ bind(&check_for_nan);
    }

    // Test for NaN. Compare heap numbers in a general way,
    // to handle NaNs correctly.
    __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
           Immediate(isolate()->factory()->heap_number_map()));
    __ j(equal, &generic_heap_number_comparison, Label::kNear);
    if (cc != equal) {
      __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
      __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
      // Call runtime on identical JSObjects.  Otherwise return equal.
      __ cmpb(ecx, Immediate(FIRST_JS_RECEIVER_TYPE));
      __ j(above_equal, &runtime_call, Label::kFar);
      // Call runtime on identical symbols since we need to throw a TypeError.
      __ cmpb(ecx, Immediate(SYMBOL_TYPE));
      __ j(equal, &runtime_call, Label::kFar);
    }
    __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
    __ ret(0);


    __ bind(&not_identical);
  }

  // Strict equality can quickly decide whether objects are equal.
  // Non-strict object equality is slower, so it is handled later in the stub.
  if (cc == equal && strict()) {
    Label slow;  // Fallthrough label.
    Label not_smis;
    // If we're doing a strict equality comparison, we don't have to do
    // type conversion, so we generate code to do fast comparison for objects
    // and oddballs. Non-smi numbers and strings still go through the usual
    // slow-case code.
    // If either is a Smi (we know that not both are), then they can only
    // be equal if the other is a HeapNumber. If so, use the slow case.
    STATIC_ASSERT(kSmiTag == 0);
    DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
    __ mov(ecx, Immediate(kSmiTagMask));
    __ and_(ecx, eax);
    __ test(ecx, edx);
    __ j(not_zero, &not_smis, Label::kNear);
    // One operand is a smi.

    // Check whether the non-smi is a heap number.
    STATIC_ASSERT(kSmiTagMask == 1);
    // ecx still holds eax & kSmiTag, which is either zero or one.
    __ sub(ecx, Immediate(0x01));
    __ mov(ebx, edx);
    __ xor_(ebx, eax);
    __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
    __ xor_(ebx, eax);
    // if eax was smi, ebx is now edx, else eax.

    // Check if the non-smi operand is a heap number.
    __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
           Immediate(isolate()->factory()->heap_number_map()));
    // If heap number, handle it in the slow case.
    __ j(equal, &slow, Label::kNear);
    // Return non-equal (ebx is not zero)
    __ mov(eax, ebx);
    __ ret(0);

    __ bind(&not_smis);
    // If either operand is a JSObject or an oddball value, then they are not
    // equal since their pointers are different
    // There is no test for undetectability in strict equality.

    // Get the type of the first operand.
    // If the first object is a JS object, we have done pointer comparison.
    Label first_non_object;
    STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
    __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
    __ j(below, &first_non_object, Label::kNear);

    // Return non-zero (eax is not zero)
    Label return_not_equal;
    STATIC_ASSERT(kHeapObjectTag != 0);
    __ bind(&return_not_equal);
    __ ret(0);

    __ bind(&first_non_object);
    // Check for oddballs: true, false, null, undefined.
    __ CmpInstanceType(ecx, ODDBALL_TYPE);
    __ j(equal, &return_not_equal);

    __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
    __ j(above_equal, &return_not_equal);

    // Check for oddballs: true, false, null, undefined.
    __ CmpInstanceType(ecx, ODDBALL_TYPE);
    __ j(equal, &return_not_equal);

    // Fall through to the general case.
    __ bind(&slow);
  }

  // Generate the number comparison code.
  Label non_number_comparison;
  Label unordered;
  __ bind(&generic_heap_number_comparison);

  FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
  __ ucomisd(xmm0, xmm1);
  // Don't base result on EFLAGS when a NaN is involved.
  __ j(parity_even, &unordered, Label::kNear);

  __ mov(eax, 0);  // equal
  __ mov(ecx, Immediate(Smi::FromInt(1)));
  __ cmov(above, eax, ecx);
  __ mov(ecx, Immediate(Smi::FromInt(-1)));
  __ cmov(below, eax, ecx);
  __ ret(0);

  // If one of the numbers was NaN, then the result is always false.
  // The cc is never not-equal.
  __ bind(&unordered);
  DCHECK(cc != not_equal);
  if (cc == less || cc == less_equal) {
    __ mov(eax, Immediate(Smi::FromInt(1)));
  } else {
    __ mov(eax, Immediate(Smi::FromInt(-1)));
  }
  __ ret(0);

  // The number comparison code did not provide a valid result.
  __ bind(&non_number_comparison);

  // Fast negative check for internalized-to-internalized equality.
  Label check_for_strings;
  if (cc == equal) {
    BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
    BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);

    // We've already checked for object identity, so if both operands
    // are internalized they aren't equal. Register eax already holds a
    // non-zero value, which indicates not equal, so just return.
    __ ret(0);
  }

  __ bind(&check_for_strings);

  __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
                                           &check_unequal_objects);

  // Inline comparison of one-byte strings.
  if (cc == equal) {
    StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
  } else {
    StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
                                                    edi);
  }
#ifdef DEBUG
  __ Abort(kUnexpectedFallThroughFromStringComparison);
#endif

  __ bind(&check_unequal_objects);
  if (cc == equal && !strict()) {
    // Non-strict equality.  Objects are unequal if
    // they are both JSObjects and not undetectable,
    // and their pointers are different.
    Label return_equal, return_unequal, undetectable;
    // At most one is a smi, so we can test for smi by adding the two.
    // A smi plus a heap object has the low bit set, a heap object plus
    // a heap object has the low bit clear.
    STATIC_ASSERT(kSmiTag == 0);
    STATIC_ASSERT(kSmiTagMask == 1);
    __ lea(ecx, Operand(eax, edx, times_1, 0));
    __ test(ecx, Immediate(kSmiTagMask));
    __ j(not_zero, &runtime_call);

    __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
    __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));

    __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
              Immediate(1 << Map::kIsUndetectable));
    __ j(not_zero, &undetectable, Label::kNear);
    __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
              Immediate(1 << Map::kIsUndetectable));
    __ j(not_zero, &return_unequal, Label::kNear);

    __ CmpInstanceType(ebx, FIRST_JS_RECEIVER_TYPE);
    __ j(below, &runtime_call, Label::kNear);
    __ CmpInstanceType(ecx, FIRST_JS_RECEIVER_TYPE);
    __ j(below, &runtime_call, Label::kNear);

    __ bind(&return_unequal);
    // Return non-equal by returning the non-zero object pointer in eax.
    __ ret(0);  // eax, edx were pushed

    __ bind(&undetectable);
    __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
              Immediate(1 << Map::kIsUndetectable));
    __ j(zero, &return_unequal, Label::kNear);

    // If both sides are JSReceivers, then the result is false according to
    // the HTML specification, which says that only comparisons with null or
    // undefined are affected by special casing for document.all.
    __ CmpInstanceType(ebx, ODDBALL_TYPE);
    __ j(zero, &return_equal, Label::kNear);
    __ CmpInstanceType(ecx, ODDBALL_TYPE);
    __ j(not_zero, &return_unequal, Label::kNear);

    __ bind(&return_equal);
    __ Move(eax, Immediate(EQUAL));
    __ ret(0);  // eax, edx were pushed
  }
  __ bind(&runtime_call);

  if (cc == equal) {
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Push(esi);
      __ Call(strict() ? isolate()->builtins()->StrictEqual()
                       : isolate()->builtins()->Equal(),
              RelocInfo::CODE_TARGET);
      __ Pop(esi);
    }
    // Turn true into 0 and false into some non-zero value.
    STATIC_ASSERT(EQUAL == 0);
    __ sub(eax, Immediate(isolate()->factory()->true_value()));
    __ Ret();
  } else {
    // Push arguments below the return address.
    __ pop(ecx);
    __ push(edx);
    __ push(eax);
    __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
    __ push(ecx);
    // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    // tagged as a small integer.
    __ TailCallRuntime(Runtime::kCompare);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
  // eax : number of arguments to the construct function
  // ebx : feedback vector
  // edx : slot in feedback vector (Smi)
  // edi : the function to call

  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Number-of-arguments register must be smi-tagged to call out.
    __ SmiTag(eax);
    __ push(eax);
    __ push(edi);
    __ push(edx);
    __ push(ebx);
    __ push(esi);

    __ CallStub(stub);

    __ pop(esi);
    __ pop(ebx);
    __ pop(edx);
    __ pop(edi);
    __ pop(eax);
    __ SmiUntag(eax);
  }
}


static void GenerateRecordCallTarget(MacroAssembler* masm) {
  // Cache the called function in a feedback vector slot.  Cache states
  // are uninitialized, monomorphic (indicated by a JSFunction), and
  // megamorphic.
  // eax : number of arguments to the construct function
  // ebx : feedback vector
  // edx : slot in feedback vector (Smi)
  // edi : the function to call
  Isolate* isolate = masm->isolate();
  Label initialize, done, miss, megamorphic, not_array_function;

  // Load the cache state into ecx.
  __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
                           FixedArray::kHeaderSize));

  // A monomorphic cache hit or an already megamorphic state: invoke the
  // function without changing the state.
  // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
  // at this position in a symbol (see static asserts in feedback-vector.h).
  Label check_allocation_site;
  __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
  __ j(equal, &done, Label::kFar);
  __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
  __ j(equal, &done, Label::kFar);
  __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
                 Heap::kWeakCellMapRootIndex);
  __ j(not_equal, &check_allocation_site);

  // If the weak cell is cleared, we have a new chance to become monomorphic.
  __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
  __ jmp(&megamorphic);

  __ bind(&check_allocation_site);
  // If we came here, we need to see if we are the array function.
  // If we didn't have a matching function, and we didn't find the megamorph
  // sentinel, then we have in the slot either some other function or an
  // AllocationSite.
  __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
  __ j(not_equal, &miss);

  // Make sure the function is the Array() function
  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
  __ cmp(edi, ecx);
  __ j(not_equal, &megamorphic);
  __ jmp(&done, Label::kFar);

  __ bind(&miss);

  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
  // megamorphic.
  __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
  __ j(equal, &initialize);
  // MegamorphicSentinel is an immortal immovable object (undefined) so no
  // write-barrier is needed.
  __ bind(&megamorphic);
  __ mov(
      FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
      Immediate(FeedbackVector::MegamorphicSentinel(isolate)));
  __ jmp(&done, Label::kFar);

  // An uninitialized cache is patched with the function or sentinel to
  // indicate the ElementsKind if function is the Array constructor.
  __ bind(&initialize);
  // Make sure the function is the Array() function
  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
  __ cmp(edi, ecx);
  __ j(not_equal, &not_array_function);

  // The target function is the Array constructor,
  // Create an AllocationSite if we don't already have it, store it in the
  // slot.
  CreateAllocationSiteStub create_stub(isolate);
  CallStubInRecordCallTarget(masm, &create_stub);
  __ jmp(&done);

  __ bind(&not_array_function);
  CreateWeakCellStub weak_cell_stub(isolate);
  CallStubInRecordCallTarget(masm, &weak_cell_stub);

  __ bind(&done);
  // Increment the call count for all function calls.
  __ add(FieldOperand(ebx, edx, times_half_pointer_size,
                      FixedArray::kHeaderSize + kPointerSize),
         Immediate(Smi::FromInt(1)));
}


void CallConstructStub::Generate(MacroAssembler* masm) {
  // eax : number of arguments
  // ebx : feedback vector
  // edx : slot in feedback vector (Smi, for RecordCallTarget)
  // edi : constructor function

  Label non_function;
  // Check that function is not a smi.
  __ JumpIfSmi(edi, &non_function);
  // Check that function is a JSFunction.
  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
  __ j(not_equal, &non_function);

  GenerateRecordCallTarget(masm);

  Label feedback_register_initialized;
  // Put the AllocationSite from the feedback vector into ebx, or undefined.
  __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
                           FixedArray::kHeaderSize));
  Handle<Map> allocation_site_map = isolate()->factory()->allocation_site_map();
  __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
  __ j(equal, &feedback_register_initialized);
  __ mov(ebx, isolate()->factory()->undefined_value());
  __ bind(&feedback_register_initialized);

  __ AssertUndefinedOrAllocationSite(ebx);

  // Pass new target to construct stub.
  __ mov(edx, edi);

  // Tail call to the function-specific construct stub (still in the caller
  // context at this point).
  __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
  __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
  __ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
  __ jmp(ecx);

  __ bind(&non_function);
  __ mov(edx, edi);
  __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}

bool CEntryStub::NeedsImmovableCode() {
  return false;
}


void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
  CEntryStub::GenerateAheadOfTime(isolate);
  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
  // It is important that the store buffer overflow stubs are generated first.
  CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
  CreateWeakCellStub::GenerateAheadOfTime(isolate);
  BinaryOpICStub::GenerateAheadOfTime(isolate);
  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
  StoreFastElementStub::GenerateAheadOfTime(isolate);
}


void CodeStub::GenerateFPStubs(Isolate* isolate) {
  // Generate if not already in cache.
  CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
}


void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
  stub.GetCode();
}


void CEntryStub::Generate(MacroAssembler* masm) {
  // eax: number of arguments including receiver
  // ebx: pointer to C function  (C callee-saved)
  // ebp: frame pointer  (restored after C call)
  // esp: stack pointer  (restored after C call)
  // esi: current context (C callee-saved)
  // edi: JS function of the caller (C callee-saved)
  //
  // If argv_in_register():
  // ecx: pointer to the first argument

  ProfileEntryHookStub::MaybeCallEntryHook(masm);

  // Reserve space on the stack for the three arguments passed to the call. If
  // result size is greater than can be returned in registers, also reserve
  // space for the hidden argument for the result location, and space for the
  // result itself.
  int arg_stack_space = result_size() < 3 ? 3 : 4 + result_size();

  // Enter the exit frame that transitions from JavaScript to C++.
  if (argv_in_register()) {
    DCHECK(!save_doubles());
    DCHECK(!is_builtin_exit());
    __ EnterApiExitFrame(arg_stack_space);

    // Move argc and argv into the correct registers.
    __ mov(esi, ecx);
    __ mov(edi, eax);
  } else {
    __ EnterExitFrame(
        arg_stack_space, save_doubles(),
        is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
  }

  // ebx: pointer to C function  (C callee-saved)
  // ebp: frame pointer  (restored after C call)
  // esp: stack pointer  (restored after C call)
  // edi: number of arguments including receiver  (C callee-saved)
  // esi: pointer to the first argument (C callee-saved)

  // Result returned in eax, or eax+edx if result size is 2.

  // Check stack alignment.
  if (FLAG_debug_code) {
    __ CheckStackAlignment();
  }
  // Call C function.
  if (result_size() <= 2) {
    __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
    __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
    __ mov(Operand(esp, 2 * kPointerSize),
           Immediate(ExternalReference::isolate_address(isolate())));
  } else {
    DCHECK_EQ(3, result_size());
    // Pass a pointer to the result location as the first argument.
    __ lea(eax, Operand(esp, 4 * kPointerSize));
    __ mov(Operand(esp, 0 * kPointerSize), eax);
    __ mov(Operand(esp, 1 * kPointerSize), edi);  // argc.
    __ mov(Operand(esp, 2 * kPointerSize), esi);  // argv.
    __ mov(Operand(esp, 3 * kPointerSize),
           Immediate(ExternalReference::isolate_address(isolate())));
  }
  __ call(ebx);

  if (result_size() > 2) {
    DCHECK_EQ(3, result_size());
#ifndef _WIN32
    // Restore the "hidden" argument on the stack which was popped by caller.
    __ sub(esp, Immediate(kPointerSize));
#endif
    // Read result values stored on stack. Result is stored above the arguments.
    __ mov(kReturnRegister0, Operand(esp, 4 * kPointerSize));
    __ mov(kReturnRegister1, Operand(esp, 5 * kPointerSize));
    __ mov(kReturnRegister2, Operand(esp, 6 * kPointerSize));
  }
  // Result is in eax, edx:eax or edi:edx:eax - do not destroy these registers!

  // Check result for exception sentinel.
  Label exception_returned;
  __ cmp(eax, isolate()->factory()->exception());
  __ j(equal, &exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    __ push(edx);
    __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
    Label okay;
    ExternalReference pending_exception_address(
        Isolate::kPendingExceptionAddress, isolate());
    __ cmp(edx, Operand::StaticVariable(pending_exception_address));
    // Cannot use check here as it attempts to generate call into runtime.
    __ j(equal, &okay, Label::kNear);
    __ int3();
    __ bind(&okay);
    __ pop(edx);
  }

  // Exit the JavaScript to C++ exit frame.
  __ LeaveExitFrame(save_doubles(), !argv_in_register());
  __ ret(0);

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address(
      Isolate::kPendingHandlerContextAddress, isolate());
  ExternalReference pending_handler_code_address(
      Isolate::kPendingHandlerCodeAddress, isolate());
  ExternalReference pending_handler_offset_address(
      Isolate::kPendingHandlerOffsetAddress, isolate());
  ExternalReference pending_handler_fp_address(
      Isolate::kPendingHandlerFPAddress, isolate());
  ExternalReference pending_handler_sp_address(
      Isolate::kPendingHandlerSPAddress, isolate());

  // Ask the runtime for help to determine the handler. This will set eax to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
                                 isolate());
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, eax);
    __ mov(Operand(esp, 0 * kPointerSize), Immediate(0));  // argc.
    __ mov(Operand(esp, 1 * kPointerSize), Immediate(0));  // argv.
    __ mov(Operand(esp, 2 * kPointerSize),
           Immediate(ExternalReference::isolate_address(isolate())));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
  __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
  __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (esi == 0) for non-JS frames.
  Label skip;
  __ test(esi, esi);
  __ j(zero, &skip, Label::kNear);
  __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
  __ bind(&skip);

  // Compute the handler entry address and jump to it.
  __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
  __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
  __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
  __ jmp(edi);
}


void JSEntryStub::Generate(MacroAssembler* masm) {
  Label invoke, handler_entry, exit;
  Label not_outermost_js, not_outermost_js_2;

  ProfileEntryHookStub::MaybeCallEntryHook(masm);

  // Set up frame.
  __ push(ebp);
  __ mov(ebp, esp);

  // Push marker in two places.
  StackFrame::Type marker = type();
  __ push(Immediate(StackFrame::TypeToMarker(marker)));  // marker
  ExternalReference context_address(Isolate::kContextAddress, isolate());
  __ push(Operand::StaticVariable(context_address));  // context
  // Save callee-saved registers (C calling conventions).
  __ push(edi);
  __ push(esi);
  __ push(ebx);

  // Save copies of the top frame descriptor on the stack.
  ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
  __ push(Operand::StaticVariable(c_entry_fp));

  // If this is the outermost JS call, set js_entry_sp value.
  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
  __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
  __ j(not_equal, &not_outermost_js, Label::kNear);
  __ mov(Operand::StaticVariable(js_entry_sp), ebp);
  __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ jmp(&invoke, Label::kNear);
  __ bind(&not_outermost_js);
  __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ jmp(&invoke);
  __ bind(&handler_entry);
  handler_offset_ = handler_entry.pos();
  // Caught exception: Store result (exception) in the pending exception
  // field in the JSEnv and return a failure sentinel.
  ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
                                      isolate());
  __ mov(Operand::StaticVariable(pending_exception), eax);
  __ mov(eax, Immediate(isolate()->factory()->exception()));
  __ jmp(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  __ PushStackHandler();

  // Fake a receiver (NULL).
  __ push(Immediate(0));  // receiver

  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return. Notice that we cannot store a
  // reference to the trampoline code directly in this stub, because the
  // builtin stubs may not have been generated yet.
  if (type() == StackFrame::ENTRY_CONSTRUCT) {
    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
                                      isolate());
    __ mov(edx, Immediate(construct_entry));
  } else {
    ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
    __ mov(edx, Immediate(entry));
  }
  __ mov(edx, Operand(edx, 0));  // deref address
  __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
  __ call(edx);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);
  // Check if the current stack frame is marked as the outermost JS frame.
  __ pop(ebx);
  __ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ j(not_equal, &not_outermost_js_2);
  __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
  __ bind(&not_outermost_js_2);

  // Restore the top frame descriptor from the stack.
  __ pop(Operand::StaticVariable(ExternalReference(
      Isolate::kCEntryFPAddress, isolate())));

  // Restore callee-saved registers (C calling conventions).
  __ pop(ebx);
  __ pop(esi);
  __ pop(edi);
  __ add(esp, Immediate(2 * kPointerSize));  // remove markers

  // Restore frame pointer and return.
  __ pop(ebp);
  __ ret(0);
}


// -------------------------------------------------------------------------
// StringCharCodeAtGenerator

void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
  // If the receiver is a smi trigger the non-string case.
  STATIC_ASSERT(kSmiTag == 0);
  if (check_mode_ == RECEIVER_IS_UNKNOWN) {
    __ JumpIfSmi(object_, receiver_not_string_);

    // Fetch the instance type of the receiver into result register.
    __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
    __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
    // If the receiver is not a string trigger the non-string case.
    __ test(result_, Immediate(kIsNotStringMask));
    __ j(not_zero, receiver_not_string_);
  }

  // If the index is non-smi trigger the non-smi case.
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfNotSmi(index_, &index_not_smi_);
  __ bind(&got_smi_index_);

  // Check for index out of range.
  __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
  __ j(above_equal, index_out_of_range_);

  __ SmiUntag(index_);

  Factory* factory = masm->isolate()->factory();
  StringCharLoadGenerator::Generate(
      masm, factory, object_, index_, result_, &call_runtime_);

  __ SmiTag(result_);
  __ bind(&exit_);
}


void StringCharCodeAtGenerator::GenerateSlow(
    MacroAssembler* masm, EmbedMode embed_mode,
    const RuntimeCallHelper& call_helper) {
  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);

  // Index is not a smi.
  __ bind(&index_not_smi_);
  // If index is a heap number, try converting it to an integer.
  __ CheckMap(index_,
              masm->isolate()->factory()->heap_number_map(),
              index_not_number_,
              DONT_DO_SMI_CHECK);
  call_helper.BeforeCall(masm);
  if (embed_mode == PART_OF_IC_HANDLER) {
    __ push(LoadWithVectorDescriptor::VectorRegister());
    __ push(LoadDescriptor::SlotRegister());
  }
  __ push(object_);
  __ push(index_);  // Consumed by runtime conversion function.
  __ CallRuntime(Runtime::kNumberToSmi);
  if (!index_.is(eax)) {
    // Save the conversion result before the pop instructions below
    // have a chance to overwrite it.
    __ mov(index_, eax);
  }
  __ pop(object_);
  if (embed_mode == PART_OF_IC_HANDLER) {
    __ pop(LoadDescriptor::SlotRegister());
    __ pop(LoadWithVectorDescriptor::VectorRegister());
  }
  // Reload the instance type.
  __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
  __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
  call_helper.AfterCall(masm);
  // If index is still not a smi, it must be out of range.
  STATIC_ASSERT(kSmiTag == 0);
  __ JumpIfNotSmi(index_, index_out_of_range_);
  // Otherwise, return to the fast path.
  __ jmp(&got_smi_index_);

  // Call runtime. We get here when the receiver is a string and the
  // index is a number, but the code of getting the actual character
  // is too complex (e.g., when the string needs to be flattened).
  __ bind(&call_runtime_);
  call_helper.BeforeCall(masm);
  __ push(object_);
  __ SmiTag(index_);
  __ push(index_);
  __ CallRuntime(Runtime::kStringCharCodeAtRT);
  if (!result_.is(eax)) {
    __ mov(result_, eax);
  }
  call_helper.AfterCall(masm);
  __ jmp(&exit_);

  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}

void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
                                                   Register left,
                                                   Register right,
                                                   Register scratch1,
                                                   Register scratch2) {
  Register length = scratch1;

  // Compare lengths.
  Label strings_not_equal, check_zero_length;
  __ mov(length, FieldOperand(left, String::kLengthOffset));
  __ cmp(length, FieldOperand(right, String::kLengthOffset));
  __ j(equal, &check_zero_length, Label::kNear);
  __ bind(&strings_not_equal);
  __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
  __ ret(0);

  // Check if the length is zero.
  Label compare_chars;
  __ bind(&check_zero_length);
  STATIC_ASSERT(kSmiTag == 0);
  __ test(length, length);
  __ j(not_zero, &compare_chars, Label::kNear);
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ ret(0);

  // Compare characters.
  __ bind(&compare_chars);
  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
                                  &strings_not_equal, Label::kNear);

  // Characters are equal.
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ ret(0);
}


void StringHelper::GenerateCompareFlatOneByteStrings(
    MacroAssembler* masm, Register left, Register right, Register scratch1,
    Register scratch2, Register scratch3) {
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->string_compare_native(), 1);

  // Find minimum length.
  Label left_shorter;
  __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
  __ mov(scratch3, scratch1);
  __ sub(scratch3, FieldOperand(right, String::kLengthOffset));

  Register length_delta = scratch3;

  __ j(less_equal, &left_shorter, Label::kNear);
  // Right string is shorter. Change scratch1 to be length of right string.
  __ sub(scratch1, length_delta);
  __ bind(&left_shorter);

  Register min_length = scratch1;

  // If either length is zero, just compare lengths.
  Label compare_lengths;
  __ test(min_length, min_length);
  __ j(zero, &compare_lengths, Label::kNear);

  // Compare characters.
  Label result_not_equal;
  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
                                  &result_not_equal, Label::kNear);

  // Compare lengths -  strings up to min-length are equal.
  __ bind(&compare_lengths);
  __ test(length_delta, length_delta);
  Label length_not_equal;
  __ j(not_zero, &length_not_equal, Label::kNear);

  // Result is EQUAL.
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ ret(0);

  Label result_greater;
  Label result_less;
  __ bind(&length_not_equal);
  __ j(greater, &result_greater, Label::kNear);
  __ jmp(&result_less, Label::kNear);
  __ bind(&result_not_equal);
  __ j(above, &result_greater, Label::kNear);
  __ bind(&result_less);

  // Result is LESS.
  __ Move(eax, Immediate(Smi::FromInt(LESS)));
  __ ret(0);

  // Result is GREATER.
  __ bind(&result_greater);
  __ Move(eax, Immediate(Smi::FromInt(GREATER)));
  __ ret(0);
}


void StringHelper::GenerateOneByteCharsCompareLoop(
    MacroAssembler* masm, Register left, Register right, Register length,
    Register scratch, Label* chars_not_equal,
    Label::Distance chars_not_equal_near) {
  // Change index to run from -length to -1 by adding length to string
  // start. This means that loop ends when index reaches zero, which
  // doesn't need an additional compare.
  __ SmiUntag(length);
  __ lea(left,
         FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
  __ lea(right,
         FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
  __ neg(length);
  Register index = length;  // index = -length;

  // Compare loop.
  Label loop;
  __ bind(&loop);
  __ mov_b(scratch, Operand(left, index, times_1, 0));
  __ cmpb(scratch, Operand(right, index, times_1, 0));
  __ j(not_equal, chars_not_equal, chars_not_equal_near);
  __ inc(index);
  __ j(not_zero, &loop);
}


void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- edx    : left
  //  -- eax    : right
  //  -- esp[0] : return address
  // -----------------------------------

  // Load ecx with the allocation site.  We stick an undefined dummy value here
  // and replace it with the real allocation site later when we instantiate this
  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
  __ mov(ecx, isolate()->factory()->undefined_value());

  // Make sure that we actually patched the allocation site.
  if (FLAG_debug_code) {
    __ test(ecx, Immediate(kSmiTagMask));
    __ Assert(not_equal, kExpectedAllocationSite);
    __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
           isolate()->factory()->allocation_site_map());
    __ Assert(equal, kExpectedAllocationSite);
  }

  // Tail call into the stub that handles binary operations with allocation
  // sites.
  BinaryOpWithAllocationSiteStub stub(isolate(), state());
  __ TailCallStub(&stub);
}


void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
  DCHECK_EQ(CompareICState::BOOLEAN, state());
  Label miss;
  Label::Distance const miss_distance =
      masm->emit_debug_code() ? Label::kFar : Label::kNear;

  __ JumpIfSmi(edx, &miss, miss_distance);
  __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
  __ JumpIfSmi(eax, &miss, miss_distance);
  __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
  __ JumpIfNotRoot(ecx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
  __ JumpIfNotRoot(ebx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
  if (!Token::IsEqualityOp(op())) {
    __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
    __ AssertSmi(eax);
    __ mov(edx, FieldOperand(edx, Oddball::kToNumberOffset));
    __ AssertSmi(edx);
    __ push(eax);
    __ mov(eax, edx);
    __ pop(edx);
  }
  __ sub(eax, edx);
  __ Ret();

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateSmis(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::SMI);
  Label miss;
  __ mov(ecx, edx);
  __ or_(ecx, eax);
  __ JumpIfNotSmi(ecx, &miss, Label::kNear);

  if (GetCondition() == equal) {
    // For equality we do not care about the sign of the result.
    __ sub(eax, edx);
  } else {
    Label done;
    __ sub(edx, eax);
    __ j(no_overflow, &done, Label::kNear);
    // Correct sign of result in case of overflow.
    __ not_(edx);
    __ bind(&done);
    __ mov(eax, edx);
  }
  __ ret(0);

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::NUMBER);

  Label generic_stub;
  Label unordered, maybe_undefined1, maybe_undefined2;
  Label miss;

  if (left() == CompareICState::SMI) {
    __ JumpIfNotSmi(edx, &miss);
  }
  if (right() == CompareICState::SMI) {
    __ JumpIfNotSmi(eax, &miss);
  }

  // Load left and right operand.
  Label done, left, left_smi, right_smi;
  __ JumpIfSmi(eax, &right_smi, Label::kNear);
  __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
         isolate()->factory()->heap_number_map());
  __ j(not_equal, &maybe_undefined1, Label::kNear);
  __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
  __ jmp(&left, Label::kNear);
  __ bind(&right_smi);
  __ mov(ecx, eax);  // Can't clobber eax because we can still jump away.
  __ SmiUntag(ecx);
  __ Cvtsi2sd(xmm1, ecx);

  __ bind(&left);
  __ JumpIfSmi(edx, &left_smi, Label::kNear);
  __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
         isolate()->factory()->heap_number_map());
  __ j(not_equal, &maybe_undefined2, Label::kNear);
  __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
  __ jmp(&done);
  __ bind(&left_smi);
  __ mov(ecx, edx);  // Can't clobber edx because we can still jump away.
  __ SmiUntag(ecx);
  __ Cvtsi2sd(xmm0, ecx);

  __ bind(&done);
  // Compare operands.
  __ ucomisd(xmm0, xmm1);

  // Don't base result on EFLAGS when a NaN is involved.
  __ j(parity_even, &unordered, Label::kNear);

  // Return a result of -1, 0, or 1, based on EFLAGS.
  // Performing mov, because xor would destroy the flag register.
  __ mov(eax, 0);  // equal
  __ mov(ecx, Immediate(Smi::FromInt(1)));
  __ cmov(above, eax, ecx);
  __ mov(ecx, Immediate(Smi::FromInt(-1)));
  __ cmov(below, eax, ecx);
  __ ret(0);

  __ bind(&unordered);
  __ bind(&generic_stub);
  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
                     CompareICState::GENERIC, CompareICState::GENERIC);
  __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);

  __ bind(&maybe_undefined1);
  if (Token::IsOrderedRelationalCompareOp(op())) {
    __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
    __ j(not_equal, &miss);
    __ JumpIfSmi(edx, &unordered);
    __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
    __ j(not_equal, &maybe_undefined2, Label::kNear);
    __ jmp(&unordered);
  }

  __ bind(&maybe_undefined2);
  if (Token::IsOrderedRelationalCompareOp(op())) {
    __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
    __ j(equal, &unordered);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
  DCHECK(GetCondition() == equal);

  // Registers containing left and right operands respectively.
  Register left = edx;
  Register right = eax;
  Register tmp1 = ecx;
  Register tmp2 = ebx;

  // Check that both operands are heap objects.
  Label miss;
  __ mov(tmp1, left);
  STATIC_ASSERT(kSmiTag == 0);
  __ and_(tmp1, right);
  __ JumpIfSmi(tmp1, &miss, Label::kNear);

  // Check that both operands are internalized strings.
  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
  __ or_(tmp1, tmp2);
  __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
  __ j(not_zero, &miss, Label::kNear);

  // Internalized strings are compared by identity.
  Label done;
  __ cmp(left, right);
  // Make sure eax is non-zero. At this point input operands are
  // guaranteed to be non-zero.
  DCHECK(right.is(eax));
  __ j(not_equal, &done, Label::kNear);
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ bind(&done);
  __ ret(0);

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::UNIQUE_NAME);
  DCHECK(GetCondition() == equal);

  // Registers containing left and right operands respectively.
  Register left = edx;
  Register right = eax;
  Register tmp1 = ecx;
  Register tmp2 = ebx;

  // Check that both operands are heap objects.
  Label miss;
  __ mov(tmp1, left);
  STATIC_ASSERT(kSmiTag == 0);
  __ and_(tmp1, right);
  __ JumpIfSmi(tmp1, &miss, Label::kNear);

  // Check that both operands are unique names. This leaves the instance
  // types loaded in tmp1 and tmp2.
  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));

  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);

  // Unique names are compared by identity.
  Label done;
  __ cmp(left, right);
  // Make sure eax is non-zero. At this point input operands are
  // guaranteed to be non-zero.
  DCHECK(right.is(eax));
  __ j(not_equal, &done, Label::kNear);
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ bind(&done);
  __ ret(0);

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateStrings(MacroAssembler* masm) {
  DCHECK(state() == CompareICState::STRING);
  Label miss;

  bool equality = Token::IsEqualityOp(op());

  // Registers containing left and right operands respectively.
  Register left = edx;
  Register right = eax;
  Register tmp1 = ecx;
  Register tmp2 = ebx;
  Register tmp3 = edi;

  // Check that both operands are heap objects.
  __ mov(tmp1, left);
  STATIC_ASSERT(kSmiTag == 0);
  __ and_(tmp1, right);
  __ JumpIfSmi(tmp1, &miss);

  // Check that both operands are strings. This leaves the instance
  // types loaded in tmp1 and tmp2.
  __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
  __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
  __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
  __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
  __ mov(tmp3, tmp1);
  STATIC_ASSERT(kNotStringTag != 0);
  __ or_(tmp3, tmp2);
  __ test(tmp3, Immediate(kIsNotStringMask));
  __ j(not_zero, &miss);

  // Fast check for identical strings.
  Label not_same;
  __ cmp(left, right);
  __ j(not_equal, &not_same, Label::kNear);
  STATIC_ASSERT(EQUAL == 0);
  STATIC_ASSERT(kSmiTag == 0);
  __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
  __ ret(0);

  // Handle not identical strings.
  __ bind(&not_same);

  // Check that both strings are internalized. If they are, we're done
  // because we already know they are not identical.  But in the case of
  // non-equality compare, we still need to determine the order. We
  // also know they are both strings.
  if (equality) {
    Label do_compare;
    STATIC_ASSERT(kInternalizedTag == 0);
    __ or_(tmp1, tmp2);
    __ test(tmp1, Immediate(kIsNotInternalizedMask));
    __ j(not_zero, &do_compare, Label::kNear);
    // Make sure eax is non-zero. At this point input operands are
    // guaranteed to be non-zero.
    DCHECK(right.is(eax));
    __ ret(0);
    __ bind(&do_compare);
  }

  // Check that both strings are sequential one-byte.
  Label runtime;
  __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);

  // Compare flat one byte strings. Returns when done.
  if (equality) {
    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
                                                  tmp2);
  } else {
    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
                                                    tmp2, tmp3);
  }

  // Handle more complex cases in runtime.
  __ bind(&runtime);
  if (equality) {
    {
      FrameScope scope(masm, StackFrame::INTERNAL);
      __ Push(left);
      __ Push(right);
      __ CallRuntime(Runtime::kStringEqual);
    }
    __ sub(eax, Immediate(masm->isolate()->factory()->true_value()));
    __ Ret();
  } else {
    __ pop(tmp1);  // Return address.
    __ push(left);
    __ push(right);
    __ push(tmp1);
    __ TailCallRuntime(Runtime::kStringCompare);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
  DCHECK_EQ(CompareICState::RECEIVER, state());
  Label miss;
  __ mov(ecx, edx);
  __ and_(ecx, eax);
  __ JumpIfSmi(ecx, &miss, Label::kNear);

  STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
  __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
  __ j(below, &miss, Label::kNear);
  __ CmpObjectType(edx, FIRST_JS_RECEIVER_TYPE, ecx);
  __ j(below, &miss, Label::kNear);

  DCHECK_EQ(equal, GetCondition());
  __ sub(eax, edx);
  __ ret(0);

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
  Label miss;
  Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
  __ mov(ecx, edx);
  __ and_(ecx, eax);
  __ JumpIfSmi(ecx, &miss, Label::kNear);

  __ GetWeakValue(edi, cell);
  __ cmp(edi, FieldOperand(eax, HeapObject::kMapOffset));
  __ j(not_equal, &miss, Label::kNear);
  __ cmp(edi, FieldOperand(edx, HeapObject::kMapOffset));
  __ j(not_equal, &miss, Label::kNear);

  if (Token::IsEqualityOp(op())) {
    __ sub(eax, edx);
    __ ret(0);
  } else {
    __ PopReturnAddressTo(ecx);
    __ Push(edx);
    __ Push(eax);
    __ Push(Immediate(Smi::FromInt(NegativeComparisonResult(GetCondition()))));
    __ PushReturnAddressFrom(ecx);
    __ TailCallRuntime(Runtime::kCompare);
  }

  __ bind(&miss);
  GenerateMiss(masm);
}


void CompareICStub::GenerateMiss(MacroAssembler* masm) {
  {
    // Call the runtime system in a fresh internal frame.
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ push(edx);  // Preserve edx and eax.
    __ push(eax);
    __ push(edx);  // And also use them as the arguments.
    __ push(eax);
    __ push(Immediate(Smi::FromInt(op())));
    __ CallRuntime(Runtime::kCompareIC_Miss);
    // Compute the entry point of the rewritten stub.
    __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
    __ pop(eax);
    __ pop(edx);
  }

  // Do a tail call to the rewritten stub.
  __ jmp(edi);
}


// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a unique name and receiver must be a heap object.
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
                                                      Label* miss,
                                                      Label* done,
                                                      Register properties,
                                                      Handle<Name> name,
                                                      Register r0) {
  DCHECK(name->IsUniqueName());

  // If names of slots in range from 1 to kProbes - 1 for the hash value are
  // not equal to the name and kProbes-th slot is not used (its name is the
  // undefined value), it guarantees the hash table doesn't contain the
  // property. It's true even if some slots represent deleted properties
  // (their names are the hole value).
  for (int i = 0; i < kInlinedProbes; i++) {
    // Compute the masked index: (hash + i + i * i) & mask.
    Register index = r0;
    // Capacity is smi 2^n.
    __ mov(index, FieldOperand(properties, kCapacityOffset));
    __ dec(index);
    __ and_(index,
            Immediate(Smi::FromInt(name->Hash() +
                                   NameDictionary::GetProbeOffset(i))));

    // Scale the index by multiplying by the entry size.
    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
    __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
    Register entity_name = r0;
    // Having undefined at this place means the name is not contained.
    STATIC_ASSERT(kSmiTagSize == 1);
    __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
                                kElementsStartOffset - kHeapObjectTag));
    __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
    __ j(equal, done);

    // Stop if found the property.
    __ cmp(entity_name, Handle<Name>(name));
    __ j(equal, miss);

    Label good;
    // Check for the hole and skip.
    __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
    __ j(equal, &good, Label::kNear);

    // Check if the entry name is not a unique name.
    __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
    __ JumpIfNotUniqueNameInstanceType(
        FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
    __ bind(&good);
  }

  NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
                                NEGATIVE_LOOKUP);
  __ push(Immediate(Handle<Object>(name)));
  __ push(Immediate(name->Hash()));
  __ CallStub(&stub);
  __ test(r0, r0);
  __ j(not_zero, miss);
  __ jmp(done);
}

void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
  // we cannot call anything that could cause a GC from this stub.
  // Stack frame on entry:
  //  esp[0 * kPointerSize]: return address.
  //  esp[1 * kPointerSize]: key's hash.
  //  esp[2 * kPointerSize]: key.
  // Registers:
  //  dictionary_: NameDictionary to probe.
  //  result_: used as scratch.
  //  index_: will hold an index of entry if lookup is successful.
  //          might alias with result_.
  // Returns:
  //  result_ is zero if lookup failed, non zero otherwise.

  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;

  Register scratch = result();

  __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
  __ dec(scratch);
  __ SmiUntag(scratch);
  __ push(scratch);

  // If names of slots in range from 1 to kProbes - 1 for the hash value are
  // not equal to the name and kProbes-th slot is not used (its name is the
  // undefined value), it guarantees the hash table doesn't contain the
  // property. It's true even if some slots represent deleted properties
  // (their names are the null value).
  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
    // Compute the masked index: (hash + i + i * i) & mask.
    __ mov(scratch, Operand(esp, 2 * kPointerSize));
    if (i > 0) {
      __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
    }
    __ and_(scratch, Operand(esp, 0));

    // Scale the index by multiplying by the entry size.
    STATIC_ASSERT(NameDictionary::kEntrySize == 3);
    __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.

    // Having undefined at this place means the name is not contained.
    STATIC_ASSERT(kSmiTagSize == 1);
    __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
                            kElementsStartOffset - kHeapObjectTag));
    __ cmp(scratch, isolate()->factory()->undefined_value());
    __ j(equal, &not_in_dictionary);

    // Stop if found the property.
    __ cmp(scratch, Operand(esp, 3 * kPointerSize));
    __ j(equal, &in_dictionary);

    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
      // If we hit a key that is not a unique name during negative
      // lookup we have to bailout as this key might be equal to the
      // key we are looking for.

      // Check if the entry name is not a unique name.
      __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
      __ JumpIfNotUniqueNameInstanceType(
          FieldOperand(scratch, Map::kInstanceTypeOffset),
          &maybe_in_dictionary);
    }
  }

  __ bind(&maybe_in_dictionary);
  // If we are doing negative lookup then probing failure should be
  // treated as a lookup success. For positive lookup probing failure
  // should be treated as lookup failure.
  if (mode() == POSITIVE_LOOKUP) {
    __ mov(result(), Immediate(0));
    __ Drop(1);
    __ ret(2 * kPointerSize);
  }

  __ bind(&in_dictionary);
  __ mov(result(), Immediate(1));
  __ Drop(1);
  __ ret(2 * kPointerSize);

  __ bind(&not_in_dictionary);
  __ mov(result(), Immediate(0));
  __ Drop(1);
  __ ret(2 * kPointerSize);
}


void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
    Isolate* isolate) {
  StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
  stub.GetCode();
  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
  stub2.GetCode();
}


// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed.  The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
  Label skip_to_incremental_noncompacting;
  Label skip_to_incremental_compacting;

  // The first two instructions are generated with labels so as to get the
  // offset fixed up correctly by the bind(Label*) call.  We patch it back and
  // forth between a compare instructions (a nop in this position) and the
  // real branch when we start and stop incremental heap marking.
  __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
  __ jmp(&skip_to_incremental_compacting, Label::kFar);

  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ ret(0);
  }

  __ bind(&skip_to_incremental_noncompacting);
  GenerateIncremental(masm, INCREMENTAL);

  __ bind(&skip_to_incremental_compacting);
  GenerateIncremental(masm, INCREMENTAL_COMPACTION);

  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
  masm->set_byte_at(0, kTwoByteNopInstruction);
  masm->set_byte_at(2, kFiveByteNopInstruction);
}


void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
  regs_.Save(masm);

  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
    Label dont_need_remembered_set;

    __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
                           regs_.scratch0(),
                           &dont_need_remembered_set);

    __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
                        &dont_need_remembered_set);

    // First notify the incremental marker if necessary, then update the
    // remembered set.
    CheckNeedsToInformIncrementalMarker(
        masm,
        kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
        mode);
    InformIncrementalMarker(masm);
    regs_.Restore(masm);
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);

    __ bind(&dont_need_remembered_set);
  }

  CheckNeedsToInformIncrementalMarker(
      masm,
      kReturnOnNoNeedToInformIncrementalMarker,
      mode);
  InformIncrementalMarker(masm);
  regs_.Restore(masm);
  __ ret(0);
}


void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
  int argument_count = 3;
  __ PrepareCallCFunction(argument_count, regs_.scratch0());
  __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
  __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
  __ mov(Operand(esp, 2 * kPointerSize),
         Immediate(ExternalReference::isolate_address(isolate())));

  AllowExternalCallThatCantCauseGC scope(masm);
  __ CallCFunction(
      ExternalReference::incremental_marking_record_write_function(isolate()),
      argument_count);

  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}


void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
    MacroAssembler* masm,
    OnNoNeedToInformIncrementalMarker on_no_need,
    Mode mode) {
  Label object_is_black, need_incremental, need_incremental_pop_object;

  // Let's look at the color of the object:  If it is not black we don't have
  // to inform the incremental marker.
  __ JumpIfBlack(regs_.object(),
                 regs_.scratch0(),
                 regs_.scratch1(),
                 &object_is_black,
                 Label::kNear);

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ ret(0);
  }

  __ bind(&object_is_black);

  // Get the value from the slot.
  __ mov(regs_.scratch0(), Operand(regs_.address(), 0));

  if (mode == INCREMENTAL_COMPACTION) {
    Label ensure_not_white;

    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kEvacuationCandidateMask,
                     zero,
                     &ensure_not_white,
                     Label::kNear);

    __ CheckPageFlag(regs_.object(),
                     regs_.scratch1(),  // Scratch.
                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
                     not_zero,
                     &ensure_not_white,
                     Label::kNear);

    __ jmp(&need_incremental);

    __ bind(&ensure_not_white);
  }

  // We need an extra register for this, so we push the object register
  // temporarily.
  __ push(regs_.object());
  __ JumpIfWhite(regs_.scratch0(),  // The value.
                 regs_.scratch1(),  // Scratch.
                 regs_.object(),    // Scratch.
                 &need_incremental_pop_object, Label::kNear);
  __ pop(regs_.object());

  regs_.Restore(masm);
  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
    __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
                           MacroAssembler::kReturnAtEnd);
  } else {
    __ ret(0);
  }

  __ bind(&need_incremental_pop_object);
  __ pop(regs_.object());

  __ bind(&need_incremental);

  // Fall through when we need to inform the incremental marker.
}


void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
  CEntryStub ces(isolate(), 1, kSaveFPRegs);
  __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
  int parameter_count_offset =
      StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
  __ mov(ebx, MemOperand(ebp, parameter_count_offset));
  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
  __ pop(ecx);
  int additional_offset =
      function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
  __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
  __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
}

void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
  if (masm->isolate()->function_entry_hook() != NULL) {
    ProfileEntryHookStub stub(masm->isolate());
    masm->CallStub(&stub);
  }
}


void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
  // Save volatile registers.
  const int kNumSavedRegisters = 3;
  __ push(eax);
  __ push(ecx);
  __ push(edx);

  // Calculate and push the original stack pointer.
  __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
  __ push(eax);

  // Retrieve our return address and use it to calculate the calling
  // function's address.
  __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
  __ sub(eax, Immediate(Assembler::kCallInstructionLength));
  __ push(eax);

  // Call the entry hook.
  DCHECK(isolate()->function_entry_hook() != NULL);
  __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
          RelocInfo::RUNTIME_ENTRY);
  __ add(esp, Immediate(2 * kPointerSize));

  // Restore ecx.
  __ pop(edx);
  __ pop(ecx);
  __ pop(eax);

  __ ret(0);
}


template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
                                AllocationSiteOverrideMode mode) {
  if (mode == DISABLE_ALLOCATION_SITES) {
    T stub(masm->isolate(),
           GetInitialFastElementsKind(),
           mode);
    __ TailCallStub(&stub);
  } else if (mode == DONT_OVERRIDE) {
    int last_index = GetSequenceIndexFromFastElementsKind(
        TERMINAL_FAST_ELEMENTS_KIND);
    for (int i = 0; i <= last_index; ++i) {
      Label next;
      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
      __ cmp(edx, kind);
      __ j(not_equal, &next);
      T stub(masm->isolate(), kind);
      __ TailCallStub(&stub);
      __ bind(&next);
    }

    // If we reached this point there is a problem.
    __ Abort(kUnexpectedElementsKindInArrayConstructor);
  } else {
    UNREACHABLE();
  }
}


static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
                                           AllocationSiteOverrideMode mode) {
  // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
  // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
  // eax - number of arguments
  // edi - constructor?
  // esp[0] - return address
  // esp[4] - last argument
  Label normal_sequence;
  if (mode == DONT_OVERRIDE) {
    STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
    STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
    STATIC_ASSERT(FAST_ELEMENTS == 2);
    STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
    STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
    STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);

    // is the low bit set? If so, we are holey and that is good.
    __ test_b(edx, Immediate(1));
    __ j(not_zero, &normal_sequence);
  }

  // look at the first argument
  __ mov(ecx, Operand(esp, kPointerSize));
  __ test(ecx, ecx);
  __ j(zero, &normal_sequence);

  if (mode == DISABLE_ALLOCATION_SITES) {
    ElementsKind initial = GetInitialFastElementsKind();
    ElementsKind holey_initial = GetHoleyElementsKind(initial);

    ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
                                                  holey_initial,
                                                  DISABLE_ALLOCATION_SITES);
    __ TailCallStub(&stub_holey);

    __ bind(&normal_sequence);
    ArraySingleArgumentConstructorStub stub(masm->isolate(),
                                            initial,
                                            DISABLE_ALLOCATION_SITES);
    __ TailCallStub(&stub);
  } else if (mode == DONT_OVERRIDE) {
    // We are going to create a holey array, but our kind is non-holey.
    // Fix kind and retry.
    __ inc(edx);

    if (FLAG_debug_code) {
      Handle<Map> allocation_site_map =
          masm->isolate()->factory()->allocation_site_map();
      __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
      __ Assert(equal, kExpectedAllocationSite);
    }

    // Save the resulting elements kind in type info. We can't just store r3
    // in the AllocationSite::transition_info field because elements kind is
    // restricted to a portion of the field...upper bits need to be left alone.
    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
    __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
           Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));

    __ bind(&normal_sequence);
    int last_index = GetSequenceIndexFromFastElementsKind(
        TERMINAL_FAST_ELEMENTS_KIND);
    for (int i = 0; i <= last_index; ++i) {
      Label next;
      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
      __ cmp(edx, kind);
      __ j(not_equal, &next);
      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
      __ TailCallStub(&stub);
      __ bind(&next);
    }

    // If we reached this point there is a problem.
    __ Abort(kUnexpectedElementsKindInArrayConstructor);
  } else {
    UNREACHABLE();
  }
}


template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
  int to_index = GetSequenceIndexFromFastElementsKind(
      TERMINAL_FAST_ELEMENTS_KIND);
  for (int i = 0; i <= to_index; ++i) {
    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
    T stub(isolate, kind);
    stub.GetCode();
    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
      stub1.GetCode();
    }
  }
}

void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
      isolate);
  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
      isolate);
  ArrayNArgumentsConstructorStub stub(isolate);
  stub.GetCode();

  ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
  for (int i = 0; i < 2; i++) {
    // For internal arrays we only need a few things
    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
    stubh1.GetCode();
    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
    stubh2.GetCode();
  }
}

void ArrayConstructorStub::GenerateDispatchToArrayStub(
    MacroAssembler* masm, AllocationSiteOverrideMode mode) {
  Label not_zero_case, not_one_case;
  __ test(eax, eax);
  __ j(not_zero, &not_zero_case);
  CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);

  __ bind(&not_zero_case);
  __ cmp(eax, 1);
  __ j(greater, &not_one_case);
  CreateArrayDispatchOneArgument(masm, mode);

  __ bind(&not_one_case);
  ArrayNArgumentsConstructorStub stub(masm->isolate());
  __ TailCallStub(&stub);
}

void ArrayConstructorStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
  //  -- ebx : AllocationSite or undefined
  //  -- edi : constructor
  //  -- edx : Original constructor
  //  -- esp[0] : return address
  //  -- esp[4] : last argument
  // -----------------------------------
  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ test(ecx, Immediate(kSmiTagMask));
    __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
    __ CmpObjectType(ecx, MAP_TYPE, ecx);
    __ Assert(equal, kUnexpectedInitialMapForArrayFunction);

    // We should either have undefined in ebx or a valid AllocationSite
    __ AssertUndefinedOrAllocationSite(ebx);
  }

  Label subclassing;

  // Enter the context of the Array function.
  __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));

  __ cmp(edx, edi);
  __ j(not_equal, &subclassing);

  Label no_info;
  // If the feedback vector is the undefined value call an array constructor
  // that doesn't use AllocationSites.
  __ cmp(ebx, isolate()->factory()->undefined_value());
  __ j(equal, &no_info);

  // Only look at the lower 16 bits of the transition info.
  __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
  __ SmiUntag(edx);
  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
  __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);

  __ bind(&no_info);
  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);

  // Subclassing.
  __ bind(&subclassing);
  __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
  __ add(eax, Immediate(3));
  __ PopReturnAddressTo(ecx);
  __ Push(edx);
  __ Push(ebx);
  __ PushReturnAddressFrom(ecx);
  __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}


void InternalArrayConstructorStub::GenerateCase(
    MacroAssembler* masm, ElementsKind kind) {
  Label not_zero_case, not_one_case;
  Label normal_sequence;

  __ test(eax, eax);
  __ j(not_zero, &not_zero_case);
  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
  __ TailCallStub(&stub0);

  __ bind(&not_zero_case);
  __ cmp(eax, 1);
  __ j(greater, &not_one_case);

  if (IsFastPackedElementsKind(kind)) {
    // We might need to create a holey array
    // look at the first argument
    __ mov(ecx, Operand(esp, kPointerSize));
    __ test(ecx, ecx);
    __ j(zero, &normal_sequence);

    InternalArraySingleArgumentConstructorStub
        stub1_holey(isolate(), GetHoleyElementsKind(kind));
    __ TailCallStub(&stub1_holey);
  }

  __ bind(&normal_sequence);
  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
  __ TailCallStub(&stub1);

  __ bind(&not_one_case);
  ArrayNArgumentsConstructorStub stubN(isolate());
  __ TailCallStub(&stubN);
}


void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax : argc
  //  -- edi : constructor
  //  -- esp[0] : return address
  //  -- esp[4] : last argument
  // -----------------------------------

  if (FLAG_debug_code) {
    // The array construct code is only set for the global and natives
    // builtin Array functions which always have maps.

    // Initial map for the builtin Array function should be a map.
    __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ test(ecx, Immediate(kSmiTagMask));
    __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
    __ CmpObjectType(ecx, MAP_TYPE, ecx);
    __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
  }

  // Figure out the right elements kind
  __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));

  // Load the map's "bit field 2" into |result|. We only need the first byte,
  // but the following masking takes care of that anyway.
  __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
  // Retrieve elements_kind from bit field 2.
  __ DecodeField<Map::ElementsKindBits>(ecx);

  if (FLAG_debug_code) {
    Label done;
    __ cmp(ecx, Immediate(FAST_ELEMENTS));
    __ j(equal, &done);
    __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
    __ Assert(equal,
              kInvalidElementsKindForInternalArrayOrInternalPackedArray);
    __ bind(&done);
  }

  Label fast_elements_case;
  __ cmp(ecx, Immediate(FAST_ELEMENTS));
  __ j(equal, &fast_elements_case);
  GenerateCase(masm, FAST_HOLEY_ELEMENTS);

  __ bind(&fast_elements_case);
  GenerateCase(masm, FAST_ELEMENTS);
}

// Generates an Operand for saving parameters after PrepareCallApiFunction.
static Operand ApiParameterOperand(int index) {
  return Operand(esp, index * kPointerSize);
}


// Prepares stack to put arguments (aligns and so on). Reserves
// space for return value if needed (assumes the return value is a handle).
// Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
// etc. Saves context (esi). If space was reserved for return value then
// stores the pointer to the reserved slot into esi.
static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
  __ EnterApiExitFrame(argc);
  if (__ emit_debug_code()) {
    __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
  }
}


// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Clobbers ebx, edi and
// caller-save registers.  Restores context.  On return removes
// stack_space * kPointerSize (GCed).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
                                     Register function_address,
                                     ExternalReference thunk_ref,
                                     Operand thunk_last_arg, int stack_space,
                                     Operand* stack_space_operand,
                                     Operand return_value_operand,
                                     Operand* context_restore_operand) {
  Isolate* isolate = masm->isolate();

  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  ExternalReference limit_address =
      ExternalReference::handle_scope_limit_address(isolate);
  ExternalReference level_address =
      ExternalReference::handle_scope_level_address(isolate);

  DCHECK(edx.is(function_address));
  // Allocate HandleScope in callee-save registers.
  __ mov(ebx, Operand::StaticVariable(next_address));
  __ mov(edi, Operand::StaticVariable(limit_address));
  __ add(Operand::StaticVariable(level_address), Immediate(1));

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, eax);
    __ mov(Operand(esp, 0),
           Immediate(ExternalReference::isolate_address(isolate)));
    __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
                     1);
    __ PopSafepointRegisters();
  }


  Label profiler_disabled;
  Label end_profiler_check;
  __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
  __ cmpb(Operand(eax, 0), Immediate(0));
  __ j(zero, &profiler_disabled);

  // Additional parameter is the address of the actual getter function.
  __ mov(thunk_last_arg, function_address);
  // Call the api function.
  __ mov(eax, Immediate(thunk_ref));
  __ call(eax);
  __ jmp(&end_profiler_check);

  __ bind(&profiler_disabled);
  // Call the api function.
  __ call(function_address);
  __ bind(&end_profiler_check);

  if (FLAG_log_timer_events) {
    FrameScope frame(masm, StackFrame::MANUAL);
    __ PushSafepointRegisters();
    __ PrepareCallCFunction(1, eax);
    __ mov(Operand(esp, 0),
           Immediate(ExternalReference::isolate_address(isolate)));
    __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
                     1);
    __ PopSafepointRegisters();
  }

  Label prologue;
  // Load the value from ReturnValue
  __ mov(eax, return_value_operand);

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;

  __ bind(&prologue);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ mov(Operand::StaticVariable(next_address), ebx);
  __ sub(Operand::StaticVariable(level_address), Immediate(1));
  __ Assert(above_equal, kInvalidHandleScopeLevel);
  __ cmp(edi, Operand::StaticVariable(limit_address));
  __ j(not_equal, &delete_allocated_handles);

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);
  bool restore_context = context_restore_operand != NULL;
  if (restore_context) {
    __ mov(esi, *context_restore_operand);
  }
  if (stack_space_operand != nullptr) {
    __ mov(ebx, *stack_space_operand);
  }
  __ LeaveApiExitFrame(!restore_context);

  // Check if the function scheduled an exception.
  ExternalReference scheduled_exception_address =
      ExternalReference::scheduled_exception_address(isolate);
  __ cmp(Operand::StaticVariable(scheduled_exception_address),
         Immediate(isolate->factory()->the_hole_value()));
  __ j(not_equal, &promote_scheduled_exception);

#if DEBUG
  // Check if the function returned a valid JavaScript value.
  Label ok;
  Register return_value = eax;
  Register map = ecx;

  __ JumpIfSmi(return_value, &ok, Label::kNear);
  __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));

  __ CmpInstanceType(map, LAST_NAME_TYPE);
  __ j(below_equal, &ok, Label::kNear);

  __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
  __ j(above_equal, &ok, Label::kNear);

  __ cmp(map, isolate->factory()->heap_number_map());
  __ j(equal, &ok, Label::kNear);

  __ cmp(return_value, isolate->factory()->undefined_value());
  __ j(equal, &ok, Label::kNear);

  __ cmp(return_value, isolate->factory()->true_value());
  __ j(equal, &ok, Label::kNear);

  __ cmp(return_value, isolate->factory()->false_value());
  __ j(equal, &ok, Label::kNear);

  __ cmp(return_value, isolate->factory()->null_value());
  __ j(equal, &ok, Label::kNear);

  __ Abort(kAPICallReturnedInvalidObject);

  __ bind(&ok);
#endif

  if (stack_space_operand != nullptr) {
    DCHECK_EQ(0, stack_space);
    __ pop(ecx);
    __ add(esp, ebx);
    __ jmp(ecx);
  } else {
    __ ret(stack_space * kPointerSize);
  }

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  ExternalReference delete_extensions =
      ExternalReference::delete_handle_scope_extensions(isolate);
  __ bind(&delete_allocated_handles);
  __ mov(Operand::StaticVariable(limit_address), edi);
  __ mov(edi, eax);
  __ mov(Operand(esp, 0),
         Immediate(ExternalReference::isolate_address(isolate)));
  __ mov(eax, Immediate(delete_extensions));
  __ call(eax);
  __ mov(eax, edi);
  __ jmp(&leave_exit_frame);
}

void CallApiCallbackStub::Generate(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- edi                 : callee
  //  -- ebx                 : call_data
  //  -- ecx                 : holder
  //  -- edx                 : api_function_address
  //  -- esi                 : context
  //  --
  //  -- esp[0]              : return address
  //  -- esp[4]              : last argument
  //  -- ...
  //  -- esp[argc * 4]       : first argument
  //  -- esp[(argc + 1) * 4] : receiver
  // -----------------------------------

  Register callee = edi;
  Register call_data = ebx;
  Register holder = ecx;
  Register api_function_address = edx;
  Register context = esi;
  Register return_address = eax;

  typedef FunctionCallbackArguments FCA;

  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
  STATIC_ASSERT(FCA::kCalleeIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);
  STATIC_ASSERT(FCA::kNewTargetIndex == 7);
  STATIC_ASSERT(FCA::kArgsLength == 8);

  __ pop(return_address);

  // new target
  __ PushRoot(Heap::kUndefinedValueRootIndex);

  // context save.
  __ push(context);

  // callee
  __ push(callee);

  // call data
  __ push(call_data);

  Register scratch = call_data;
  if (!call_data_undefined()) {
    // return value
    __ push(Immediate(masm->isolate()->factory()->undefined_value()));
    // return value default
    __ push(Immediate(masm->isolate()->factory()->undefined_value()));
  } else {
    // return value
    __ push(scratch);
    // return value default
    __ push(scratch);
  }
  // isolate
  __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
  // holder
  __ push(holder);

  __ mov(scratch, esp);

  // push return address
  __ push(return_address);

  if (!is_lazy()) {
    // load context from callee
    __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
  }

  // API function gets reference to the v8::Arguments. If CPU profiler
  // is enabled wrapper function will be called and we need to pass
  // address of the callback as additional parameter, always allocate
  // space for it.
  const int kApiArgc = 1 + 1;

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  const int kApiStackSpace = 3;

  PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);

  // FunctionCallbackInfo::implicit_args_.
  __ mov(ApiParameterOperand(2), scratch);
  __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize));
  // FunctionCallbackInfo::values_.
  __ mov(ApiParameterOperand(3), scratch);
  // FunctionCallbackInfo::length_.
  __ Move(ApiParameterOperand(4), Immediate(argc()));

  // v8::InvocationCallback's argument.
  __ lea(scratch, ApiParameterOperand(2));
  __ mov(ApiParameterOperand(0), scratch);

  ExternalReference thunk_ref =
      ExternalReference::invoke_function_callback(masm->isolate());

  Operand context_restore_operand(ebp,
                                  (2 + FCA::kContextSaveIndex) * kPointerSize);
  // Stores return the first js argument
  int return_value_offset = 0;
  if (is_store()) {
    return_value_offset = 2 + FCA::kArgsLength;
  } else {
    return_value_offset = 2 + FCA::kReturnValueOffset;
  }
  Operand return_value_operand(ebp, return_value_offset * kPointerSize);
  int stack_space = 0;
  Operand length_operand = ApiParameterOperand(4);
  Operand* stack_space_operand = &length_operand;
  stack_space = argc() + FCA::kArgsLength + 1;
  stack_space_operand = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           ApiParameterOperand(1), stack_space,
                           stack_space_operand, return_value_operand,
                           &context_restore_operand);
}


void CallApiGetterStub::Generate(MacroAssembler* masm) {
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = ebx;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  __ pop(scratch);  // Pop return address to extend the frame.
  __ push(receiver);
  __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
  __ PushRoot(Heap::kUndefinedValueRootIndex);  // ReturnValue
  // ReturnValue default value
  __ PushRoot(Heap::kUndefinedValueRootIndex);
  __ push(Immediate(ExternalReference::isolate_address(isolate())));
  __ push(holder);
  __ push(Immediate(Smi::kZero));  // should_throw_on_error -> false
  __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
  __ push(scratch);  // Restore return address.

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Allocate v8::PropertyCallbackInfo object, arguments for callback and
  // space for optional callback address parameter (in case CPU profiler is
  // active) in non-GCed stack space.
  const int kApiArgc = 3 + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array.
  __ lea(scratch, Operand(esp, 2 * kPointerSize));

  PrepareCallApiFunction(masm, kApiArgc);
  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  Operand info_object = ApiParameterOperand(3);
  __ mov(info_object, scratch);

  // Name as handle.
  __ sub(scratch, Immediate(kPointerSize));
  __ mov(ApiParameterOperand(0), scratch);
  // Arguments pointer.
  __ lea(scratch, info_object);
  __ mov(ApiParameterOperand(1), scratch);
  // Reserve space for optional callback address parameter.
  Operand thunk_last_arg = ApiParameterOperand(2);

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback(isolate());

  __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
  Register function_address = edx;
  __ mov(function_address,
         FieldOperand(scratch, Foreign::kForeignAddressOffset));
  // +3 is to skip prolog, return address and name handle.
  Operand return_value_operand(
      ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
  CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
                           kStackUnwindSpace, nullptr, return_value_operand,
                           NULL);
}

#undef __

}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_IA32