aboutsummaryrefslogtreecommitdiff
path: root/src/mips/assembler-mips-inl.h
blob: b06ec84b9b092405deba0907ed414da14d3a17f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.


#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_MIPS_ASSEMBLER_MIPS_INL_H_

#include "src/mips/assembler-mips.h"

#include "src/assembler.h"
#include "src/debug/debug.h"
#include "src/objects-inl.h"

namespace v8 {
namespace internal {


bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }

bool CpuFeatures::SupportsSimd128() { return false; }

// -----------------------------------------------------------------------------
// Operand and MemOperand.

Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
  rm_ = no_reg;
  imm32_ = immediate;
  rmode_ = rmode;
}


Operand::Operand(const ExternalReference& f)  {
  rm_ = no_reg;
  imm32_ = reinterpret_cast<int32_t>(f.address());
  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}


Operand::Operand(Smi* value) {
  rm_ = no_reg;
  imm32_ =  reinterpret_cast<intptr_t>(value);
  rmode_ = RelocInfo::NONE32;
}


Operand::Operand(Register rm) {
  rm_ = rm;
}


bool Operand::is_reg() const {
  return rm_.is_valid();
}


// -----------------------------------------------------------------------------
// RelocInfo.

void RelocInfo::apply(intptr_t delta) {
  if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
    // Absolute code pointer inside code object moves with the code object.
    byte* p = reinterpret_cast<byte*>(pc_);
    int count = Assembler::RelocateInternalReference(rmode_, p, delta);
    Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
  }
}


Address RelocInfo::target_address() {
  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
  return Assembler::target_address_at(pc_, host_);
}

Address RelocInfo::target_address_address() {
  DCHECK(IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) ||
         rmode_ == EMBEDDED_OBJECT ||
         rmode_ == EXTERNAL_REFERENCE);
  // Read the address of the word containing the target_address in an
  // instruction stream.
  // The only architecture-independent user of this function is the serializer.
  // The serializer uses it to find out how many raw bytes of instruction to
  // output before the next target.
  // For an instruction like LUI/ORI where the target bits are mixed into the
  // instruction bits, the size of the target will be zero, indicating that the
  // serializer should not step forward in memory after a target is resolved
  // and written. In this case the target_address_address function should
  // return the end of the instructions to be patched, allowing the
  // deserializer to deserialize the instructions as raw bytes and put them in
  // place, ready to be patched with the target. After jump optimization,
  // that is the address of the instruction that follows J/JAL/JR/JALR
  // instruction.
  return reinterpret_cast<Address>(
    pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
}


Address RelocInfo::constant_pool_entry_address() {
  UNREACHABLE();
  return NULL;
}


int RelocInfo::target_address_size() {
  return Assembler::kSpecialTargetSize;
}

Address Assembler::target_address_at(Address pc, Code* code) {
  Address constant_pool = code ? code->constant_pool() : NULL;
  return target_address_at(pc, constant_pool);
}

void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
                                      Address target,
                                      ICacheFlushMode icache_flush_mode) {
  Address constant_pool = code ? code->constant_pool() : NULL;
  set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
}

Address Assembler::target_address_from_return_address(Address pc) {
  return pc - kCallTargetAddressOffset;
}


void Assembler::set_target_internal_reference_encoded_at(Address pc,
                                                         Address target) {
  Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
  Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
  DCHECK(Assembler::IsLui(instr1));
  DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
  instr1 &= ~kImm16Mask;
  instr2 &= ~kImm16Mask;
  int32_t imm = reinterpret_cast<int32_t>(target);
  DCHECK((imm & 3) == 0);
  if (Assembler::IsJicOrJialc(instr2)) {
    // Encoded internal references are lui/jic load of 32-bit absolute address.
    uint32_t lui_offset_u, jic_offset_u;
    Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);

    Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
                            instr1 | lui_offset_u);
    Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
                            instr2 | jic_offset_u);
  } else {
    // Encoded internal references are lui/ori load of 32-bit absolute address.
    Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
                            instr1 | ((imm >> kLuiShift) & kImm16Mask));
    Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
                            instr2 | (imm & kImm16Mask));
  }

  // Currently used only by deserializer, and all code will be flushed
  // after complete deserialization, no need to flush on each reference.
}


void Assembler::deserialization_set_target_internal_reference_at(
    Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
  if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    DCHECK(IsLui(instr_at(pc)));
    set_target_internal_reference_encoded_at(pc, target);
  } else {
    DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
    Memory::Address_at(pc) = target;
  }
}


Object* RelocInfo::target_object() {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}


Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  return Handle<Object>(reinterpret_cast<Object**>(
      Assembler::target_address_at(pc_, host_)));
}


void RelocInfo::set_target_object(Object* target,
                                  WriteBarrierMode write_barrier_mode,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
  Assembler::set_target_address_at(isolate_, pc_, host_,
                                   reinterpret_cast<Address>(target),
                                   icache_flush_mode);
  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
      host() != NULL &&
      target->IsHeapObject()) {
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target));
    host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
  }
}


Address RelocInfo::target_external_reference() {
  DCHECK(rmode_ == EXTERNAL_REFERENCE);
  return Assembler::target_address_at(pc_, host_);
}


Address RelocInfo::target_internal_reference() {
  if (rmode_ == INTERNAL_REFERENCE) {
    return Memory::Address_at(pc_);
  } else {
    // Encoded internal references are lui/ori or lui/jic load of 32-bit
    // absolute address.
    DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
    Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
    Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
    DCHECK(Assembler::IsLui(instr1));
    DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
    if (Assembler::IsJicOrJialc(instr2)) {
      return reinterpret_cast<Address>(
          Assembler::CreateTargetAddress(instr1, instr2));
    }
    int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
    imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
    return reinterpret_cast<Address>(imm);
  }
}


Address RelocInfo::target_internal_reference_address() {
  DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
  return reinterpret_cast<Address>(pc_);
}


Address RelocInfo::target_runtime_entry(Assembler* origin) {
  DCHECK(IsRuntimeEntry(rmode_));
  return target_address();
}


void RelocInfo::set_target_runtime_entry(Address target,
                                         WriteBarrierMode write_barrier_mode,
                                         ICacheFlushMode icache_flush_mode) {
  DCHECK(IsRuntimeEntry(rmode_));
  if (target_address() != target)
    set_target_address(target, write_barrier_mode, icache_flush_mode);
}


Handle<Cell> RelocInfo::target_cell_handle() {
  DCHECK(rmode_ == RelocInfo::CELL);
  Address address = Memory::Address_at(pc_);
  return Handle<Cell>(reinterpret_cast<Cell**>(address));
}


Cell* RelocInfo::target_cell() {
  DCHECK(rmode_ == RelocInfo::CELL);
  return Cell::FromValueAddress(Memory::Address_at(pc_));
}


void RelocInfo::set_target_cell(Cell* cell,
                                WriteBarrierMode write_barrier_mode,
                                ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::CELL);
  Address address = cell->address() + Cell::kValueOffset;
  Memory::Address_at(pc_) = address;
  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
                                                                  cell);
  }
}


static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;


Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
  UNREACHABLE();  // This should never be reached on Arm.
  return Handle<Object>();
}


Code* RelocInfo::code_age_stub() {
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
  return Code::GetCodeFromTargetAddress(
      Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
}


void RelocInfo::set_code_age_stub(Code* stub,
                                  ICacheFlushMode icache_flush_mode) {
  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
  Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
                                   stub->instruction_start());
}


Address RelocInfo::debug_call_address() {
  // The pc_ offset of 0 assumes patched debug break slot or return
  // sequence.
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  return Assembler::target_address_at(pc_, host_);
}


void RelocInfo::set_debug_call_address(Address target) {
  DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
  // The pc_ offset of 0 assumes patched debug break slot or return
  // sequence.
  Assembler::set_target_address_at(isolate_, pc_, host_, target);
  if (host() != NULL) {
    Object* target_code = Code::GetCodeFromTargetAddress(target);
    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
        host(), this, HeapObject::cast(target_code));
  }
}


void RelocInfo::WipeOut() {
  DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
         IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
  if (IsInternalReference(rmode_)) {
    Memory::Address_at(pc_) = NULL;
  } else if (IsInternalReferenceEncoded(rmode_)) {
    Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
  } else {
    Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
  }
}

template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
    visitor->VisitEmbeddedPointer(this);
  } else if (RelocInfo::IsCodeTarget(mode)) {
    visitor->VisitCodeTarget(this);
  } else if (mode == RelocInfo::CELL) {
    visitor->VisitCell(this);
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    visitor->VisitExternalReference(this);
  } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
             mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    visitor->VisitInternalReference(this);
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    visitor->VisitCodeAgeSequence(this);
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
             IsPatchedDebugBreakSlotSequence()) {
    visitor->VisitDebugTarget(this);
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
    visitor->VisitRuntimeEntry(this);
  }
}


template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
  RelocInfo::Mode mode = rmode();
  if (mode == RelocInfo::EMBEDDED_OBJECT) {
    StaticVisitor::VisitEmbeddedPointer(heap, this);
  } else if (RelocInfo::IsCodeTarget(mode)) {
    StaticVisitor::VisitCodeTarget(heap, this);
  } else if (mode == RelocInfo::CELL) {
    StaticVisitor::VisitCell(heap, this);
  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    StaticVisitor::VisitExternalReference(this);
  } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
             mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    StaticVisitor::VisitInternalReference(this);
  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    StaticVisitor::VisitCodeAgeSequence(heap, this);
  } else if (RelocInfo::IsDebugBreakSlot(mode) &&
             IsPatchedDebugBreakSlotSequence()) {
    StaticVisitor::VisitDebugTarget(heap, this);
  } else if (RelocInfo::IsRuntimeEntry(mode)) {
    StaticVisitor::VisitRuntimeEntry(this);
  }
}


// -----------------------------------------------------------------------------
// Assembler.


void Assembler::CheckBuffer() {
  if (buffer_space() <= kGap) {
    GrowBuffer();
  }
}


void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
  if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
    CheckTrampolinePool();
  }
}


void Assembler::CheckForEmitInForbiddenSlot() {
  if (!is_buffer_growth_blocked()) {
    CheckBuffer();
  }
  if (IsPrevInstrCompactBranch()) {
    // Nop instruction to preceed a CTI in forbidden slot:
    Instr nop = SPECIAL | SLL;
    *reinterpret_cast<Instr*>(pc_) = nop;
    pc_ += kInstrSize;

    ClearCompactBranchState();
  }
}


void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
  if (IsPrevInstrCompactBranch()) {
    if (Instruction::IsForbiddenAfterBranchInstr(x)) {
      // Nop instruction to preceed a CTI in forbidden slot:
      Instr nop = SPECIAL | SLL;
      *reinterpret_cast<Instr*>(pc_) = nop;
      pc_ += kInstrSize;
    }
    ClearCompactBranchState();
  }
  *reinterpret_cast<Instr*>(pc_) = x;
  pc_ += kInstrSize;
  if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
    EmittedCompactBranchInstruction();
  }
  CheckTrampolinePoolQuick();
}

template <>
inline void Assembler::EmitHelper(uint8_t x);

template <typename T>
void Assembler::EmitHelper(T x) {
  *reinterpret_cast<T*>(pc_) = x;
  pc_ += sizeof(x);
  CheckTrampolinePoolQuick();
}

template <>
void Assembler::EmitHelper(uint8_t x) {
  *reinterpret_cast<uint8_t*>(pc_) = x;
  pc_ += sizeof(x);
  if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
    CheckTrampolinePoolQuick();
  }
}

void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
  if (!is_buffer_growth_blocked()) {
    CheckBuffer();
  }
  EmitHelper(x, is_compact_branch);
}


}  // namespace internal
}  // namespace v8

#endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_