aboutsummaryrefslogtreecommitdiff
path: root/src/utils.h
blob: 69c062fb9bba00722db0d22afe295ae0eda1b070 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef V8_UTILS_H_
#define V8_UTILS_H_

#include <stdlib.h>
#include <string.h>

#include "globals.h"
#include "checks.h"
#include "allocation.h"

namespace v8 {
namespace internal {

// ----------------------------------------------------------------------------
// General helper functions

#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)

// Returns true iff x is a power of 2 (or zero). Cannot be used with the
// maximally negative value of the type T (the -1 overflows).
template <typename T>
static inline bool IsPowerOf2(T x) {
  return IS_POWER_OF_TWO(x);
}


// X must be a power of 2.  Returns the number of trailing zeros.
template <typename T>
static inline int WhichPowerOf2(T x) {
  ASSERT(IsPowerOf2(x));
  ASSERT(x != 0);
  if (x < 0) return 31;
  int bits = 0;
#ifdef DEBUG
  int original_x = x;
#endif
  if (x >= 0x10000) {
    bits += 16;
    x >>= 16;
  }
  if (x >= 0x100) {
    bits += 8;
    x >>= 8;
  }
  if (x >= 0x10) {
    bits += 4;
    x >>= 4;
  }
  switch (x) {
    default: UNREACHABLE();
    case 8: bits++;  // Fall through.
    case 4: bits++;  // Fall through.
    case 2: bits++;  // Fall through.
    case 1: break;
  }
  ASSERT_EQ(1 << bits, original_x);
  return bits;
  return 0;
}


// The C++ standard leaves the semantics of '>>' undefined for
// negative signed operands. Most implementations do the right thing,
// though.
static inline int ArithmeticShiftRight(int x, int s) {
  return x >> s;
}


// Compute the 0-relative offset of some absolute value x of type T.
// This allows conversion of Addresses and integral types into
// 0-relative int offsets.
template <typename T>
static inline intptr_t OffsetFrom(T x) {
  return x - static_cast<T>(0);
}


// Compute the absolute value of type T for some 0-relative offset x.
// This allows conversion of 0-relative int offsets into Addresses and
// integral types.
template <typename T>
static inline T AddressFrom(intptr_t x) {
  return static_cast<T>(static_cast<T>(0) + x);
}


// Return the largest multiple of m which is <= x.
template <typename T>
static inline T RoundDown(T x, int m) {
  ASSERT(IsPowerOf2(m));
  return AddressFrom<T>(OffsetFrom(x) & -m);
}


// Return the smallest multiple of m which is >= x.
template <typename T>
static inline T RoundUp(T x, int m) {
  return RoundDown(x + m - 1, m);
}


template <typename T>
static int Compare(const T& a, const T& b) {
  if (a == b)
    return 0;
  else if (a < b)
    return -1;
  else
    return 1;
}


template <typename T>
static int PointerValueCompare(const T* a, const T* b) {
  return Compare<T>(*a, *b);
}


// Returns the smallest power of two which is >= x. If you pass in a
// number that is already a power of two, it is returned as is.
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
// figure 3-3, page 48, where the function is called clp2.
static inline uint32_t RoundUpToPowerOf2(uint32_t x) {
  ASSERT(x <= 0x80000000u);
  x = x - 1;
  x = x | (x >> 1);
  x = x | (x >> 2);
  x = x | (x >> 4);
  x = x | (x >> 8);
  x = x | (x >> 16);
  return x + 1;
}



template <typename T>
static inline bool IsAligned(T value, T alignment) {
  ASSERT(IsPowerOf2(alignment));
  return (value & (alignment - 1)) == 0;
}


// Returns true if (addr + offset) is aligned.
static inline bool IsAddressAligned(Address addr,
                                    intptr_t alignment,
                                    int offset) {
  intptr_t offs = OffsetFrom(addr + offset);
  return IsAligned(offs, alignment);
}


// Returns the maximum of the two parameters.
template <typename T>
static T Max(T a, T b) {
  return a < b ? b : a;
}


// Returns the minimum of the two parameters.
template <typename T>
static T Min(T a, T b) {
  return a < b ? a : b;
}


inline int StrLength(const char* string) {
  size_t length = strlen(string);
  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
  return static_cast<int>(length);
}


// ----------------------------------------------------------------------------
// BitField is a help template for encoding and decode bitfield with
// unsigned content.
template<class T, int shift, int size>
class BitField {
 public:
  // Tells whether the provided value fits into the bit field.
  static bool is_valid(T value) {
    return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
  }

  // Returns a uint32_t mask of bit field.
  static uint32_t mask() {
    // To use all bits of a uint32 in a bitfield without compiler warnings we
    // have to compute 2^32 without using a shift count of 32.
    return ((1U << shift) << size) - (1U << shift);
  }

  // Returns a uint32_t with the bit field value encoded.
  static uint32_t encode(T value) {
    ASSERT(is_valid(value));
    return static_cast<uint32_t>(value) << shift;
  }

  // Extracts the bit field from the value.
  static T decode(uint32_t value) {
    return static_cast<T>((value & mask()) >> shift);
  }
};


// ----------------------------------------------------------------------------
// Hash function.

// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm
static inline uint32_t ComputeIntegerHash(uint32_t key) {
  uint32_t hash = key;
  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
  hash = hash ^ (hash >> 12);
  hash = hash + (hash << 2);
  hash = hash ^ (hash >> 4);
  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
  hash = hash ^ (hash >> 16);
  return hash;
}


// ----------------------------------------------------------------------------
// Miscellaneous

// A static resource holds a static instance that can be reserved in
// a local scope using an instance of Access.  Attempts to re-reserve
// the instance will cause an error.
template <typename T>
class StaticResource {
 public:
  StaticResource() : is_reserved_(false)  {}

 private:
  template <typename S> friend class Access;
  T instance_;
  bool is_reserved_;
};


// Locally scoped access to a static resource.
template <typename T>
class Access {
 public:
  explicit Access(StaticResource<T>* resource)
    : resource_(resource)
    , instance_(&resource->instance_) {
    ASSERT(!resource->is_reserved_);
    resource->is_reserved_ = true;
  }

  ~Access() {
    resource_->is_reserved_ = false;
    resource_ = NULL;
    instance_ = NULL;
  }

  T* value()  { return instance_; }
  T* operator -> ()  { return instance_; }

 private:
  StaticResource<T>* resource_;
  T* instance_;
};


template <typename T>
class Vector {
 public:
  Vector() : start_(NULL), length_(0) {}
  Vector(T* data, int length) : start_(data), length_(length) {
    ASSERT(length == 0 || (length > 0 && data != NULL));
  }

  static Vector<T> New(int length) {
    return Vector<T>(NewArray<T>(length), length);
  }

  // Returns a vector using the same backing storage as this one,
  // spanning from and including 'from', to but not including 'to'.
  Vector<T> SubVector(int from, int to) {
    ASSERT(to <= length_);
    ASSERT(from < to);
    ASSERT(0 <= from);
    return Vector<T>(start() + from, to - from);
  }

  // Returns the length of the vector.
  int length() const { return length_; }

  // Returns whether or not the vector is empty.
  bool is_empty() const { return length_ == 0; }

  // Returns the pointer to the start of the data in the vector.
  T* start() const { return start_; }

  // Access individual vector elements - checks bounds in debug mode.
  T& operator[](int index) const {
    ASSERT(0 <= index && index < length_);
    return start_[index];
  }

  T& at(int i) const { return operator[](i); }

  T& first() { return start_[0]; }

  T& last() { return start_[length_ - 1]; }

  // Returns a clone of this vector with a new backing store.
  Vector<T> Clone() const {
    T* result = NewArray<T>(length_);
    for (int i = 0; i < length_; i++) result[i] = start_[i];
    return Vector<T>(result, length_);
  }

  void Sort(int (*cmp)(const T*, const T*)) {
    typedef int (*RawComparer)(const void*, const void*);
    qsort(start(),
          length(),
          sizeof(T),
          reinterpret_cast<RawComparer>(cmp));
  }

  void Sort() {
    Sort(PointerValueCompare<T>);
  }

  void Truncate(int length) {
    ASSERT(length <= length_);
    length_ = length;
  }

  // Releases the array underlying this vector. Once disposed the
  // vector is empty.
  void Dispose() {
    DeleteArray(start_);
    start_ = NULL;
    length_ = 0;
  }

  inline Vector<T> operator+(int offset) {
    ASSERT(offset < length_);
    return Vector<T>(start_ + offset, length_ - offset);
  }

  // Factory method for creating empty vectors.
  static Vector<T> empty() { return Vector<T>(NULL, 0); }

  template<typename S>
  static Vector<T> cast(Vector<S> input) {
    return Vector<T>(reinterpret_cast<T*>(input.start()),
                     input.length() * sizeof(S) / sizeof(T));
  }

 protected:
  void set_start(T* start) { start_ = start; }

 private:
  T* start_;
  int length_;
};


template <typename T, int kSize>
class EmbeddedVector : public Vector<T> {
 public:
  EmbeddedVector() : Vector<T>(buffer_, kSize) { }

  // When copying, make underlying Vector to reference our buffer.
  EmbeddedVector(const EmbeddedVector& rhs)
      : Vector<T>(rhs) {
    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    set_start(buffer_);
  }

  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
    if (this == &rhs) return *this;
    Vector<T>::operator=(rhs);
    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
    this->set_start(buffer_);
    return *this;
  }

 private:
  T buffer_[kSize];
};


template <typename T>
class ScopedVector : public Vector<T> {
 public:
  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
  ~ScopedVector() {
    DeleteArray(this->start());
  }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
};


inline Vector<const char> CStrVector(const char* data) {
  return Vector<const char>(data, StrLength(data));
}

inline Vector<char> MutableCStrVector(char* data) {
  return Vector<char>(data, StrLength(data));
}

inline Vector<char> MutableCStrVector(char* data, int max) {
  int length = StrLength(data);
  return Vector<char>(data, (length < max) ? length : max);
}


/*
 * A class that collects values into a backing store.
 * Specialized versions of the class can allow access to the backing store
 * in different ways.
 * There is no guarantee that the backing store is contiguous (and, as a
 * consequence, no guarantees that consecutively added elements are adjacent
 * in memory). The collector may move elements unless it has guaranteed not
 * to.
 */
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
 public:
  explicit Collector(int initial_capacity = kMinCapacity)
      : index_(0), size_(0) {
    if (initial_capacity < kMinCapacity) {
      initial_capacity = kMinCapacity;
    }
    current_chunk_ = Vector<T>::New(initial_capacity);
  }

  virtual ~Collector() {
    // Free backing store (in reverse allocation order).
    current_chunk_.Dispose();
    for (int i = chunks_.length() - 1; i >= 0; i--) {
      chunks_.at(i).Dispose();
    }
  }

  // Add a single element.
  inline void Add(T value) {
    if (index_ >= current_chunk_.length()) {
      Grow(1);
    }
    current_chunk_[index_] = value;
    index_++;
    size_++;
  }

  // Add a block of contiguous elements and return a Vector backed by the
  // memory area.
  // A basic Collector will keep this vector valid as long as the Collector
  // is alive.
  inline Vector<T> AddBlock(int size, T initial_value) {
    ASSERT(size > 0);
    if (size > current_chunk_.length() - index_) {
      Grow(size);
    }
    T* position = current_chunk_.start() + index_;
    index_ += size;
    size_ += size;
    for (int i = 0; i < size; i++) {
      position[i] = initial_value;
    }
    return Vector<T>(position, size);
  }


  // Write the contents of the collector into the provided vector.
  void WriteTo(Vector<T> destination) {
    ASSERT(size_ <= destination.length());
    int position = 0;
    for (int i = 0; i < chunks_.length(); i++) {
      Vector<T> chunk = chunks_.at(i);
      for (int j = 0; j < chunk.length(); j++) {
        destination[position] = chunk[j];
        position++;
      }
    }
    for (int i = 0; i < index_; i++) {
      destination[position] = current_chunk_[i];
      position++;
    }
  }

  // Allocate a single contiguous vector, copy all the collected
  // elements to the vector, and return it.
  // The caller is responsible for freeing the memory of the returned
  // vector (e.g., using Vector::Dispose).
  Vector<T> ToVector() {
    Vector<T> new_store = Vector<T>::New(size_);
    WriteTo(new_store);
    return new_store;
  }

  // Resets the collector to be empty.
  virtual void Reset() {
    for (int i = chunks_.length() - 1; i >= 0; i--) {
      chunks_.at(i).Dispose();
    }
    chunks_.Rewind(0);
    index_ = 0;
    size_ = 0;
  }

  // Total number of elements added to collector so far.
  inline int size() { return size_; }

 protected:
  static const int kMinCapacity = 16;
  List<Vector<T> > chunks_;
  Vector<T> current_chunk_;  // Block of memory currently being written into.
  int index_;  // Current index in current chunk.
  int size_;  // Total number of elements in collector.

  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
  void Grow(int min_capacity) {
    ASSERT(growth_factor > 1);
    int growth = current_chunk_.length() * (growth_factor - 1);
    if (growth > max_growth) {
      growth = max_growth;
    }
    int new_capacity = current_chunk_.length() + growth;
    if (new_capacity < min_capacity) {
      new_capacity = min_capacity + growth;
    }
    Vector<T> new_chunk = Vector<T>::New(new_capacity);
    int new_index = PrepareGrow(new_chunk);
    if (index_ > 0) {
      chunks_.Add(current_chunk_.SubVector(0, index_));
    } else {
      // Can happen if the call to PrepareGrow moves everything into
      // the new chunk.
      current_chunk_.Dispose();
    }
    current_chunk_ = new_chunk;
    index_ = new_index;
    ASSERT(index_ + min_capacity <= current_chunk_.length());
  }

  // Before replacing the current chunk, give a subclass the option to move
  // some of the current data into the new chunk. The function may update
  // the current index_ value to represent data no longer in the current chunk.
  // Returns the initial index of the new chunk (after copied data).
  virtual int PrepareGrow(Vector<T> new_chunk)  {
    return 0;
  }
};


/*
 * A collector that allows sequences of values to be guaranteed to
 * stay consecutive.
 * If the backing store grows while a sequence is active, the current
 * sequence might be moved, but after the sequence is ended, it will
 * not move again.
 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
 * as well, if inside an active sequence where another element is added.
 */
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
 public:
  explicit SequenceCollector(int initial_capacity)
      : Collector<T, growth_factor, max_growth>(initial_capacity),
        sequence_start_(kNoSequence) { }

  virtual ~SequenceCollector() {}

  void StartSequence() {
    ASSERT(sequence_start_ == kNoSequence);
    sequence_start_ = this->index_;
  }

  Vector<T> EndSequence() {
    ASSERT(sequence_start_ != kNoSequence);
    int sequence_start = sequence_start_;
    sequence_start_ = kNoSequence;
    if (sequence_start == this->index_) return Vector<T>();
    return this->current_chunk_.SubVector(sequence_start, this->index_);
  }

  // Drops the currently added sequence, and all collected elements in it.
  void DropSequence() {
    ASSERT(sequence_start_ != kNoSequence);
    int sequence_length = this->index_ - sequence_start_;
    this->index_ = sequence_start_;
    this->size_ -= sequence_length;
    sequence_start_ = kNoSequence;
  }

  virtual void Reset() {
    sequence_start_ = kNoSequence;
    this->Collector<T, growth_factor, max_growth>::Reset();
  }

 private:
  static const int kNoSequence = -1;
  int sequence_start_;

  // Move the currently active sequence to the new chunk.
  virtual int PrepareGrow(Vector<T> new_chunk) {
    if (sequence_start_ != kNoSequence) {
      int sequence_length = this->index_ - sequence_start_;
      // The new chunk is always larger than the current chunk, so there
      // is room for the copy.
      ASSERT(sequence_length < new_chunk.length());
      for (int i = 0; i < sequence_length; i++) {
        new_chunk[i] = this->current_chunk_[sequence_start_ + i];
      }
      this->index_ = sequence_start_;
      sequence_start_ = 0;
      return sequence_length;
    }
    return 0;
  }
};


// Compare ASCII/16bit chars to ASCII/16bit chars.
template <typename lchar, typename rchar>
static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
  const lchar* limit = lhs + chars;
#ifdef V8_HOST_CAN_READ_UNALIGNED
  if (sizeof(*lhs) == sizeof(*rhs)) {
    // Number of characters in a uintptr_t.
    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
    while (lhs <= limit - kStepSize) {
      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
          *reinterpret_cast<const uintptr_t*>(rhs)) {
        break;
      }
      lhs += kStepSize;
      rhs += kStepSize;
    }
  }
#endif
  while (lhs < limit) {
    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
    if (r != 0) return r;
    ++lhs;
    ++rhs;
  }
  return 0;
}


// Calculate 10^exponent.
static inline int TenToThe(int exponent) {
  ASSERT(exponent <= 9);
  ASSERT(exponent >= 1);
  int answer = 10;
  for (int i = 1; i < exponent; i++) answer *= 10;
  return answer;
}


// The type-based aliasing rule allows the compiler to assume that pointers of
// different types (for some definition of different) never alias each other.
// Thus the following code does not work:
//
// float f = foo();
// int fbits = *(int*)(&f);
//
// The compiler 'knows' that the int pointer can't refer to f since the types
// don't match, so the compiler may cache f in a register, leaving random data
// in fbits.  Using C++ style casts makes no difference, however a pointer to
// char data is assumed to alias any other pointer.  This is the 'memcpy
// exception'.
//
// Bit_cast uses the memcpy exception to move the bits from a variable of one
// type of a variable of another type.  Of course the end result is likely to
// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
// will completely optimize BitCast away.
//
// There is an additional use for BitCast.
// Recent gccs will warn when they see casts that may result in breakage due to
// the type-based aliasing rule.  If you have checked that there is no breakage
// you can use BitCast to cast one pointer type to another.  This confuses gcc
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.
template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
  // Compile time assertion: sizeof(Dest) == sizeof(Source)
  // A compile error here means your Dest and Source have different sizes.
  typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];

  Dest dest;
  memcpy(&dest, &source, sizeof(dest));
  return dest;
}

template <class Dest, class Source>
inline Dest BitCast(Source* source) {
  return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
}

} }  // namespace v8::internal

#endif  // V8_UTILS_H_