aboutsummaryrefslogtreecommitdiff
path: root/src/wasm/wasm-external-refs.cc
blob: e982cc7f99bfe8c59c3e6d19aad021645e175e2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <math.h>
#include <stdint.h>
#include <stdlib.h>
#include <limits>

#include "include/v8config.h"

#include "src/base/bits.h"
#include "src/utils.h"
#include "src/wasm/wasm-external-refs.h"

namespace v8 {
namespace internal {
namespace wasm {

void f32_trunc_wrapper(float* param) { *param = truncf(*param); }

void f32_floor_wrapper(float* param) { *param = floorf(*param); }

void f32_ceil_wrapper(float* param) { *param = ceilf(*param); }

void f32_nearest_int_wrapper(float* param) { *param = nearbyintf(*param); }

void f64_trunc_wrapper(double* param) {
  WriteDoubleValue(param, trunc(ReadDoubleValue(param)));
}

void f64_floor_wrapper(double* param) {
  WriteDoubleValue(param, floor(ReadDoubleValue(param)));
}

void f64_ceil_wrapper(double* param) {
  WriteDoubleValue(param, ceil(ReadDoubleValue(param)));
}

void f64_nearest_int_wrapper(double* param) {
  WriteDoubleValue(param, nearbyint(ReadDoubleValue(param)));
}

void int64_to_float32_wrapper(int64_t* input, float* output) {
  *output = static_cast<float>(*input);
}

void uint64_to_float32_wrapper(uint64_t* input, float* output) {
#if V8_CC_MSVC
  // With MSVC we use static_cast<float>(uint32_t) instead of
  // static_cast<float>(uint64_t) to achieve round-to-nearest-ties-even
  // semantics. The idea is to calculate
  // static_cast<float>(high_word) * 2^32 + static_cast<float>(low_word). To
  // achieve proper rounding in all cases we have to adjust the high_word
  // with a "rounding bit" sometimes. The rounding bit is stored in the LSB of
  // the high_word if the low_word may affect the rounding of the high_word.
  uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
  uint32_t high_word = static_cast<uint32_t>(*input >> 32);

  float shift = static_cast<float>(1ull << 32);
  // If the MSB of the high_word is set, then we make space for a rounding bit.
  if (high_word < 0x80000000) {
    high_word <<= 1;
    shift = static_cast<float>(1ull << 31);
  }

  if ((high_word & 0xfe000000) && low_word) {
    // Set the rounding bit.
    high_word |= 1;
  }

  float result = static_cast<float>(high_word);
  result *= shift;
  result += static_cast<float>(low_word);
  *output = result;

#else
  *output = static_cast<float>(*input);
#endif
}

void int64_to_float64_wrapper(int64_t* input, double* output) {
  *output = static_cast<double>(*input);
}

void uint64_to_float64_wrapper(uint64_t* input, double* output) {
#if V8_CC_MSVC
  // With MSVC we use static_cast<double>(uint32_t) instead of
  // static_cast<double>(uint64_t) to achieve round-to-nearest-ties-even
  // semantics. The idea is to calculate
  // static_cast<double>(high_word) * 2^32 + static_cast<double>(low_word).
  uint32_t low_word = static_cast<uint32_t>(*input & 0xffffffff);
  uint32_t high_word = static_cast<uint32_t>(*input >> 32);

  double shift = static_cast<double>(1ull << 32);

  double result = static_cast<double>(high_word);
  result *= shift;
  result += static_cast<double>(low_word);
  *output = result;

#else
  *output = static_cast<double>(*input);
#endif
}

int32_t float32_to_int64_wrapper(float* input, int64_t* output) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  if (*input >= static_cast<float>(std::numeric_limits<int64_t>::min()) &&
      *input < static_cast<float>(std::numeric_limits<int64_t>::max())) {
    *output = static_cast<int64_t>(*input);
    return 1;
  }
  return 0;
}

int32_t float32_to_uint64_wrapper(float* input, uint64_t* output) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  if (*input > -1.0 &&
      *input < static_cast<float>(std::numeric_limits<uint64_t>::max())) {
    *output = static_cast<uint64_t>(*input);
    return 1;
  }
  return 0;
}

int32_t float64_to_int64_wrapper(double* input, int64_t* output) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within int64 range which are actually
  // not within int64 range.
  if (*input >= static_cast<double>(std::numeric_limits<int64_t>::min()) &&
      *input < static_cast<double>(std::numeric_limits<int64_t>::max())) {
    *output = static_cast<int64_t>(*input);
    return 1;
  }
  return 0;
}

int32_t float64_to_uint64_wrapper(double* input, uint64_t* output) {
  // We use "<" here to check the upper bound because of rounding problems: With
  // "<=" some inputs would be considered within uint64 range which are actually
  // not within uint64 range.
  if (*input > -1.0 &&
      *input < static_cast<double>(std::numeric_limits<uint64_t>::max())) {
    *output = static_cast<uint64_t>(*input);
    return 1;
  }
  return 0;
}

int32_t int64_div_wrapper(int64_t* dst, int64_t* src) {
  if (*src == 0) {
    return 0;
  }
  if (*src == -1 && *dst == std::numeric_limits<int64_t>::min()) {
    return -1;
  }
  *dst /= *src;
  return 1;
}

int32_t int64_mod_wrapper(int64_t* dst, int64_t* src) {
  if (*src == 0) {
    return 0;
  }
  *dst %= *src;
  return 1;
}

int32_t uint64_div_wrapper(uint64_t* dst, uint64_t* src) {
  if (*src == 0) {
    return 0;
  }
  *dst /= *src;
  return 1;
}

int32_t uint64_mod_wrapper(uint64_t* dst, uint64_t* src) {
  if (*src == 0) {
    return 0;
  }
  *dst %= *src;
  return 1;
}

uint32_t word32_ctz_wrapper(uint32_t* input) {
  return static_cast<uint32_t>(base::bits::CountTrailingZeros32(*input));
}

uint32_t word64_ctz_wrapper(uint64_t* input) {
  return static_cast<uint32_t>(base::bits::CountTrailingZeros64(*input));
}

uint32_t word32_popcnt_wrapper(uint32_t* input) {
  return static_cast<uint32_t>(base::bits::CountPopulation(*input));
}

uint32_t word64_popcnt_wrapper(uint64_t* input) {
  return static_cast<uint32_t>(base::bits::CountPopulation(*input));
}

void float64_pow_wrapper(double* param0, double* param1) {
  double x = ReadDoubleValue(param0);
  double y = ReadDoubleValue(param1);
  WriteDoubleValue(param0, Pow(x, y));
}

static WasmTrapCallbackForTesting wasm_trap_callback_for_testing = nullptr;

void set_trap_callback_for_testing(WasmTrapCallbackForTesting callback) {
  wasm_trap_callback_for_testing = callback;
}

void call_trap_callback_for_testing() {
  if (wasm_trap_callback_for_testing) {
    wasm_trap_callback_for_testing();
  }
}

}  // namespace wasm
}  // namespace internal
}  // namespace v8