aboutsummaryrefslogtreecommitdiff
path: root/src/x64/macro-assembler-x64.h
blob: f085509914b796e1ff6ad93be52c7fefce800c16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_

#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/base/flags.h"
#include "src/frames.h"
#include "src/globals.h"
#include "src/x64/frames-x64.h"

namespace v8 {
namespace internal {

// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = {Register::kCode_rax};
const Register kReturnRegister1 = {Register::kCode_rdx};
const Register kReturnRegister2 = {Register::kCode_r8};
const Register kJSFunctionRegister = {Register::kCode_rdi};
const Register kContextRegister = {Register::kCode_rsi};
const Register kAllocateSizeRegister = {Register::kCode_rdx};
const Register kInterpreterAccumulatorRegister = {Register::kCode_rax};
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r12};
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r14};
const Register kInterpreterDispatchTableRegister = {Register::kCode_r15};
const Register kJavaScriptCallArgCountRegister = {Register::kCode_rax};
const Register kJavaScriptCallNewTargetRegister = {Register::kCode_rdx};
const Register kRuntimeCallFunctionRegister = {Register::kCode_rbx};
const Register kRuntimeCallArgCountRegister = {Register::kCode_rax};

// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
const Register kScratchRegister = {10};      // r10.
const XMMRegister kScratchDoubleReg = {15};  // xmm15.
const Register kRootRegister = {13};         // r13 (callee save).
// Actual value of root register is offset from the root array's start
// to take advantage of negitive 8-bit displacement values.
const int kRootRegisterBias = 128;

// Convenience for platform-independent signatures.
typedef Operand MemOperand;

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
  kPointersToHereMaybeInteresting,
  kPointersToHereAreAlwaysInteresting
};

enum class SmiOperationConstraint {
  kPreserveSourceRegister = 1 << 0,
  kBailoutOnNoOverflow = 1 << 1,
  kBailoutOnOverflow = 1 << 2
};

enum class ReturnAddressState { kOnStack, kNotOnStack };

typedef base::Flags<SmiOperationConstraint> SmiOperationConstraints;

DEFINE_OPERATORS_FOR_FLAGS(SmiOperationConstraints)

#ifdef DEBUG
bool AreAliased(Register reg1,
                Register reg2,
                Register reg3 = no_reg,
                Register reg4 = no_reg,
                Register reg5 = no_reg,
                Register reg6 = no_reg,
                Register reg7 = no_reg,
                Register reg8 = no_reg);
#endif

// Forward declaration.
class JumpTarget;

struct SmiIndex {
  SmiIndex(Register index_register, ScaleFactor scale)
      : reg(index_register),
        scale(scale) {}
  Register reg;
  ScaleFactor scale;
};


// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
 public:
  MacroAssembler(Isolate* isolate, void* buffer, int size,
                 CodeObjectRequired create_code_object);

  // Prevent the use of the RootArray during the lifetime of this
  // scope object.
  class NoRootArrayScope BASE_EMBEDDED {
   public:
    explicit NoRootArrayScope(MacroAssembler* assembler)
        : variable_(&assembler->root_array_available_),
          old_value_(assembler->root_array_available_) {
      assembler->root_array_available_ = false;
    }
    ~NoRootArrayScope() {
      *variable_ = old_value_;
    }
   private:
    bool* variable_;
    bool old_value_;
  };

  // Operand pointing to an external reference.
  // May emit code to set up the scratch register. The operand is
  // only guaranteed to be correct as long as the scratch register
  // isn't changed.
  // If the operand is used more than once, use a scratch register
  // that is guaranteed not to be clobbered.
  Operand ExternalOperand(ExternalReference reference,
                          Register scratch = kScratchRegister);
  // Loads and stores the value of an external reference.
  // Special case code for load and store to take advantage of
  // load_rax/store_rax if possible/necessary.
  // For other operations, just use:
  //   Operand operand = ExternalOperand(extref);
  //   operation(operand, ..);
  void Load(Register destination, ExternalReference source);
  void Store(ExternalReference destination, Register source);
  // Loads the address of the external reference into the destination
  // register.
  void LoadAddress(Register destination, ExternalReference source);
  // Returns the size of the code generated by LoadAddress.
  // Used by CallSize(ExternalReference) to find the size of a call.
  int LoadAddressSize(ExternalReference source);
  // Pushes the address of the external reference onto the stack.
  void PushAddress(ExternalReference source);

  // Operations on roots in the root-array.
  void LoadRoot(Register destination, Heap::RootListIndex index);
  void LoadRoot(const Operand& destination, Heap::RootListIndex index) {
    LoadRoot(kScratchRegister, index);
    movp(destination, kScratchRegister);
  }
  void StoreRoot(Register source, Heap::RootListIndex index);
  // Load a root value where the index (or part of it) is variable.
  // The variable_offset register is added to the fixed_offset value
  // to get the index into the root-array.
  void LoadRootIndexed(Register destination,
                       Register variable_offset,
                       int fixed_offset);
  void CompareRoot(Register with, Heap::RootListIndex index);
  void CompareRoot(const Operand& with, Heap::RootListIndex index);
  void PushRoot(Heap::RootListIndex index);

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
                  Label::Distance if_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(equal, if_equal, if_equal_distance);
  }
  void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
                  Label* if_equal,
                  Label::Distance if_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(equal, if_equal, if_equal_distance);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
                     Label* if_not_equal,
                     Label::Distance if_not_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(not_equal, if_not_equal, if_not_equal_distance);
  }
  void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
                     Label* if_not_equal,
                     Label::Distance if_not_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(not_equal, if_not_equal, if_not_equal_distance);
  }

  // These functions do not arrange the registers in any particular order so
  // they are not useful for calls that can cause a GC.  The caller can
  // exclude up to 3 registers that do not need to be saved and restored.
  void PushCallerSaved(SaveFPRegsMode fp_mode,
                       Register exclusion1 = no_reg,
                       Register exclusion2 = no_reg,
                       Register exclusion3 = no_reg);
  void PopCallerSaved(SaveFPRegsMode fp_mode,
                      Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);

// ---------------------------------------------------------------------------
// GC Support


  enum RememberedSetFinalAction {
    kReturnAtEnd,
    kFallThroughAtEnd
  };

  // Record in the remembered set the fact that we have a pointer to new space
  // at the address pointed to by the addr register.  Only works if addr is not
  // in new space.
  void RememberedSetHelper(Register object,  // Used for debug code.
                           Register addr,
                           Register scratch,
                           SaveFPRegsMode save_fp,
                           RememberedSetFinalAction and_then);

  void CheckPageFlag(Register object,
                     Register scratch,
                     int mask,
                     Condition cc,
                     Label* condition_met,
                     Label::Distance condition_met_distance = Label::kFar);

  // Check if object is in new space.  Jumps if the object is not in new space.
  // The register scratch can be object itself, but scratch will be clobbered.
  void JumpIfNotInNewSpace(Register object,
                           Register scratch,
                           Label* branch,
                           Label::Distance distance = Label::kFar) {
    InNewSpace(object, scratch, zero, branch, distance);
  }

  // Check if object is in new space.  Jumps if the object is in new space.
  // The register scratch can be object itself, but it will be clobbered.
  void JumpIfInNewSpace(Register object,
                        Register scratch,
                        Label* branch,
                        Label::Distance distance = Label::kFar) {
    InNewSpace(object, scratch, not_zero, branch, distance);
  }

  // Check if an object has the black incremental marking color.  Also uses rcx!
  void JumpIfBlack(Register object, Register bitmap_scratch,
                   Register mask_scratch, Label* on_black,
                   Label::Distance on_black_distance);

  // Checks the color of an object.  If the object is white we jump to the
  // incremental marker.
  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
                   Label* value_is_white, Label::Distance distance);

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object,
      int offset,
      Register value,
      Register scratch,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // As above, but the offset has the tag presubtracted.  For use with
  // Operand(reg, off).
  void RecordWriteContextSlot(
      Register context,
      int offset,
      Register value,
      Register scratch,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting) {
    RecordWriteField(context,
                     offset + kHeapObjectTag,
                     value,
                     scratch,
                     save_fp,
                     remembered_set_action,
                     smi_check,
                     pointers_to_here_check_for_value);
  }

  // Notify the garbage collector that we wrote a pointer into a fixed array.
  // |array| is the array being stored into, |value| is the
  // object being stored.  |index| is the array index represented as a non-smi.
  // All registers are clobbered by the operation RecordWriteArray
  // filters out smis so it does not update the write barrier if the
  // value is a smi.
  void RecordWriteArray(
      Register array,
      Register value,
      Register index,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // Notify the garbage collector that we wrote a code entry into a
  // JSFunction. Only scratch is clobbered by the operation.
  void RecordWriteCodeEntryField(Register js_function, Register code_entry,
                                 Register scratch);

  void RecordWriteForMap(
      Register object,
      Register map,
      Register dst,
      SaveFPRegsMode save_fp);

  // For page containing |object| mark region covering |address|
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. The address and value registers are clobbered by the
  // operation.  RecordWrite filters out smis so it does not update
  // the write barrier if the value is a smi.
  void RecordWrite(
      Register object,
      Register address,
      Register value,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // ---------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue(bool code_pre_aging);

  // Enter specific kind of exit frame; either in normal or
  // debug mode. Expects the number of arguments in register rax and
  // sets up the number of arguments in register rdi and the pointer
  // to the first argument in register rsi.
  //
  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
  // accessible via StackSpaceOperand.
  void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
  // memory (not GCed) on the stack accessible via StackSpaceOperand.
  void EnterApiExitFrame(int arg_stack_space);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax:rdx (untouched) and the pointer to the first
  // argument in register rsi (if pop_arguments == true).
  void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax (untouched).
  void LeaveApiExitFrame(bool restore_context);

  // Push and pop the registers that can hold pointers.
  void PushSafepointRegisters() { Pushad(); }
  void PopSafepointRegisters() { Popad(); }
  // Store the value in register src in the safepoint register stack
  // slot for register dst.
  void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
  void StoreToSafepointRegisterSlot(Register dst, Register src);
  void LoadFromSafepointRegisterSlot(Register dst, Register src);

  void InitializeRootRegister() {
    ExternalReference roots_array_start =
        ExternalReference::roots_array_start(isolate());
    Move(kRootRegister, roots_array_start);
    addp(kRootRegister, Immediate(kRootRegisterBias));
  }

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // |ra_state| defines whether return address is already pushed to stack or
  // not. Both |callee_args_count| and |caller_args_count_reg| do not include
  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
  // is trashed.
  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1, ReturnAddressState ra_state);

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag,
                          const CallWrapper& call_wrapper);

  void FloodFunctionIfStepping(Register fun, Register new_target,
                               const ParameterCount& expected,
                               const ParameterCount& actual);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function,
                      Register new_target,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InvokeFunction(Register function,
                      Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InvokeFunction(Handle<JSFunction> function,
                      const ParameterCount& expected,
                      const ParameterCount& actual,
                      InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  // ---------------------------------------------------------------------------
  // Smi tagging, untagging and operations on tagged smis.

  // Support for constant splitting.
  bool IsUnsafeInt(const int32_t x);
  void SafeMove(Register dst, Smi* src);
  void SafePush(Smi* src);

  // Conversions between tagged smi values and non-tagged integer values.

  // Tag an integer value. The result must be known to be a valid smi value.
  // Only uses the low 32 bits of the src register. Sets the N and Z flags
  // based on the value of the resulting smi.
  void Integer32ToSmi(Register dst, Register src);

  // Stores an integer32 value into a memory field that already holds a smi.
  void Integer32ToSmiField(const Operand& dst, Register src);

  // Adds constant to src and tags the result as a smi.
  // Result must be a valid smi.
  void Integer64PlusConstantToSmi(Register dst, Register src, int constant);

  // Convert smi to 32-bit integer. I.e., not sign extended into
  // high 32 bits of destination.
  void SmiToInteger32(Register dst, Register src);
  void SmiToInteger32(Register dst, const Operand& src);

  // Convert smi to 64-bit integer (sign extended if necessary).
  void SmiToInteger64(Register dst, Register src);
  void SmiToInteger64(Register dst, const Operand& src);

  // Convert smi to double.
  void SmiToDouble(XMMRegister dst, Register src) {
    SmiToInteger32(kScratchRegister, src);
    Cvtlsi2sd(dst, kScratchRegister);
  }

  // Multiply a positive smi's integer value by a power of two.
  // Provides result as 64-bit integer value.
  void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
                                             Register src,
                                             int power);

  // Divide a positive smi's integer value by a power of two.
  // Provides result as 32-bit integer value.
  void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
                                           Register src,
                                           int power);

  // Perform the logical or of two smi values and return a smi value.
  // If either argument is not a smi, jump to on_not_smis and retain
  // the original values of source registers. The destination register
  // may be changed if it's not one of the source registers.
  void SmiOrIfSmis(Register dst,
                   Register src1,
                   Register src2,
                   Label* on_not_smis,
                   Label::Distance near_jump = Label::kFar);


  // Simple comparison of smis.  Both sides must be known smis to use these,
  // otherwise use Cmp.
  void SmiCompare(Register smi1, Register smi2);
  void SmiCompare(Register dst, Smi* src);
  void SmiCompare(Register dst, const Operand& src);
  void SmiCompare(const Operand& dst, Register src);
  void SmiCompare(const Operand& dst, Smi* src);
  // Compare the int32 in src register to the value of the smi stored at dst.
  void SmiCompareInteger32(const Operand& dst, Register src);
  // Sets sign and zero flags depending on value of smi in register.
  void SmiTest(Register src);

  // Functions performing a check on a known or potential smi. Returns
  // a condition that is satisfied if the check is successful.

  // Is the value a tagged smi.
  Condition CheckSmi(Register src);
  Condition CheckSmi(const Operand& src);

  // Is the value a non-negative tagged smi.
  Condition CheckNonNegativeSmi(Register src);

  // Are both values tagged smis.
  Condition CheckBothSmi(Register first, Register second);

  // Are both values non-negative tagged smis.
  Condition CheckBothNonNegativeSmi(Register first, Register second);

  // Are either value a tagged smi.
  Condition CheckEitherSmi(Register first,
                           Register second,
                           Register scratch = kScratchRegister);

  // Checks whether an 32-bit integer value is a valid for conversion
  // to a smi.
  Condition CheckInteger32ValidSmiValue(Register src);

  // Checks whether an 32-bit unsigned integer value is a valid for
  // conversion to a smi.
  Condition CheckUInteger32ValidSmiValue(Register src);

  // Check whether src is a Smi, and set dst to zero if it is a smi,
  // and to one if it isn't.
  void CheckSmiToIndicator(Register dst, Register src);
  void CheckSmiToIndicator(Register dst, const Operand& src);

  // Test-and-jump functions. Typically combines a check function
  // above with a conditional jump.

  // Jump if the value can be represented by a smi.
  void JumpIfValidSmiValue(Register src, Label* on_valid,
                           Label::Distance near_jump = Label::kFar);

  // Jump if the value cannot be represented by a smi.
  void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
                              Label::Distance near_jump = Label::kFar);

  // Jump if the unsigned integer value can be represented by a smi.
  void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
                               Label::Distance near_jump = Label::kFar);

  // Jump if the unsigned integer value cannot be represented by a smi.
  void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
                                  Label::Distance near_jump = Label::kFar);

  // Jump to label if the value is a tagged smi.
  void JumpIfSmi(Register src,
                 Label* on_smi,
                 Label::Distance near_jump = Label::kFar);

  // Jump to label if the value is not a tagged smi.
  void JumpIfNotSmi(Register src,
                    Label* on_not_smi,
                    Label::Distance near_jump = Label::kFar);

  // Jump to label if the value is not a non-negative tagged smi.
  void JumpUnlessNonNegativeSmi(Register src,
                                Label* on_not_smi,
                                Label::Distance near_jump = Label::kFar);

  // Jump to label if the value, which must be a tagged smi, has value equal
  // to the constant.
  void JumpIfSmiEqualsConstant(Register src,
                               Smi* constant,
                               Label* on_equals,
                               Label::Distance near_jump = Label::kFar);

  // Jump if either or both register are not smi values.
  void JumpIfNotBothSmi(Register src1,
                        Register src2,
                        Label* on_not_both_smi,
                        Label::Distance near_jump = Label::kFar);

  // Jump if either or both register are not non-negative smi values.
  void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
                                    Label* on_not_both_smi,
                                    Label::Distance near_jump = Label::kFar);

  // Operations on tagged smi values.

  // Smis represent a subset of integers. The subset is always equivalent to
  // a two's complement interpretation of a fixed number of bits.

  // Add an integer constant to a tagged smi, giving a tagged smi as result.
  // No overflow testing on the result is done.
  void SmiAddConstant(Register dst, Register src, Smi* constant);

  // Add an integer constant to a tagged smi, giving a tagged smi as result.
  // No overflow testing on the result is done.
  void SmiAddConstant(const Operand& dst, Smi* constant);

  // Add an integer constant to a tagged smi, giving a tagged smi as result,
  // or jumping to a label if the result cannot be represented by a smi.
  void SmiAddConstant(Register dst, Register src, Smi* constant,
                      SmiOperationConstraints constraints, Label* bailout_label,
                      Label::Distance near_jump = Label::kFar);

  // Subtract an integer constant from a tagged smi, giving a tagged smi as
  // result. No testing on the result is done. Sets the N and Z flags
  // based on the value of the resulting integer.
  void SmiSubConstant(Register dst, Register src, Smi* constant);

  // Subtract an integer constant from a tagged smi, giving a tagged smi as
  // result, or jumping to a label if the result cannot be represented by a smi.
  void SmiSubConstant(Register dst, Register src, Smi* constant,
                      SmiOperationConstraints constraints, Label* bailout_label,
                      Label::Distance near_jump = Label::kFar);

  // Negating a smi can give a negative zero or too large positive value.
  // NOTICE: This operation jumps on success, not failure!
  void SmiNeg(Register dst,
              Register src,
              Label* on_smi_result,
              Label::Distance near_jump = Label::kFar);

  // Adds smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed if the operation is
  // successful, otherwise kept intact.
  void SmiAdd(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);
  void SmiAdd(Register dst,
              Register src1,
              const Operand& src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);

  void SmiAdd(Register dst,
              Register src1,
              Register src2);

  // Subtracts smi values and return the result as a smi.
  // If dst is src1, then src1 will be destroyed if the operation is
  // successful, otherwise kept intact.
  void SmiSub(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);
  void SmiSub(Register dst,
              Register src1,
              const Operand& src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);

  void SmiSub(Register dst,
              Register src1,
              Register src2);

  void SmiSub(Register dst,
              Register src1,
              const Operand& src2);

  // Multiplies smi values and return the result as a smi,
  // if possible.
  // If dst is src1, then src1 will be destroyed, even if
  // the operation is unsuccessful.
  void SmiMul(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);

  // Divides one smi by another and returns the quotient.
  // Clobbers rax and rdx registers.
  void SmiDiv(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);

  // Divides one smi by another and returns the remainder.
  // Clobbers rax and rdx registers.
  void SmiMod(Register dst,
              Register src1,
              Register src2,
              Label* on_not_smi_result,
              Label::Distance near_jump = Label::kFar);

  // Bitwise operations.
  void SmiNot(Register dst, Register src);
  void SmiAnd(Register dst, Register src1, Register src2);
  void SmiOr(Register dst, Register src1, Register src2);
  void SmiXor(Register dst, Register src1, Register src2);
  void SmiAndConstant(Register dst, Register src1, Smi* constant);
  void SmiOrConstant(Register dst, Register src1, Smi* constant);
  void SmiXorConstant(Register dst, Register src1, Smi* constant);

  void SmiShiftLeftConstant(Register dst,
                            Register src,
                            int shift_value,
                            Label* on_not_smi_result = NULL,
                            Label::Distance near_jump = Label::kFar);
  void SmiShiftLogicalRightConstant(Register dst,
                                    Register src,
                                    int shift_value,
                                    Label* on_not_smi_result,
                                    Label::Distance near_jump = Label::kFar);
  void SmiShiftArithmeticRightConstant(Register dst,
                                       Register src,
                                       int shift_value);

  // Shifts a smi value to the left, and returns the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftLeft(Register dst,
                    Register src1,
                    Register src2,
                    Label* on_not_smi_result = NULL,
                    Label::Distance near_jump = Label::kFar);
  // Shifts a smi value to the right, shifting in zero bits at the top, and
  // returns the unsigned intepretation of the result if that is a smi.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftLogicalRight(Register dst,
                            Register src1,
                            Register src2,
                            Label* on_not_smi_result,
                            Label::Distance near_jump = Label::kFar);
  // Shifts a smi value to the right, sign extending the top, and
  // returns the signed intepretation of the result. That will always
  // be a valid smi value, since it's numerically smaller than the
  // original.
  // Uses and clobbers rcx, so dst may not be rcx.
  void SmiShiftArithmeticRight(Register dst,
                               Register src1,
                               Register src2);

  // Specialized operations

  // Select the non-smi register of two registers where exactly one is a
  // smi. If neither are smis, jump to the failure label.
  void SelectNonSmi(Register dst,
                    Register src1,
                    Register src2,
                    Label* on_not_smis,
                    Label::Distance near_jump = Label::kFar);

  // Converts, if necessary, a smi to a combination of number and
  // multiplier to be used as a scaled index.
  // The src register contains a *positive* smi value. The shift is the
  // power of two to multiply the index value by (e.g.
  // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
  // The returned index register may be either src or dst, depending
  // on what is most efficient. If src and dst are different registers,
  // src is always unchanged.
  SmiIndex SmiToIndex(Register dst, Register src, int shift);

  // Converts a positive smi to a negative index.
  SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);

  // Add the value of a smi in memory to an int32 register.
  // Sets flags as a normal add.
  void AddSmiField(Register dst, const Operand& src);

  // Basic Smi operations.
  void Move(Register dst, Smi* source) {
    LoadSmiConstant(dst, source);
  }

  void Move(const Operand& dst, Smi* source) {
    Register constant = GetSmiConstant(source);
    movp(dst, constant);
  }

  void Push(Smi* smi);

  // Save away a raw integer with pointer size on the stack as two integers
  // masquerading as smis so that the garbage collector skips visiting them.
  void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
  // Reconstruct a raw integer with pointer size from two integers masquerading
  // as smis on the top of stack.
  void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);

  void Test(const Operand& dst, Smi* source);


  // ---------------------------------------------------------------------------
  // String macros.

  // If object is a string, its map is loaded into object_map.
  void JumpIfNotString(Register object,
                       Register object_map,
                       Label* not_string,
                       Label::Distance near_jump = Label::kFar);


  void JumpIfNotBothSequentialOneByteStrings(
      Register first_object, Register second_object, Register scratch1,
      Register scratch2, Label* on_not_both_flat_one_byte,
      Label::Distance near_jump = Label::kFar);

  // Check whether the instance type represents a flat one-byte string. Jump
  // to the label if not. If the instance type can be scratched specify same
  // register for both instance type and scratch.
  void JumpIfInstanceTypeIsNotSequentialOneByte(
      Register instance_type, Register scratch,
      Label* on_not_flat_one_byte_string,
      Label::Distance near_jump = Label::kFar);

  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
      Register first_object_instance_type, Register second_object_instance_type,
      Register scratch1, Register scratch2, Label* on_fail,
      Label::Distance near_jump = Label::kFar);

  void EmitSeqStringSetCharCheck(Register string,
                                 Register index,
                                 Register value,
                                 uint32_t encoding_mask);

  // Checks if the given register or operand is a unique name
  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
                                       Label::Distance distance = Label::kFar);
  void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
                                       Label::Distance distance = Label::kFar);

  // ---------------------------------------------------------------------------
  // Macro instructions.

  // Load/store with specific representation.
  void Load(Register dst, const Operand& src, Representation r);
  void Store(const Operand& dst, Register src, Representation r);

  // Load a register with a long value as efficiently as possible.
  void Set(Register dst, int64_t x);
  void Set(const Operand& dst, intptr_t x);

  void Cvtss2sd(XMMRegister dst, XMMRegister src);
  void Cvtss2sd(XMMRegister dst, const Operand& src);
  void Cvtsd2ss(XMMRegister dst, XMMRegister src);
  void Cvtsd2ss(XMMRegister dst, const Operand& src);

  // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
  // hinders register renaming and makes dependence chains longer. So we use
  // xorpd to clear the dst register before cvtsi2sd to solve this issue.
  void Cvtlsi2sd(XMMRegister dst, Register src);
  void Cvtlsi2sd(XMMRegister dst, const Operand& src);

  void Cvtlsi2ss(XMMRegister dst, Register src);
  void Cvtlsi2ss(XMMRegister dst, const Operand& src);
  void Cvtqsi2ss(XMMRegister dst, Register src);
  void Cvtqsi2ss(XMMRegister dst, const Operand& src);

  void Cvtqsi2sd(XMMRegister dst, Register src);
  void Cvtqsi2sd(XMMRegister dst, const Operand& src);

  void Cvtqui2ss(XMMRegister dst, Register src, Register tmp);
  void Cvtqui2sd(XMMRegister dst, Register src, Register tmp);

  void Cvtsd2si(Register dst, XMMRegister src);

  void Cvttss2si(Register dst, XMMRegister src);
  void Cvttss2si(Register dst, const Operand& src);
  void Cvttsd2si(Register dst, XMMRegister src);
  void Cvttsd2si(Register dst, const Operand& src);
  void Cvttss2siq(Register dst, XMMRegister src);
  void Cvttss2siq(Register dst, const Operand& src);
  void Cvttsd2siq(Register dst, XMMRegister src);
  void Cvttsd2siq(Register dst, const Operand& src);

  // Move if the registers are not identical.
  void Move(Register target, Register source);

  // TestBit and Load SharedFunctionInfo special field.
  void TestBitSharedFunctionInfoSpecialField(Register base,
                                             int offset,
                                             int bit_index);
  void LoadSharedFunctionInfoSpecialField(Register dst,
                                          Register base,
                                          int offset);

  // Handle support
  void Move(Register dst, Handle<Object> source);
  void Move(const Operand& dst, Handle<Object> source);
  void Cmp(Register dst, Handle<Object> source);
  void Cmp(const Operand& dst, Handle<Object> source);
  void Cmp(Register dst, Smi* src);
  void Cmp(const Operand& dst, Smi* src);
  void Push(Handle<Object> source);

  // Load a heap object and handle the case of new-space objects by
  // indirecting via a global cell.
  void MoveHeapObject(Register result, Handle<Object> object);

  // Load a global cell into a register.
  void LoadGlobalCell(Register dst, Handle<Cell> cell);

  // Compare the given value and the value of weak cell.
  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);

  void GetWeakValue(Register value, Handle<WeakCell> cell);

  // Load the value of the weak cell in the value register. Branch to the given
  // miss label if the weak cell was cleared.
  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);

  // Emit code that loads |parameter_index|'th parameter from the stack to
  // the register according to the CallInterfaceDescriptor definition.
  // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
  // below the caller's sp (on x64 it's at least return address).
  template <class Descriptor>
  void LoadParameterFromStack(
      Register reg, typename Descriptor::ParameterIndices parameter_index,
      int sp_to_ra_offset_in_words = 1) {
    DCHECK(Descriptor::kPassLastArgsOnStack);
    UNIMPLEMENTED();
  }

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the rsp register.
  void Drop(int stack_elements);
  // Emit code to discard a positive number of pointer-sized elements
  // from the stack under the return address which remains on the top,
  // clobbering the rsp register.
  void DropUnderReturnAddress(int stack_elements,
                              Register scratch = kScratchRegister);

  void Call(Label* target) { call(target); }
  void Push(Register src);
  void Push(const Operand& src);
  void PushQuad(const Operand& src);
  void Push(Immediate value);
  void PushImm32(int32_t imm32);
  void Pop(Register dst);
  void Pop(const Operand& dst);
  void PopQuad(const Operand& dst);
  void PushReturnAddressFrom(Register src) { pushq(src); }
  void PopReturnAddressTo(Register dst) { popq(dst); }
  void Move(Register dst, ExternalReference ext) {
    movp(dst, reinterpret_cast<void*>(ext.address()),
         RelocInfo::EXTERNAL_REFERENCE);
  }

  // Loads a pointer into a register with a relocation mode.
  void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    // This method must not be used with heap object references. The stored
    // address is not GC safe. Use the handle version instead.
    DCHECK(rmode > RelocInfo::LAST_GCED_ENUM);
    movp(dst, ptr, rmode);
  }

  void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    AllowDeferredHandleDereference using_raw_address;
    DCHECK(!RelocInfo::IsNone(rmode));
    DCHECK(value->IsHeapObject());
    movp(dst, reinterpret_cast<void*>(value.location()), rmode);
  }

  void Move(XMMRegister dst, uint32_t src);
  void Move(XMMRegister dst, uint64_t src);
  void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
  void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }

#define AVX_OP2_WITH_TYPE(macro_name, name, src_type) \
  void macro_name(XMMRegister dst, src_type src) {    \
    if (CpuFeatures::IsSupported(AVX)) {              \
      CpuFeatureScope scope(this, AVX);               \
      v##name(dst, dst, src);                         \
    } else {                                          \
      name(dst, src);                                 \
    }                                                 \
  }
#define AVX_OP2_X(macro_name, name) \
  AVX_OP2_WITH_TYPE(macro_name, name, XMMRegister)
#define AVX_OP2_O(macro_name, name) \
  AVX_OP2_WITH_TYPE(macro_name, name, const Operand&)
#define AVX_OP2_XO(macro_name, name) \
  AVX_OP2_X(macro_name, name)        \
  AVX_OP2_O(macro_name, name)

  AVX_OP2_XO(Addsd, addsd)
  AVX_OP2_XO(Subsd, subsd)
  AVX_OP2_XO(Mulsd, mulsd)
  AVX_OP2_XO(Divss, divss)
  AVX_OP2_XO(Divsd, divsd)
  AVX_OP2_XO(Andps, andps)
  AVX_OP2_XO(Andpd, andpd)
  AVX_OP2_XO(Orpd, orpd)
  AVX_OP2_XO(Xorpd, xorpd)
  AVX_OP2_XO(Cmpeqps, cmpeqps)
  AVX_OP2_XO(Cmpltps, cmpltps)
  AVX_OP2_XO(Cmpleps, cmpleps)
  AVX_OP2_XO(Cmpneqps, cmpneqps)
  AVX_OP2_XO(Cmpnltps, cmpnltps)
  AVX_OP2_XO(Cmpnleps, cmpnleps)
  AVX_OP2_XO(Cmpeqpd, cmpeqpd)
  AVX_OP2_XO(Cmpltpd, cmpltpd)
  AVX_OP2_XO(Cmplepd, cmplepd)
  AVX_OP2_XO(Cmpneqpd, cmpneqpd)
  AVX_OP2_XO(Cmpnltpd, cmpnltpd)
  AVX_OP2_XO(Cmpnlepd, cmpnlepd)
  AVX_OP2_X(Pcmpeqd, pcmpeqd)
  AVX_OP2_WITH_TYPE(Psllq, psllq, byte)
  AVX_OP2_WITH_TYPE(Psrlq, psrlq, byte)

#undef AVX_OP2_O
#undef AVX_OP2_X
#undef AVX_OP2_XO
#undef AVX_OP2_WITH_TYPE

  void Movsd(XMMRegister dst, XMMRegister src);
  void Movsd(XMMRegister dst, const Operand& src);
  void Movsd(const Operand& dst, XMMRegister src);
  void Movss(XMMRegister dst, XMMRegister src);
  void Movss(XMMRegister dst, const Operand& src);
  void Movss(const Operand& dst, XMMRegister src);

  void Movd(XMMRegister dst, Register src);
  void Movd(XMMRegister dst, const Operand& src);
  void Movd(Register dst, XMMRegister src);
  void Movq(XMMRegister dst, Register src);
  void Movq(Register dst, XMMRegister src);

  void Movaps(XMMRegister dst, XMMRegister src);
  void Movups(XMMRegister dst, XMMRegister src);
  void Movups(XMMRegister dst, const Operand& src);
  void Movups(const Operand& dst, XMMRegister src);
  void Movmskps(Register dst, XMMRegister src);
  void Movapd(XMMRegister dst, XMMRegister src);
  void Movupd(XMMRegister dst, const Operand& src);
  void Movupd(const Operand& dst, XMMRegister src);
  void Movmskpd(Register dst, XMMRegister src);

  void Xorps(XMMRegister dst, XMMRegister src);
  void Xorps(XMMRegister dst, const Operand& src);

  void Roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
  void Roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
  void Sqrtsd(XMMRegister dst, XMMRegister src);
  void Sqrtsd(XMMRegister dst, const Operand& src);

  void Ucomiss(XMMRegister src1, XMMRegister src2);
  void Ucomiss(XMMRegister src1, const Operand& src2);
  void Ucomisd(XMMRegister src1, XMMRegister src2);
  void Ucomisd(XMMRegister src1, const Operand& src2);

  // ---------------------------------------------------------------------------
  // SIMD macros.
  void Absps(XMMRegister dst);
  void Negps(XMMRegister dst);
  void Abspd(XMMRegister dst);
  void Negpd(XMMRegister dst);

  // Control Flow
  void Jump(Address destination, RelocInfo::Mode rmode);
  void Jump(ExternalReference ext);
  void Jump(const Operand& op);
  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);

  void Call(Address destination, RelocInfo::Mode rmode);
  void Call(ExternalReference ext);
  void Call(const Operand& op);
  void Call(Handle<Code> code_object,
            RelocInfo::Mode rmode,
            TypeFeedbackId ast_id = TypeFeedbackId::None());

  // The size of the code generated for different call instructions.
  int CallSize(Address destination) {
    return kCallSequenceLength;
  }
  int CallSize(ExternalReference ext);
  int CallSize(Handle<Code> code_object) {
    // Code calls use 32-bit relative addressing.
    return kShortCallInstructionLength;
  }
  int CallSize(Register target) {
    // Opcode: REX_opt FF /2 m64
    return (target.high_bit() != 0) ? 3 : 2;
  }
  int CallSize(const Operand& target) {
    // Opcode: REX_opt FF /2 m64
    return (target.requires_rex() ? 2 : 1) + target.operand_size();
  }

  // Non-SSE2 instructions.
  void Pextrd(Register dst, XMMRegister src, int8_t imm8);
  void Pinsrd(XMMRegister dst, Register src, int8_t imm8);
  void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);

  void Lzcntq(Register dst, Register src);
  void Lzcntq(Register dst, const Operand& src);

  void Lzcntl(Register dst, Register src);
  void Lzcntl(Register dst, const Operand& src);

  void Tzcntq(Register dst, Register src);
  void Tzcntq(Register dst, const Operand& src);

  void Tzcntl(Register dst, Register src);
  void Tzcntl(Register dst, const Operand& src);

  void Popcntl(Register dst, Register src);
  void Popcntl(Register dst, const Operand& src);

  void Popcntq(Register dst, Register src);
  void Popcntq(Register dst, const Operand& src);

  // Non-x64 instructions.
  // Push/pop all general purpose registers.
  // Does not push rsp/rbp nor any of the assembler's special purpose registers
  // (kScratchRegister, kRootRegister).
  void Pushad();
  void Popad();
  // Sets the stack as after performing Popad, without actually loading the
  // registers.
  void Dropad();

  // Compare object type for heap object.
  // Always use unsigned comparisons: above and below, not less and greater.
  // Incoming register is heap_object and outgoing register is map.
  // They may be the same register, and may be kScratchRegister.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  // Always use unsigned comparisons: above and below, not less and greater.
  void CmpInstanceType(Register map, InstanceType type);

  // Check if a map for a JSObject indicates that the object can have both smi
  // and HeapObject elements.  Jump to the specified label if it does not.
  void CheckFastObjectElements(Register map,
                               Label* fail,
                               Label::Distance distance = Label::kFar);

  // Check if a map for a JSObject indicates that the object has fast smi only
  // elements.  Jump to the specified label if it does not.
  void CheckFastSmiElements(Register map,
                            Label* fail,
                            Label::Distance distance = Label::kFar);

  // Check to see if maybe_number can be stored as a double in
  // FastDoubleElements. If it can, store it at the index specified by index in
  // the FastDoubleElements array elements, otherwise jump to fail.  Note that
  // index must not be smi-tagged.
  void StoreNumberToDoubleElements(Register maybe_number,
                                   Register elements,
                                   Register index,
                                   XMMRegister xmm_scratch,
                                   Label* fail,
                                   int elements_offset = 0);

  // Compare an object's map with the specified map.
  void CompareMap(Register obj, Handle<Map> map);

  // Check if the map of an object is equal to a specified map and branch to
  // label if not. Skip the smi check if not required (object is known to be a
  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
  // against maps that are ElementsKind transition maps of the specified map.
  void CheckMap(Register obj,
                Handle<Map> map,
                Label* fail,
                SmiCheckType smi_check_type);

  // Check if the map of an object is equal to a specified weak map and branch
  // to a specified target if equal. Skip the smi check if not required
  // (object is known to be a heap object)
  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
                       Handle<WeakCell> cell, Handle<Code> success,
                       SmiCheckType smi_check_type);

  // Check if the object in register heap_object is a string. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectStringType(Register heap_object,
                               Register map,
                               Register instance_type);

  // Check if the object in register heap_object is a name. Afterwards the
  // register map contains the object map and the register instance_type
  // contains the instance_type. The registers map and instance_type can be the
  // same in which case it contains the instance type afterwards. Either of the
  // registers map and instance_type can be the same as heap_object.
  Condition IsObjectNameType(Register heap_object,
                             Register map,
                             Register instance_type);

  // FCmp compares and pops the two values on top of the FPU stack.
  // The flag results are similar to integer cmp, but requires unsigned
  // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
  void FCmp();

  void ClampUint8(Register reg);

  void ClampDoubleToUint8(XMMRegister input_reg,
                          XMMRegister temp_xmm_reg,
                          Register result_reg);

  void SlowTruncateToI(Register result_reg, Register input_reg,
      int offset = HeapNumber::kValueOffset - kHeapObjectTag);

  void TruncateHeapNumberToI(Register result_reg, Register input_reg);
  void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);

  void DoubleToI(Register result_reg, XMMRegister input_reg,
                 XMMRegister scratch, MinusZeroMode minus_zero_mode,
                 Label* lost_precision, Label* is_nan, Label* minus_zero,
                 Label::Distance dst = Label::kFar);

  void LoadUint32(XMMRegister dst, Register src);

  void LoadInstanceDescriptors(Register map, Register descriptors);
  void EnumLength(Register dst, Register map);
  void NumberOfOwnDescriptors(Register dst, Register map);
  void LoadAccessor(Register dst, Register holder, int accessor_index,
                    AccessorComponent accessor);

  template<typename Field>
  void DecodeField(Register reg) {
    static const int shift = Field::kShift;
    static const int mask = Field::kMask >> Field::kShift;
    if (shift != 0) {
      shrp(reg, Immediate(shift));
    }
    andp(reg, Immediate(mask));
  }

  template<typename Field>
  void DecodeFieldToSmi(Register reg) {
    if (SmiValuesAre32Bits()) {
      andp(reg, Immediate(Field::kMask));
      shlp(reg, Immediate(kSmiShift - Field::kShift));
    } else {
      static const int shift = Field::kShift;
      static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
      DCHECK(SmiValuesAre31Bits());
      DCHECK(kSmiShift == kSmiTagSize);
      DCHECK((mask & 0x80000000u) == 0);
      if (shift < kSmiShift) {
        shlp(reg, Immediate(kSmiShift - shift));
      } else if (shift > kSmiShift) {
        sarp(reg, Immediate(shift - kSmiShift));
      }
      andp(reg, Immediate(mask));
    }
  }

  // Abort execution if argument is not a number, enabled via --debug-code.
  void AssertNumber(Register object);
  void AssertNotNumber(Register object);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);

  // Abort execution if argument is not a smi, enabled via --debug-code.
  void AssertSmi(Register object);
  void AssertSmi(const Operand& object);

  // Abort execution if a 64 bit register containing a 32 bit payload does not
  // have zeros in the top 32 bits, enabled via --debug-code.
  void AssertZeroExtended(Register reg);

  // Abort execution if argument is not a string, enabled via --debug-code.
  void AssertString(Register object);

  // Abort execution if argument is not a name, enabled via --debug-code.
  void AssertName(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject,
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
  void AssertReceiver(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object);

  // Abort execution if argument is not the root value with the given index,
  // enabled via --debug-code.
  void AssertRootValue(Register src,
                       Heap::RootListIndex root_value_index,
                       BailoutReason reason);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new stack handler and link it into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Inline caching support

  void GetNumberHash(Register r0, Register scratch);

  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space or old space. If the given space
  // is exhausted control continues at the gc_required label. The allocated
  // object is returned in result and end of the new object is returned in
  // result_end. The register scratch can be passed as no_reg in which case
  // an additional object reference will be added to the reloc info. The
  // returned pointers in result and result_end have not yet been tagged as
  // heap objects. If result_contains_top_on_entry is true the content of
  // result is known to be the allocation top on entry (could be result_end
  // from a previous call). If result_contains_top_on_entry is true scratch
  // should be no_reg as it is never used.
  void Allocate(int object_size,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  void Allocate(int header_size,
                ScaleFactor element_size,
                Register element_count,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  void Allocate(Register object_size,
                Register result,
                Register result_end,
                Register scratch,
                Label* gc_required,
                AllocationFlags flags);

  // FastAllocate is right now only used for folded allocations. It just
  // increments the top pointer without checking against limit. This can only
  // be done if it was proved earlier that the allocation will succeed.
  void FastAllocate(int object_size, Register result, Register result_end,
                    AllocationFlags flags);

  void FastAllocate(Register object_size, Register result, Register result_end,
                    AllocationFlags flags);

  // Allocate a heap number in new space with undefined value. Returns
  // tagged pointer in result register, or jumps to gc_required if new
  // space is full.
  void AllocateHeapNumber(Register result,
                          Register scratch,
                          Label* gc_required,
                          MutableMode mode = IMMUTABLE);

  // Allocate a sequential string. All the header fields of the string object
  // are initialized.
  void AllocateTwoByteString(Register result,
                             Register length,
                             Register scratch1,
                             Register scratch2,
                             Register scratch3,
                             Label* gc_required);
  void AllocateOneByteString(Register result, Register length,
                             Register scratch1, Register scratch2,
                             Register scratch3, Label* gc_required);

  // Allocate a raw cons string object. Only the map field of the result is
  // initialized.
  void AllocateTwoByteConsString(Register result,
                          Register scratch1,
                          Register scratch2,
                          Label* gc_required);
  void AllocateOneByteConsString(Register result, Register scratch1,
                                 Register scratch2, Label* gc_required);

  // Allocate a raw sliced string object. Only the map field of the result is
  // initialized.
  void AllocateTwoByteSlicedString(Register result,
                            Register scratch1,
                            Register scratch2,
                            Label* gc_required);
  void AllocateOneByteSlicedString(Register result, Register scratch1,
                                   Register scratch2, Label* gc_required);

  // Allocate and initialize a JSValue wrapper with the specified {constructor}
  // and {value}.
  void AllocateJSValue(Register result, Register constructor, Register value,
                       Register scratch, Label* gc_required);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Check if result is zero and op is negative.
  void NegativeZeroTest(Register result, Register op, Label* then_label);

  // Check if result is zero and op is negative in code using jump targets.
  void NegativeZeroTest(CodeGenerator* cgen,
                        Register result,
                        Register op,
                        JumpTarget* then_target);

  // Check if result is zero and any of op1 and op2 are negative.
  // Register scratch is destroyed, and it must be different from op2.
  void NegativeZeroTest(Register result, Register op1, Register op2,
                        Register scratch, Label* then_label);

  // Machine code version of Map::GetConstructor().
  // |temp| holds |result|'s map when done.
  void GetMapConstructor(Register result, Register map, Register temp);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other register may be
  // clobbered.
  void TryGetFunctionPrototype(Register function, Register result, Label* miss);

  // Find the function context up the context chain.
  void LoadContext(Register dst, int context_chain_length);

  // Load the global object from the current context.
  void LoadGlobalObject(Register dst) {
    LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
  }

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
  }

  // Conditionally load the cached Array transitioned map of type
  // transitioned_kind from the native context if the map in register
  // map_in_out is the cached Array map in the native context of
  // expected_kind.
  void LoadTransitionedArrayMapConditional(
      ElementsKind expected_kind,
      ElementsKind transitioned_kind,
      Register map_in_out,
      Register scratch,
      Label* no_map_match);

  // Load the native context slot with the current index.
  void LoadNativeContextSlot(int index, Register dst);

  // Load the initial map from the global function. The registers
  // function and map can be the same.
  void LoadGlobalFunctionInitialMap(Register function, Register map);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.
  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());

  // Tail call a code stub (jump).
  void TailCallStub(CodeStub* stub);

  // Return from a code stub after popping its arguments.
  void StubReturn(int argc);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f,
                   int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Call a runtime function and save the value of XMM registers.
  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, kSaveFPRegs);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: call an external reference.
  void CallExternalReference(const ExternalReference& ext,
                             int num_arguments);

  // Convenience function: tail call a runtime routine (jump)
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routines
  void JumpToExternalReference(const ExternalReference& ext,
                               bool builtin_exit_frame = false);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // The number of slots reserved for arguments depends on platform. On Windows
  // stack slots are reserved for the arguments passed in registers. On other
  // platforms stack slots are only reserved for the arguments actually passed
  // on the stack.
  void PrepareCallCFunction(int num_arguments);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  // Calculate the number of stack slots to reserve for arguments when calling a
  // C function.
  int ArgumentStackSlotsForCFunctionCall(int num_arguments);

  // ---------------------------------------------------------------------------
  // Utilities

  void Ret();

  // Return and drop arguments from stack, where the number of arguments
  // may be bigger than 2^16 - 1.  Requires a scratch register.
  void Ret(int bytes_dropped, Register scratch);

  Handle<Object> CodeObject() {
    DCHECK(!code_object_.is_null());
    return code_object_;
  }

  // Initialize fields with filler values.  Fields starting at |current_address|
  // not including |end_address| are overwritten with the value in |filler|.  At
  // the end the loop, |current_address| takes the value of |end_address|.
  void InitializeFieldsWithFiller(Register current_address,
                                  Register end_address, Register filler);


  // Emit code for a truncating division by a constant. The dividend register is
  // unchanged, the result is in rdx, and rax gets clobbered.
  void TruncatingDiv(Register dividend, int32_t divisor);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value);
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, BailoutReason reason);

  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cc, BailoutReason reason);

  // Print a message to stdout and abort execution.
  void Abort(BailoutReason msg);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_has_frame(bool value) { has_frame_ = value; }
  bool has_frame() { return has_frame_; }
  inline bool AllowThisStubCall(CodeStub* stub);

  static int SafepointRegisterStackIndex(Register reg) {
    return SafepointRegisterStackIndex(reg.code());
  }

  // Load the type feedback vector from a JavaScript frame.
  void EmitLoadTypeFeedbackVector(Register vector);

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
  void LeaveFrame(StackFrame::Type type);

  void EnterBuiltinFrame(Register context, Register target, Register argc);
  void LeaveBuiltinFrame(Register context, Register target, Register argc);

  // Expects object in rax and returns map with validated enum cache
  // in rax.  Assumes that any other register can be used as a scratch.
  void CheckEnumCache(Label* call_runtime);

  // AllocationMemento support. Arrays may have an associated
  // AllocationMemento object that can be checked for in order to pretransition
  // to another type.
  // On entry, receiver_reg should point to the array object.
  // scratch_reg gets clobbered.
  // If allocation info is present, condition flags are set to equal.
  void TestJSArrayForAllocationMemento(Register receiver_reg,
                                       Register scratch_reg,
                                       Label* no_memento_found);

  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
                                         Register scratch_reg,
                                         Label* memento_found) {
    Label no_memento_found;
    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
                                    &no_memento_found);
    j(equal, memento_found);
    bind(&no_memento_found);
  }

  // Jumps to found label if a prototype map has dictionary elements.
  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
                                        Register scratch1, Label* found);

 private:
  // Order general registers are pushed by Pushad.
  // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
  static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
  static const int kNumSafepointSavedRegisters = 12;
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  bool generating_stub_;
  bool has_frame_;
  bool root_array_available_;

  // Returns a register holding the smi value. The register MUST NOT be
  // modified. It may be the "smi 1 constant" register.
  Register GetSmiConstant(Smi* value);

  int64_t RootRegisterDelta(ExternalReference other);

  // Moves the smi value to the destination register.
  void LoadSmiConstant(Register dst, Smi* value);

  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual,
                      Label* done,
                      bool* definitely_mismatches,
                      InvokeFlag flag,
                      Label::Distance near_jump,
                      const CallWrapper& call_wrapper);

  void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);

  // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
  // accessible via StackSpaceOperand.
  void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);

  void LeaveExitFrameEpilogue(bool restore_context);

  // Allocation support helpers.
  // Loads the top of new-space into the result register.
  // Otherwise the address of the new-space top is loaded into scratch (if
  // scratch is valid), and the new-space top is loaded into result.
  void LoadAllocationTopHelper(Register result,
                               Register scratch,
                               AllocationFlags flags);

  void MakeSureDoubleAlignedHelper(Register result,
                                   Register scratch,
                                   Label* gc_required,
                                   AllocationFlags flags);

  // Update allocation top with value in result_end register.
  // If scratch is valid, it contains the address of the allocation top.
  void UpdateAllocationTopHelper(Register result_end,
                                 Register scratch,
                                 AllocationFlags flags);

  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object,
                  Register scratch,
                  Condition cc,
                  Label* branch,
                  Label::Distance distance = Label::kFar);

  // Helper for finding the mark bits for an address.  Afterwards, the
  // bitmap register points at the word with the mark bits and the mask
  // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
  // unchanged.
  inline void GetMarkBits(Register addr_reg,
                          Register bitmap_reg,
                          Register mask_reg);

  // Compute memory operands for safepoint stack slots.
  Operand SafepointRegisterSlot(Register reg);
  static int SafepointRegisterStackIndex(int reg_code) {
    return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
  }

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;
};


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
 public:
  CodePatcher(Isolate* isolate, byte* address, int size);
  ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

 private:
  byte* address_;  // The address of the code being patched.
  int size_;  // Number of bytes of the expected patch size.
  MacroAssembler masm_;  // Macro assembler used to generate the code.
};


// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}


// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object,
                            Register index,
                            ScaleFactor scale,
                            int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}


inline Operand ContextOperand(Register context, int index) {
  return Operand(context, Context::SlotOffset(index));
}


inline Operand ContextOperand(Register context, Register index) {
  return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}


inline Operand NativeContextOperand() {
  return ContextOperand(rsi, Context::NATIVE_CONTEXT_INDEX);
}


// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef _WIN64
  const int kShaddowSpace = 4;
  return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
#else
  return Operand(rsp, index * kPointerSize);
#endif
}


inline Operand StackOperandForReturnAddress(int32_t disp) {
  return Operand(rsp, disp);
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_X64_MACRO_ASSEMBLER_X64_H_