aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/runtime-compiler.cc
blob: 472e076de4f5600f80000b9e8116542347ff7843 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/runtime/runtime-utils.h"

#include "src/arguments.h"
#include "src/asmjs/asm-js.h"
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/compiler.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/full-codegen/full-codegen.h"
#include "src/interpreter/bytecode-array-iterator.h"
#include "src/isolate-inl.h"
#include "src/messages.h"
#include "src/v8threads.h"
#include "src/vm-state-inl.h"

namespace v8 {
namespace internal {

RUNTIME_FUNCTION(Runtime_CompileLazy) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);

#ifdef DEBUG
  if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
    PrintF("[unoptimized: ");
    function->PrintName();
    PrintF("]\n");
  }
#endif

  StackLimitCheck check(isolate);
  if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
  if (!Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) {
    return isolate->heap()->exception();
  }
  DCHECK(function->is_compiled());
  return function->code();
}

RUNTIME_FUNCTION(Runtime_CompileBaseline) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
  StackLimitCheck check(isolate);
  if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
  if (!Compiler::CompileBaseline(function)) {
    return isolate->heap()->exception();
  }
  DCHECK(function->is_compiled());
  return function->code();
}

RUNTIME_FUNCTION(Runtime_CompileOptimized_Concurrent) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
  StackLimitCheck check(isolate);
  if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
  if (!Compiler::CompileOptimized(function, Compiler::CONCURRENT)) {
    return isolate->heap()->exception();
  }
  DCHECK(function->is_compiled());
  return function->code();
}


RUNTIME_FUNCTION(Runtime_CompileOptimized_NotConcurrent) {
  HandleScope scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
  StackLimitCheck check(isolate);
  if (check.JsHasOverflowed(1 * KB)) return isolate->StackOverflow();
  if (!Compiler::CompileOptimized(function, Compiler::NOT_CONCURRENT)) {
    return isolate->heap()->exception();
  }
  DCHECK(function->is_compiled());
  return function->code();
}

RUNTIME_FUNCTION(Runtime_InstantiateAsmJs) {
  HandleScope scope(isolate);
  DCHECK_EQ(args.length(), 4);
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);

  Handle<JSReceiver> stdlib;
  if (args[1]->IsJSReceiver()) {
    stdlib = args.at<JSReceiver>(1);
  }
  Handle<JSObject> foreign;
  if (args[2]->IsJSObject()) {
    foreign = args.at<i::JSObject>(2);
  }
  Handle<JSArrayBuffer> memory;
  if (args[3]->IsJSArrayBuffer()) {
    memory = args.at<i::JSArrayBuffer>(3);
  }
  if (function->shared()->HasAsmWasmData() &&
      AsmJs::IsStdlibValid(isolate, handle(function->shared()->asm_wasm_data()),
                           stdlib)) {
    MaybeHandle<Object> result;
    result = AsmJs::InstantiateAsmWasm(
        isolate, handle(function->shared()->asm_wasm_data()), memory, foreign);
    if (!result.is_null()) {
      return *result.ToHandleChecked();
    }
  }
  // Remove wasm data, mark as broken for asm->wasm,
  // replace code with CompileLazy, and return a smi 0 to indicate failure.
  if (function->shared()->HasAsmWasmData()) {
    function->shared()->ClearAsmWasmData();
  }
  function->shared()->set_is_asm_wasm_broken(true);
  DCHECK(function->code() ==
         isolate->builtins()->builtin(Builtins::kInstantiateAsmJs));
  function->ReplaceCode(isolate->builtins()->builtin(Builtins::kCompileLazy));
  if (function->shared()->code() ==
      isolate->builtins()->builtin(Builtins::kInstantiateAsmJs)) {
    function->shared()->ReplaceCode(
        isolate->builtins()->builtin(Builtins::kCompileLazy));
  }
  return Smi::kZero;
}

RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 0);
  Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
  DCHECK(AllowHeapAllocation::IsAllowed());
  delete deoptimizer;
  return isolate->heap()->undefined_value();
}

class ActivationsFinder : public ThreadVisitor {
 public:
  Code* code_;
  bool has_code_activations_;

  explicit ActivationsFinder(Code* code)
      : code_(code), has_code_activations_(false) {}

  void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
    JavaScriptFrameIterator it(isolate, top);
    VisitFrames(&it);
  }

  void VisitFrames(JavaScriptFrameIterator* it) {
    for (; !it->done(); it->Advance()) {
      JavaScriptFrame* frame = it->frame();
      if (code_->contains(frame->pc())) has_code_activations_ = true;
    }
  }
};


RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_SMI_ARG_CHECKED(type_arg, 0);
  Deoptimizer::BailoutType type =
      static_cast<Deoptimizer::BailoutType>(type_arg);
  Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
  DCHECK(AllowHeapAllocation::IsAllowed());
  TimerEventScope<TimerEventDeoptimizeCode> timer(isolate);
  TRACE_EVENT0("v8", "V8.DeoptimizeCode");

  Handle<JSFunction> function = deoptimizer->function();
  Handle<Code> optimized_code = deoptimizer->compiled_code();

  DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
  DCHECK(type == deoptimizer->bailout_type());
  DCHECK_NULL(isolate->context());

  // TODO(turbofan): For Crankshaft we restore the context before objects are
  // being materialized, because it never de-materializes the context but it
  // requires a context to materialize arguments objects. This is specific to
  // Crankshaft and can be removed once only TurboFan goes through here.
  if (!optimized_code->is_turbofanned()) {
    JavaScriptFrameIterator top_it(isolate);
    JavaScriptFrame* top_frame = top_it.frame();
    isolate->set_context(Context::cast(top_frame->context()));
  }

  // Make sure to materialize objects before causing any allocation.
  JavaScriptFrameIterator it(isolate);
  deoptimizer->MaterializeHeapObjects(&it);
  delete deoptimizer;

  // Ensure the context register is updated for materialized objects.
  if (optimized_code->is_turbofanned()) {
    JavaScriptFrameIterator top_it(isolate);
    JavaScriptFrame* top_frame = top_it.frame();
    isolate->set_context(Context::cast(top_frame->context()));
  }

  if (type == Deoptimizer::LAZY) {
    return isolate->heap()->undefined_value();
  }

  // Search for other activations of the same optimized code.
  // At this point {it} is at the topmost frame of all the frames materialized
  // by the deoptimizer. Note that this frame does not necessarily represent
  // an activation of {function} because of potential inlined tail-calls.
  ActivationsFinder activations_finder(*optimized_code);
  activations_finder.VisitFrames(&it);
  isolate->thread_manager()->IterateArchivedThreads(&activations_finder);

  if (!activations_finder.has_code_activations_) {
    if (function->code() == *optimized_code) {
      if (FLAG_trace_deopt) {
        PrintF("[removing optimized code for: ");
        function->PrintName();
        PrintF("]\n");
      }
      function->ReplaceCode(function->shared()->code());
    }
    // Evict optimized code for this function from the cache so that it
    // doesn't get used for new closures.
    function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
                                                  "notify deoptimized");
  } else {
    // TODO(titzer): we should probably do DeoptimizeCodeList(code)
    // unconditionally if the code is not already marked for deoptimization.
    // If there is an index by shared function info, all the better.
    Deoptimizer::DeoptimizeFunction(*function);
  }

  return isolate->heap()->undefined_value();
}


static bool IsSuitableForOnStackReplacement(Isolate* isolate,
                                            Handle<JSFunction> function) {
  // Keep track of whether we've succeeded in optimizing.
  if (function->shared()->optimization_disabled()) return false;
  // If we are trying to do OSR when there are already optimized
  // activations of the function, it means (a) the function is directly or
  // indirectly recursive and (b) an optimized invocation has been
  // deoptimized so that we are currently in an unoptimized activation.
  // Check for optimized activations of this function.
  for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
    JavaScriptFrame* frame = it.frame();
    if (frame->is_optimized() && frame->function() == *function) return false;
  }

  return true;
}

namespace {

BailoutId DetermineEntryAndDisarmOSRForBaseline(JavaScriptFrame* frame) {
  Handle<Code> caller_code(frame->function()->shared()->code());

  // Passing the PC in the JavaScript frame from the caller directly is
  // not GC safe, so we walk the stack to get it.
  if (!caller_code->contains(frame->pc())) {
    // Code on the stack may not be the code object referenced by the shared
    // function info.  It may have been replaced to include deoptimization data.
    caller_code = Handle<Code>(frame->LookupCode());
  }

  DCHECK_EQ(frame->LookupCode(), *caller_code);
  DCHECK_EQ(Code::FUNCTION, caller_code->kind());
  DCHECK(caller_code->contains(frame->pc()));

  // Revert the patched back edge table, regardless of whether OSR succeeds.
  BackEdgeTable::Revert(frame->isolate(), *caller_code);

  uint32_t pc_offset =
      static_cast<uint32_t>(frame->pc() - caller_code->instruction_start());

  return caller_code->TranslatePcOffsetToAstId(pc_offset);
}

BailoutId DetermineEntryAndDisarmOSRForInterpreter(JavaScriptFrame* frame) {
  InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);

  // Note that the bytecode array active on the stack might be different from
  // the one installed on the function (e.g. patched by debugger). This however
  // is fine because we guarantee the layout to be in sync, hence any BailoutId
  // representing the entry point will be valid for any copy of the bytecode.
  Handle<BytecodeArray> bytecode(iframe->GetBytecodeArray());

  DCHECK(frame->LookupCode()->is_interpreter_trampoline_builtin());
  DCHECK(frame->function()->shared()->HasBytecodeArray());
  DCHECK(frame->is_interpreted());
  DCHECK(FLAG_ignition_osr);

  // Reset the OSR loop nesting depth to disarm back edges.
  bytecode->set_osr_loop_nesting_level(0);

  // Translate the offset of the jump instruction to the jump target offset of
  // that instruction so that the derived BailoutId points to the loop header.
  // TODO(mstarzinger): This can be merged with {BytecodeBranchAnalysis} which
  // already performs a pre-pass over the bytecode stream anyways.
  int jump_offset = iframe->GetBytecodeOffset();
  interpreter::BytecodeArrayIterator iterator(bytecode);
  while (iterator.current_offset() + iterator.current_prefix_offset() <
         jump_offset) {
    iterator.Advance();
  }
  DCHECK(interpreter::Bytecodes::IsJump(iterator.current_bytecode()));
  int jump_target_offset = iterator.GetJumpTargetOffset();

  return BailoutId(jump_target_offset);
}

}  // namespace

RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);

  // We're not prepared to handle a function with arguments object.
  DCHECK(!function->shared()->uses_arguments());

  // Only reachable when OST is enabled.
  CHECK(FLAG_use_osr);

  // Determine frame triggering OSR request.
  JavaScriptFrameIterator it(isolate);
  JavaScriptFrame* frame = it.frame();
  DCHECK_EQ(frame->function(), *function);

  // Determine the entry point for which this OSR request has been fired and
  // also disarm all back edges in the calling code to stop new requests.
  BailoutId ast_id = frame->is_interpreted()
                         ? DetermineEntryAndDisarmOSRForInterpreter(frame)
                         : DetermineEntryAndDisarmOSRForBaseline(frame);
  DCHECK(!ast_id.IsNone());

  MaybeHandle<Code> maybe_result;
  if (IsSuitableForOnStackReplacement(isolate, function)) {
    if (FLAG_trace_osr) {
      PrintF("[OSR - Compiling: ");
      function->PrintName();
      PrintF(" at AST id %d]\n", ast_id.ToInt());
    }
    maybe_result = Compiler::GetOptimizedCodeForOSR(function, ast_id, frame);
  }

  // Check whether we ended up with usable optimized code.
  Handle<Code> result;
  if (maybe_result.ToHandle(&result) &&
      result->kind() == Code::OPTIMIZED_FUNCTION) {
    DeoptimizationInputData* data =
        DeoptimizationInputData::cast(result->deoptimization_data());

    if (data->OsrPcOffset()->value() >= 0) {
      DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
      if (FLAG_trace_osr) {
        PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
               ast_id.ToInt(), data->OsrPcOffset()->value());
      }
      // TODO(titzer): this is a massive hack to make the deopt counts
      // match. Fix heuristics for reenabling optimizations!
      function->shared()->increment_deopt_count();

      if (result->is_turbofanned()) {
        // When we're waiting for concurrent optimization, set to compile on
        // the next call - otherwise we'd run unoptimized once more
        // and potentially compile for OSR another time as well.
        if (function->IsMarkedForConcurrentOptimization()) {
          if (FLAG_trace_osr) {
            PrintF("[OSR - Re-marking ");
            function->PrintName();
            PrintF(" for non-concurrent optimization]\n");
          }
          function->ReplaceCode(
              isolate->builtins()->builtin(Builtins::kCompileOptimized));
        }
      } else {
        // Crankshafted OSR code can be installed into the function.
        function->ReplaceCode(*result);
      }
      return *result;
    }
  }

  // Failed.
  if (FLAG_trace_osr) {
    PrintF("[OSR - Failed: ");
    function->PrintName();
    PrintF(" at AST id %d]\n", ast_id.ToInt());
  }

  if (!function->IsOptimized()) {
    function->ReplaceCode(function->shared()->code());
  }
  return NULL;
}


RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);

  // First check if this is a real stack overflow.
  StackLimitCheck check(isolate);
  if (check.JsHasOverflowed()) {
    SealHandleScope shs(isolate);
    return isolate->StackOverflow();
  }

  isolate->optimizing_compile_dispatcher()->InstallOptimizedFunctions();
  return (function->IsOptimized()) ? function->code()
                                   : function->shared()->code();
}


bool CodeGenerationFromStringsAllowed(Isolate* isolate,
                                      Handle<Context> context) {
  DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate));
  // Check with callback if set.
  AllowCodeGenerationFromStringsCallback callback =
      isolate->allow_code_gen_callback();
  if (callback == NULL) {
    // No callback set and code generation disallowed.
    return false;
  } else {
    // Callback set. Let it decide if code generation is allowed.
    VMState<EXTERNAL> state(isolate);
    return callback(v8::Utils::ToLocal(context));
  }
}

static Object* CompileGlobalEval(Isolate* isolate, Handle<String> source,
                                 Handle<SharedFunctionInfo> outer_info,
                                 LanguageMode language_mode,
                                 int eval_scope_position, int eval_position) {
  Handle<Context> context = Handle<Context>(isolate->context());
  Handle<Context> native_context = Handle<Context>(context->native_context());

  // Check if native context allows code generation from
  // strings. Throw an exception if it doesn't.
  if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) &&
      !CodeGenerationFromStringsAllowed(isolate, native_context)) {
    Handle<Object> error_message =
        native_context->ErrorMessageForCodeGenerationFromStrings();
    Handle<Object> error;
    MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
        MessageTemplate::kCodeGenFromStrings, error_message);
    if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
    return isolate->heap()->exception();
  }

  // Deal with a normal eval call with a string argument. Compile it
  // and return the compiled function bound in the local context.
  static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
  Handle<JSFunction> compiled;
  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
      isolate, compiled, Compiler::GetFunctionFromEval(
                             source, outer_info, context, language_mode,
                             restriction, eval_scope_position, eval_position),
      isolate->heap()->exception());
  return *compiled;
}


RUNTIME_FUNCTION(Runtime_ResolvePossiblyDirectEval) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 6);

  Handle<Object> callee = args.at<Object>(0);

  // If "eval" didn't refer to the original GlobalEval, it's not a
  // direct call to eval.
  // (And even if it is, but the first argument isn't a string, just let
  // execution default to an indirect call to eval, which will also return
  // the first argument without doing anything).
  if (*callee != isolate->native_context()->global_eval_fun() ||
      !args[1]->IsString()) {
    return *callee;
  }

  DCHECK(args[3]->IsSmi());
  DCHECK(is_valid_language_mode(args.smi_at(3)));
  LanguageMode language_mode = static_cast<LanguageMode>(args.smi_at(3));
  DCHECK(args[4]->IsSmi());
  Handle<SharedFunctionInfo> outer_info(args.at<JSFunction>(2)->shared(),
                                        isolate);
  return CompileGlobalEval(isolate, args.at<String>(1), outer_info,
                           language_mode, args.smi_at(4), args.smi_at(5));
}
}  // namespace internal
}  // namespace v8