aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/runtime-numbers.cc
blob: bfe8763e9902977a2aed9953c8cf3b3443f88754 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/runtime/runtime-utils.h"

#include "src/arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/isolate-inl.h"

namespace v8 {
namespace internal {

RUNTIME_FUNCTION(Runtime_IsValidSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);

  CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
  return isolate->heap()->ToBoolean(Smi::IsValid(number));
}


RUNTIME_FUNCTION(Runtime_StringToNumber) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(1, args.length());
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
  return *String::ToNumber(subject);
}


// ES6 18.2.5 parseInt(string, radix) slow path
RUNTIME_FUNCTION(Runtime_StringParseInt) {
  HandleScope handle_scope(isolate);
  DCHECK_EQ(2, args.length());
  CONVERT_ARG_HANDLE_CHECKED(Object, string, 0);
  CONVERT_ARG_HANDLE_CHECKED(Object, radix, 1);

  // Convert {string} to a String first, and flatten it.
  Handle<String> subject;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, subject,
                                     Object::ToString(isolate, string));
  subject = String::Flatten(subject);

  // Convert {radix} to Int32.
  if (!radix->IsNumber()) {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, radix, Object::ToNumber(radix));
  }
  int radix32 = DoubleToInt32(radix->Number());
  if (radix32 != 0 && (radix32 < 2 || radix32 > 36)) {
    return isolate->heap()->nan_value();
  }

  double result;
  {
    DisallowHeapAllocation no_gc;
    String::FlatContent flat = subject->GetFlatContent();

    if (flat.IsOneByte()) {
      result = StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(),
                           radix32);
    } else {
      result =
          StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix32);
    }
  }

  return *isolate->factory()->NewNumber(result);
}


// ES6 18.2.4 parseFloat(string)
RUNTIME_FUNCTION(Runtime_StringParseFloat) {
  HandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);

  double value =
      StringToDouble(isolate->unicode_cache(), subject, ALLOW_TRAILING_JUNK,
                     std::numeric_limits<double>::quiet_NaN());

  return *isolate->factory()->NewNumber(value);
}


RUNTIME_FUNCTION(Runtime_NumberToString) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);

  return *isolate->factory()->NumberToString(number);
}


RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 1);
  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);

  return *isolate->factory()->NumberToString(number, false);
}


// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
RUNTIME_FUNCTION(Runtime_NumberToSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_CHECKED(Object, obj, 0);
  if (obj->IsSmi()) {
    return obj;
  }
  if (obj->IsHeapNumber()) {
    double value = HeapNumber::cast(obj)->value();
    int int_value = FastD2I(value);
    if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
      return Smi::FromInt(int_value);
    }
  }
  return isolate->heap()->nan_value();
}


// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 2);
  CONVERT_SMI_ARG_CHECKED(x_value, 0);
  CONVERT_SMI_ARG_CHECKED(y_value, 1);

  // If the integers are equal so are the string representations.
  if (x_value == y_value) return Smi::FromInt(EQUAL);

  // If one of the integers is zero the normal integer order is the
  // same as the lexicographic order of the string representations.
  if (x_value == 0 || y_value == 0)
    return Smi::FromInt(x_value < y_value ? LESS : GREATER);

  // If only one of the integers is negative the negative number is
  // smallest because the char code of '-' is less than the char code
  // of any digit.  Otherwise, we make both values positive.

  // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
  // architectures using 32-bit Smis.
  uint32_t x_scaled = x_value;
  uint32_t y_scaled = y_value;
  if (x_value < 0 || y_value < 0) {
    if (y_value >= 0) return Smi::FromInt(LESS);
    if (x_value >= 0) return Smi::FromInt(GREATER);
    x_scaled = -x_value;
    y_scaled = -y_value;
  }

  static const uint32_t kPowersOf10[] = {
      1,                 10,                100,         1000,
      10 * 1000,         100 * 1000,        1000 * 1000, 10 * 1000 * 1000,
      100 * 1000 * 1000, 1000 * 1000 * 1000};

  // If the integers have the same number of decimal digits they can be
  // compared directly as the numeric order is the same as the
  // lexicographic order.  If one integer has fewer digits, it is scaled
  // by some power of 10 to have the same number of digits as the longer
  // integer.  If the scaled integers are equal it means the shorter
  // integer comes first in the lexicographic order.

  // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
  int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled);
  int x_log10 = ((x_log2 + 1) * 1233) >> 12;
  x_log10 -= x_scaled < kPowersOf10[x_log10];

  int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled);
  int y_log10 = ((y_log2 + 1) * 1233) >> 12;
  y_log10 -= y_scaled < kPowersOf10[y_log10];

  int tie = EQUAL;

  if (x_log10 < y_log10) {
    // X has fewer digits.  We would like to simply scale up X but that
    // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
    // be scaled up to 9_000_000_000. So we scale up by the next
    // smallest power and scale down Y to drop one digit. It is OK to
    // drop one digit from the longer integer since the final digit is
    // past the length of the shorter integer.
    x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
    y_scaled /= 10;
    tie = LESS;
  } else if (y_log10 < x_log10) {
    y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
    x_scaled /= 10;
    tie = GREATER;
  }

  if (x_scaled < y_scaled) return Smi::FromInt(LESS);
  if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
  return Smi::FromInt(tie);
}


RUNTIME_FUNCTION(Runtime_MaxSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 0);
  return Smi::FromInt(Smi::kMaxValue);
}


RUNTIME_FUNCTION(Runtime_IsSmi) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 1);
  CONVERT_ARG_CHECKED(Object, obj, 0);
  return isolate->heap()->ToBoolean(obj->IsSmi());
}


RUNTIME_FUNCTION(Runtime_GetRootNaN) {
  SealHandleScope shs(isolate);
  DCHECK(args.length() == 0);
  return isolate->heap()->nan_value();
}


RUNTIME_FUNCTION(Runtime_GetHoleNaNUpper) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 0);
  return *isolate->factory()->NewNumberFromUint(kHoleNanUpper32);
}


RUNTIME_FUNCTION(Runtime_GetHoleNaNLower) {
  HandleScope scope(isolate);
  DCHECK(args.length() == 0);
  return *isolate->factory()->NewNumberFromUint(kHoleNanLower32);
}


}  // namespace internal
}  // namespace v8