/*--------------------------------------------------------------------*/ /*--- Interface to LibVEX_Translate, and the SP-update pass ---*/ /*--- m_translate.c ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2000-2015 Julian Seward jseward@acm.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_core_basics.h" #include "pub_core_vki.h" #include "pub_core_aspacemgr.h" #include "pub_core_machine.h" // VG_(fnptr_to_fnentry) // VG_(get_SP) // VG_(machine_get_VexArchInfo) #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_options.h" #include "pub_core_debuginfo.h" // VG_(get_fnname_w_offset) #include "pub_core_redir.h" // VG_(redir_do_lookup) #include "pub_core_signals.h" // VG_(synth_fault_{perms,mapping} #include "pub_core_stacks.h" // VG_(unknown_SP_update*)() #include "pub_core_tooliface.h" // VG_(tdict) #include "pub_core_translate.h" #include "pub_core_transtab.h" #include "pub_core_dispatch.h" // VG_(run_innerloop__dispatch_{un}profiled) // VG_(run_a_noredir_translation__return_point) #include "pub_core_threadstate.h" // VexGuestArchState #include "pub_core_trampoline.h" // VG_(ppctoc_magic_redirect_return_stub) #include "pub_core_execontext.h" // VG_(make_depth_1_ExeContext_from_Addr) #include "pub_core_gdbserver.h" // VG_(instrument_for_gdbserver_if_needed) #include "libvex_emnote.h" // For PPC, EmWarn_PPC64_redir_underflow /*------------------------------------------------------------*/ /*--- Stats ---*/ /*------------------------------------------------------------*/ static ULong n_SP_updates_fast = 0; static ULong n_SP_updates_generic_known = 0; static ULong n_SP_updates_generic_unknown = 0; static ULong n_PX_VexRegUpdSpAtMemAccess = 0; static ULong n_PX_VexRegUpdUnwindregsAtMemAccess = 0; static ULong n_PX_VexRegUpdAllregsAtMemAccess = 0; static ULong n_PX_VexRegUpdAllregsAtEachInsn = 0; void VG_(print_translation_stats) ( void ) { UInt n_SP_updates = n_SP_updates_fast + n_SP_updates_generic_known + n_SP_updates_generic_unknown; if (n_SP_updates == 0) { VG_(message)(Vg_DebugMsg, "translate: no SP updates identified\n"); } else { VG_(message)(Vg_DebugMsg, "translate: fast SP updates identified: %'llu (%3.1f%%)\n", n_SP_updates_fast, n_SP_updates_fast * 100.0 / n_SP_updates ); VG_(message)(Vg_DebugMsg, "translate: generic_known SP updates identified: %'llu (%3.1f%%)\n", n_SP_updates_generic_known, n_SP_updates_generic_known * 100.0 / n_SP_updates ); VG_(message)(Vg_DebugMsg, "translate: generic_unknown SP updates identified: %'llu (%3.1f%%)\n", n_SP_updates_generic_unknown, n_SP_updates_generic_unknown * 100.0 / n_SP_updates ); } VG_(message)(Vg_DebugMsg, "translate: PX: SPonly %'llu, UnwRegs %'llu, AllRegs %'llu, AllRegsAllInsns %'llu\n", n_PX_VexRegUpdSpAtMemAccess, n_PX_VexRegUpdUnwindregsAtMemAccess, n_PX_VexRegUpdAllregsAtMemAccess, n_PX_VexRegUpdAllregsAtEachInsn); } /*------------------------------------------------------------*/ /*--- %SP-update pass ---*/ /*------------------------------------------------------------*/ static Bool need_to_handle_SP_assignment(void) { return ( VG_(tdict).track_new_mem_stack_4 || VG_(tdict).track_die_mem_stack_4 || VG_(tdict).track_new_mem_stack_8 || VG_(tdict).track_die_mem_stack_8 || VG_(tdict).track_new_mem_stack_12 || VG_(tdict).track_die_mem_stack_12 || VG_(tdict).track_new_mem_stack_16 || VG_(tdict).track_die_mem_stack_16 || VG_(tdict).track_new_mem_stack_32 || VG_(tdict).track_die_mem_stack_32 || VG_(tdict).track_new_mem_stack_112 || VG_(tdict).track_die_mem_stack_112 || VG_(tdict).track_new_mem_stack_128 || VG_(tdict).track_die_mem_stack_128 || VG_(tdict).track_new_mem_stack_144 || VG_(tdict).track_die_mem_stack_144 || VG_(tdict).track_new_mem_stack_160 || VG_(tdict).track_die_mem_stack_160 || VG_(tdict).track_new_mem_stack || VG_(tdict).track_die_mem_stack ); } // - The SP aliases are held in an array which is used as a circular buffer. // This misses very few constant updates of SP (ie. < 0.1%) while using a // small, constant structure that will also never fill up and cause // execution to abort. // - Unused slots have a .temp value of 'IRTemp_INVALID'. // - 'next_SP_alias_slot' is the index where the next alias will be stored. // - If the buffer fills, we circle around and start over-writing // non-IRTemp_INVALID values. This is rare, and the overwriting of a // value that would have subsequently be used is even rarer. // - Every slot below next_SP_alias_slot holds a non-IRTemp_INVALID value. // The rest either all won't (if we haven't yet circled around) or all // will (if we have circled around). typedef struct { IRTemp temp; Long delta; } SP_Alias; // With 32 slots the buffer fills very rarely -- eg. once in a run of GCC. // And I've tested with smaller values and the wrap-around case works ok. #define N_ALIASES 32 static SP_Alias SP_aliases[N_ALIASES]; static Int next_SP_alias_slot = 0; static void clear_SP_aliases(void) { Int i; for (i = 0; i < N_ALIASES; i++) { SP_aliases[i].temp = IRTemp_INVALID; SP_aliases[i].delta = 0; } next_SP_alias_slot = 0; } static void add_SP_alias(IRTemp temp, Long delta) { vg_assert(temp != IRTemp_INVALID); SP_aliases[ next_SP_alias_slot ].temp = temp; SP_aliases[ next_SP_alias_slot ].delta = delta; next_SP_alias_slot++; if (N_ALIASES == next_SP_alias_slot) next_SP_alias_slot = 0; } static Bool get_SP_delta(IRTemp temp, Long* delta) { Int i; // i must be signed! vg_assert(IRTemp_INVALID != temp); // Search backwards between current buffer position and the start. for (i = next_SP_alias_slot-1; i >= 0; i--) { if (temp == SP_aliases[i].temp) { *delta = SP_aliases[i].delta; return True; } } // Search backwards between the end and the current buffer position. for (i = N_ALIASES-1; i >= next_SP_alias_slot; i--) { if (temp == SP_aliases[i].temp) { *delta = SP_aliases[i].delta; return True; } } return False; } static void update_SP_aliases(Long delta) { Int i; for (i = 0; i < N_ALIASES; i++) { if (SP_aliases[i].temp == IRTemp_INVALID) { return; } SP_aliases[i].delta += delta; } } /* Given a guest IP, get an origin tag for a 1-element stack trace, and wrap it up in an IR atom that can be passed as the origin-tag value for a stack-adjustment helper function. */ static IRExpr* mk_ecu_Expr ( Addr guest_IP ) { UInt ecu; ExeContext* ec = VG_(make_depth_1_ExeContext_from_Addr)( guest_IP ); vg_assert(ec); ecu = VG_(get_ECU_from_ExeContext)( ec ); vg_assert(VG_(is_plausible_ECU)(ecu)); /* This is always safe to do, since ecu is only 32 bits, and HWord is 32 or 64. */ return mkIRExpr_HWord( (HWord)ecu ); } /* When gdbserver is activated, the translation of a block must first be done by the tool function, then followed by a pass which (if needed) instruments the code for gdbserver. */ static IRSB* tool_instrument_then_gdbserver_if_needed ( VgCallbackClosure* closureV, IRSB* sb_in, const VexGuestLayout* layout, const VexGuestExtents* vge, const VexArchInfo* vai, IRType gWordTy, IRType hWordTy ) { return VG_(instrument_for_gdbserver_if_needed) (VG_(tdict).tool_instrument (closureV, sb_in, layout, vge, vai, gWordTy, hWordTy), layout, vge, gWordTy, hWordTy); } /* For tools that want to know about SP changes, this pass adds in the appropriate hooks. We have to do it after the tool's instrumentation, so the tool doesn't have to worry about the C calls it adds in, and we must do it before register allocation because spilled temps make it much harder to work out the SP deltas. This it is done with Vex's "second instrumentation" pass. Basically, we look for GET(SP)/PUT(SP) pairs and track constant increments/decrements of SP between them. (This requires tracking one or more "aliases", which are not exact aliases but instead are tempregs whose value is equal to the SP's plus or minus a known constant.) If all the changes to SP leading up to a PUT(SP) are by known, small constants, we can do a specific call to eg. new_mem_stack_4, otherwise we fall back to the case that handles an unknown SP change. There is some extra complexity to deal correctly with updates to only parts of SP. Bizarre, but it has been known to happen. */ static IRSB* vg_SP_update_pass ( void* closureV, IRSB* sb_in, const VexGuestLayout* layout, const VexGuestExtents* vge, const VexArchInfo* vai, IRType gWordTy, IRType hWordTy ) { Int i, j, k, minoff_ST, maxoff_ST, sizeof_SP, offset_SP; Int first_SP, last_SP, first_Put, last_Put; IRDirty *dcall, *d; IRStmt* st; IRExpr* e; IRRegArray* descr; IRType typeof_SP; Long delta, con; /* Set up stuff for tracking the guest IP */ Bool curr_IP_known = False; Addr curr_IP = 0; /* Set up BB */ IRSB* bb = emptyIRSB(); bb->tyenv = deepCopyIRTypeEnv(sb_in->tyenv); bb->next = deepCopyIRExpr(sb_in->next); bb->jumpkind = sb_in->jumpkind; bb->offsIP = sb_in->offsIP; delta = 0; sizeof_SP = layout->sizeof_SP; offset_SP = layout->offset_SP; typeof_SP = sizeof_SP==4 ? Ity_I32 : Ity_I64; vg_assert(sizeof_SP == 4 || sizeof_SP == 8); /* --- Start of #defines --- */ # define IS_ADD(op) (sizeof_SP==4 ? ((op)==Iop_Add32) : ((op)==Iop_Add64)) # define IS_SUB(op) (sizeof_SP==4 ? ((op)==Iop_Sub32) : ((op)==Iop_Sub64)) # define IS_ADD_OR_SUB(op) (IS_ADD(op) || IS_SUB(op)) # define GET_CONST(con) \ (sizeof_SP==4 ? (Long)(Int)(con->Ico.U32) \ : (Long)(con->Ico.U64)) # define DO_NEW(syze, tmpp) \ do { \ Bool vanilla, w_ecu; \ vg_assert(curr_IP_known); \ vanilla = NULL != VG_(tdict).track_new_mem_stack_##syze; \ w_ecu = NULL != VG_(tdict).track_new_mem_stack_##syze##_w_ECU; \ vg_assert(!(vanilla && w_ecu)); /* can't have both */ \ if (!(vanilla || w_ecu)) \ goto generic; \ \ /* I don't know if it's really necessary to say that the */ \ /* call reads the stack pointer. But anyway, we do. */ \ if (w_ecu) { \ dcall = unsafeIRDirty_0_N( \ 2/*regparms*/, \ "track_new_mem_stack_" #syze "_w_ECU", \ VG_(fnptr_to_fnentry)( \ VG_(tdict).track_new_mem_stack_##syze##_w_ECU ), \ mkIRExprVec_2(IRExpr_RdTmp(tmpp), \ mk_ecu_Expr(curr_IP)) \ ); \ } else { \ dcall = unsafeIRDirty_0_N( \ 1/*regparms*/, \ "track_new_mem_stack_" #syze , \ VG_(fnptr_to_fnentry)( \ VG_(tdict).track_new_mem_stack_##syze ), \ mkIRExprVec_1(IRExpr_RdTmp(tmpp)) \ ); \ } \ dcall->nFxState = 1; \ dcall->fxState[0].fx = Ifx_Read; \ dcall->fxState[0].offset = layout->offset_SP; \ dcall->fxState[0].size = layout->sizeof_SP; \ dcall->fxState[0].nRepeats = 0; \ dcall->fxState[0].repeatLen = 0; \ \ addStmtToIRSB( bb, IRStmt_Dirty(dcall) ); \ \ vg_assert(syze > 0); \ update_SP_aliases(syze); \ \ n_SP_updates_fast++; \ \ } while (0) # define DO_DIE(syze, tmpp) \ do { \ if (!VG_(tdict).track_die_mem_stack_##syze) \ goto generic; \ \ /* I don't know if it's really necessary to say that the */ \ /* call reads the stack pointer. But anyway, we do. */ \ dcall = unsafeIRDirty_0_N( \ 1/*regparms*/, \ "track_die_mem_stack_" #syze, \ VG_(fnptr_to_fnentry)( \ VG_(tdict).track_die_mem_stack_##syze ), \ mkIRExprVec_1(IRExpr_RdTmp(tmpp)) \ ); \ dcall->nFxState = 1; \ dcall->fxState[0].fx = Ifx_Read; \ dcall->fxState[0].offset = layout->offset_SP; \ dcall->fxState[0].size = layout->sizeof_SP; \ dcall->fxState[0].nRepeats = 0; \ dcall->fxState[0].repeatLen = 0; \ \ addStmtToIRSB( bb, IRStmt_Dirty(dcall) ); \ \ vg_assert(syze > 0); \ update_SP_aliases(-(syze)); \ \ n_SP_updates_fast++; \ \ } while (0) /* --- End of #defines --- */ clear_SP_aliases(); for (i = 0; i < sb_in->stmts_used; i++) { st = sb_in->stmts[i]; if (st->tag == Ist_IMark) { curr_IP_known = True; curr_IP = st->Ist.IMark.addr; } /* t = Get(sp): curr = t, delta = 0 */ if (st->tag != Ist_WrTmp) goto case2; e = st->Ist.WrTmp.data; if (e->tag != Iex_Get) goto case2; if (e->Iex.Get.offset != offset_SP) goto case2; if (e->Iex.Get.ty != typeof_SP) goto case2; vg_assert( typeOfIRTemp(bb->tyenv, st->Ist.WrTmp.tmp) == typeof_SP ); add_SP_alias(st->Ist.WrTmp.tmp, 0); addStmtToIRSB( bb, st ); continue; case2: /* t' = curr +/- const: curr = t', delta +=/-= const */ if (st->tag != Ist_WrTmp) goto case3; e = st->Ist.WrTmp.data; if (e->tag != Iex_Binop) goto case3; if (e->Iex.Binop.arg1->tag != Iex_RdTmp) goto case3; if (!get_SP_delta(e->Iex.Binop.arg1->Iex.RdTmp.tmp, &delta)) goto case3; if (e->Iex.Binop.arg2->tag != Iex_Const) goto case3; if (!IS_ADD_OR_SUB(e->Iex.Binop.op)) goto case3; con = GET_CONST(e->Iex.Binop.arg2->Iex.Const.con); vg_assert( typeOfIRTemp(bb->tyenv, st->Ist.WrTmp.tmp) == typeof_SP ); if (IS_ADD(e->Iex.Binop.op)) { add_SP_alias(st->Ist.WrTmp.tmp, delta + con); } else { add_SP_alias(st->Ist.WrTmp.tmp, delta - con); } addStmtToIRSB( bb, st ); continue; case3: /* t' = curr: curr = t' */ if (st->tag != Ist_WrTmp) goto case4; e = st->Ist.WrTmp.data; if (e->tag != Iex_RdTmp) goto case4; if (!get_SP_delta(e->Iex.RdTmp.tmp, &delta)) goto case4; vg_assert( typeOfIRTemp(bb->tyenv, st->Ist.WrTmp.tmp) == typeof_SP ); add_SP_alias(st->Ist.WrTmp.tmp, delta); addStmtToIRSB( bb, st ); continue; case4: /* Put(sp) = curr */ /* More generally, we must correctly handle a Put which writes any part of SP, not just the case where all of SP is written. */ if (st->tag != Ist_Put) goto case5; first_SP = offset_SP; last_SP = first_SP + sizeof_SP - 1; first_Put = st->Ist.Put.offset; last_Put = first_Put + sizeofIRType( typeOfIRExpr( bb->tyenv, st->Ist.Put.data )) - 1; vg_assert(first_SP <= last_SP); vg_assert(first_Put <= last_Put); if (last_Put < first_SP || last_SP < first_Put) goto case5; /* no overlap */ if (st->Ist.Put.data->tag == Iex_RdTmp && get_SP_delta(st->Ist.Put.data->Iex.RdTmp.tmp, &delta)) { IRTemp tttmp = st->Ist.Put.data->Iex.RdTmp.tmp; /* Why should the following assertion hold? Because any alias added by put_SP_alias must be of a temporary which has the same type as typeof_SP, and whose value is a Get at exactly offset_SP of size typeof_SP. Each call to put_SP_alias is immediately preceded by an assertion that we are putting in a binding for a correctly-typed temporary. */ vg_assert( typeOfIRTemp(bb->tyenv, tttmp) == typeof_SP ); /* From the same type-and-offset-correctness argument, if we found a useable alias, it must for an "exact" write of SP. */ vg_assert(first_SP == first_Put); vg_assert(last_SP == last_Put); switch (delta) { case 0: addStmtToIRSB(bb,st); continue; case 4: DO_DIE( 4, tttmp); addStmtToIRSB(bb,st); continue; case -4: DO_NEW( 4, tttmp); addStmtToIRSB(bb,st); continue; case 8: DO_DIE( 8, tttmp); addStmtToIRSB(bb,st); continue; case -8: DO_NEW( 8, tttmp); addStmtToIRSB(bb,st); continue; case 12: DO_DIE( 12, tttmp); addStmtToIRSB(bb,st); continue; case -12: DO_NEW( 12, tttmp); addStmtToIRSB(bb,st); continue; case 16: DO_DIE( 16, tttmp); addStmtToIRSB(bb,st); continue; case -16: DO_NEW( 16, tttmp); addStmtToIRSB(bb,st); continue; case 32: DO_DIE( 32, tttmp); addStmtToIRSB(bb,st); continue; case -32: DO_NEW( 32, tttmp); addStmtToIRSB(bb,st); continue; case 112: DO_DIE( 112, tttmp); addStmtToIRSB(bb,st); continue; case -112: DO_NEW( 112, tttmp); addStmtToIRSB(bb,st); continue; case 128: DO_DIE( 128, tttmp); addStmtToIRSB(bb,st); continue; case -128: DO_NEW( 128, tttmp); addStmtToIRSB(bb,st); continue; case 144: DO_DIE( 144, tttmp); addStmtToIRSB(bb,st); continue; case -144: DO_NEW( 144, tttmp); addStmtToIRSB(bb,st); continue; case 160: DO_DIE( 160, tttmp); addStmtToIRSB(bb,st); continue; case -160: DO_NEW( 160, tttmp); addStmtToIRSB(bb,st); continue; default: /* common values for ppc64: 144 128 160 112 176 */ n_SP_updates_generic_known++; goto generic; } } else { /* Deal with an unknown update to SP. We're here because either: (1) the Put does not exactly cover SP; it is a partial update. Highly unlikely, but has been known to happen for 16-bit Windows apps running on Wine, doing 16-bit adjustments to %sp. (2) the Put does exactly cover SP, but we are unable to determine how the value relates to the old SP. In any case, we cannot assume that the Put.data value is a tmp; we must assume it can be anything allowed in flat IR (tmp or const). */ IRTemp old_SP; n_SP_updates_generic_unknown++; // Nb: if all is well, this generic case will typically be // called something like every 1000th SP update. If it's more than // that, the above code may be missing some cases. generic: /* Pass both the old and new SP values to this helper. Also, pass an origin tag, even if it isn't needed. */ old_SP = newIRTemp(bb->tyenv, typeof_SP); addStmtToIRSB( bb, IRStmt_WrTmp( old_SP, IRExpr_Get(offset_SP, typeof_SP) ) ); /* Now we know what the old value of SP is. But knowing the new value is a bit tricky if there is a partial write. */ if (first_Put == first_SP && last_Put == last_SP) { /* The common case, an exact write to SP. So st->Ist.Put.data does hold the new value; simple. */ vg_assert(curr_IP_known); if (NULL != VG_(tdict).track_new_mem_stack_w_ECU) dcall = unsafeIRDirty_0_N( 3/*regparms*/, "VG_(unknown_SP_update_w_ECU)", VG_(fnptr_to_fnentry)( &VG_(unknown_SP_update_w_ECU) ), mkIRExprVec_3( IRExpr_RdTmp(old_SP), st->Ist.Put.data, mk_ecu_Expr(curr_IP) ) ); else dcall = unsafeIRDirty_0_N( 2/*regparms*/, "VG_(unknown_SP_update)", VG_(fnptr_to_fnentry)( &VG_(unknown_SP_update) ), mkIRExprVec_2( IRExpr_RdTmp(old_SP), st->Ist.Put.data ) ); addStmtToIRSB( bb, IRStmt_Dirty(dcall) ); /* don't forget the original assignment */ addStmtToIRSB( bb, st ); } else { /* We have a partial update to SP. We need to know what the new SP will be, and hand that to the helper call, but when the helper call happens, SP must hold the value it had before the update. Tricky. Therefore use the following kludge: 1. do the partial SP update (Put) 2. Get the new SP value into a tmp, new_SP 3. Put old_SP 4. Call the helper 5. Put new_SP */ IRTemp new_SP; /* 1 */ addStmtToIRSB( bb, st ); /* 2 */ new_SP = newIRTemp(bb->tyenv, typeof_SP); addStmtToIRSB( bb, IRStmt_WrTmp( new_SP, IRExpr_Get(offset_SP, typeof_SP) ) ); /* 3 */ addStmtToIRSB( bb, IRStmt_Put(offset_SP, IRExpr_RdTmp(old_SP) )); /* 4 */ vg_assert(curr_IP_known); if (NULL != VG_(tdict).track_new_mem_stack_w_ECU) dcall = unsafeIRDirty_0_N( 3/*regparms*/, "VG_(unknown_SP_update_w_ECU)", VG_(fnptr_to_fnentry)( &VG_(unknown_SP_update_w_ECU) ), mkIRExprVec_3( IRExpr_RdTmp(old_SP), IRExpr_RdTmp(new_SP), mk_ecu_Expr(curr_IP) ) ); else dcall = unsafeIRDirty_0_N( 2/*regparms*/, "VG_(unknown_SP_update)", VG_(fnptr_to_fnentry)( &VG_(unknown_SP_update) ), mkIRExprVec_2( IRExpr_RdTmp(old_SP), IRExpr_RdTmp(new_SP) ) ); addStmtToIRSB( bb, IRStmt_Dirty(dcall) ); /* 5 */ addStmtToIRSB( bb, IRStmt_Put(offset_SP, IRExpr_RdTmp(new_SP) )); } /* Forget what we already know. */ clear_SP_aliases(); /* If this is a Put of a tmp that exactly updates SP, start tracking aliases against this tmp. */ if (first_Put == first_SP && last_Put == last_SP && st->Ist.Put.data->tag == Iex_RdTmp) { vg_assert( typeOfIRTemp(bb->tyenv, st->Ist.Put.data->Iex.RdTmp.tmp) == typeof_SP ); add_SP_alias(st->Ist.Put.data->Iex.RdTmp.tmp, 0); } continue; } case5: /* PutI or Dirty call which overlaps SP: complain. We can't deal with SP changing in weird ways (well, we can, but not at this time of night). */ if (st->tag == Ist_PutI) { descr = st->Ist.PutI.details->descr; minoff_ST = descr->base; maxoff_ST = descr->base + descr->nElems * sizeofIRType(descr->elemTy) - 1; if (!(offset_SP > maxoff_ST || (offset_SP + sizeof_SP - 1) < minoff_ST)) goto complain; } if (st->tag == Ist_Dirty) { d = st->Ist.Dirty.details; for (j = 0; j < d->nFxState; j++) { if (d->fxState[j].fx == Ifx_Read || d->fxState[j].fx == Ifx_None) continue; /* Enumerate the described state segments */ for (k = 0; k < 1 + d->fxState[j].nRepeats; k++) { minoff_ST = d->fxState[j].offset + k * d->fxState[j].repeatLen; maxoff_ST = minoff_ST + d->fxState[j].size - 1; if (!(offset_SP > maxoff_ST || (offset_SP + sizeof_SP - 1) < minoff_ST)) goto complain; } } } /* well, not interesting. Just copy and keep going. */ addStmtToIRSB( bb, st ); } /* for (i = 0; i < sb_in->stmts_used; i++) */ return bb; complain: VG_(core_panic)("vg_SP_update_pass: PutI or Dirty which overlaps SP"); #undef IS_ADD #undef IS_SUB #undef IS_ADD_OR_SUB #undef GET_CONST #undef DO_NEW #undef DO_DIE } /*------------------------------------------------------------*/ /*--- Main entry point for the JITter. ---*/ /*------------------------------------------------------------*/ /* Extra comments re self-checking translations and self-modifying code. (JRS 14 Oct 05). There are 3 modes: (1) no checking: all code assumed to be not self-modifying (2) partial: known-problematic situations get a self-check (3) full checking: all translations get a self-check As currently implemented, the default is (2). (3) is always safe, but very slow. (1) works mostly, but fails for gcc nested-function code which uses trampolines on the stack; this situation is detected and handled by (2). ---------- A more robust and transparent solution, which is not currently implemented, is a variant of (2): if a translation is made from an area which aspacem says does not have 'w' permission, then it can be non-self-checking. Otherwise, it needs a self-check. This is complicated by Vex's basic-block chasing. If a self-check is requested, then Vex will not chase over basic block boundaries (it's too complex). However there is still a problem if it chases from a non-'w' area into a 'w' area. I think the right thing to do is: - if a translation request starts in a 'w' area, ask for a self-checking translation, and do not allow any chasing (make chase_into_ok return False). Note that the latter is redundant in the sense that Vex won't chase anyway in this situation. - if a translation request starts in a non-'w' area, do not ask for a self-checking translation. However, do not allow chasing (as determined by chase_into_ok) to go into a 'w' area. The result of this is that all code inside 'w' areas is self checking. To complete the trick, there is a caveat: we must watch the client's mprotect calls. If pages are changed from non-'w' to 'w' then we should throw away all translations which intersect the affected area, so as to force them to be redone with self-checks. ---------- The above outlines the conditions under which bb chasing is allowed from a self-modifying-code point of view. There are other situations pertaining to function redirection in which it is necessary to disallow chasing, but those fall outside the scope of this comment. */ /* Vex dumps the final code in here. Then we can copy it off wherever we like. */ /* 60000: should agree with assertion in VG_(add_to_transtab) in m_transtab.c. */ #define N_TMPBUF 60000 static UChar tmpbuf[N_TMPBUF]; /* Function pointers we must supply to LibVEX in order that it can bomb out and emit messages under Valgrind's control. */ __attribute__ ((noreturn)) static void failure_exit ( void ) { LibVEX_ShowAllocStats(); VG_(core_panic)("LibVEX called failure_exit()."); } static void log_bytes ( const HChar* bytes, SizeT nbytes ) { SizeT i = 0; if (nbytes >= 4) for (; i < nbytes-3; i += 4) VG_(printf)("%c%c%c%c", bytes[i], bytes[i+1], bytes[i+2], bytes[i+3]); for (; i < nbytes; i++) VG_(printf)("%c", bytes[i]); } /* --------- Various helper functions for translation --------- */ /* Look for reasons to disallow making translations from the given segment/addr. */ static Bool translations_allowable_from_seg ( NSegment const* seg, Addr addr ) { # if defined(VGA_x86) || defined(VGA_s390x) || defined(VGA_mips32) \ || defined(VGA_mips64) || defined(VGA_tilegx) Bool allowR = True; # else Bool allowR = False; # endif return seg != NULL && (seg->kind == SkAnonC || seg->kind == SkFileC || seg->kind == SkShmC) && (seg->hasX || (seg->hasR && (allowR || VG_(has_gdbserver_breakpoint) (addr)))); /* If GDB/gdbsrv has inserted a breakpoint at addr, assume this is a valid location to translate if seg is not executable but is readable. This is needed for inferior function calls from GDB: GDB inserts a breakpoint on the stack, and expects to regain control before the breakpoint instruction at the breakpoint address is really executed. For this, the breakpoint instruction must be translated so as to have the call to gdbserver executed. */ } /* Produce a bitmask stating which of the supplied extents needs a self-check. See documentation of VexTranslateArgs::needs_self_check for more details about the return convention. */ static UInt needs_self_check ( void* closureV, /*MAYBE_MOD*/VexRegisterUpdates* pxControl, const VexGuestExtents* vge ) { VgCallbackClosure* closure = (VgCallbackClosure*)closureV; UInt i, bitset; vg_assert(vge->n_used >= 1 && vge->n_used <= 3); bitset = 0; /* Will we need to do a second pass in order to compute a revised *pxControl value? */ Bool pxStatusMightChange = /* "the user actually set it" */ VG_(clo_px_file_backed) != VexRegUpd_INVALID /* "and they set it to something other than the default. */ && *pxControl != VG_(clo_px_file_backed); /* First, compute |bitset|, which specifies which extent(s) need a self check. Whilst we're at it, note any NSegments that we get, so as to reduce the number of calls required to VG_(am_find_nsegment) in a possible second pass. */ const NSegment *segs[3] = { NULL, NULL, NULL }; for (i = 0; i < vge->n_used; i++) { Bool check = False; Addr addr = vge->base[i]; SizeT len = vge->len[i]; NSegment const* segA = NULL; # if defined(VGO_darwin) // GrP fixme hack - dyld i386 IMPORT gets rewritten. // To really do this correctly, we'd need to flush the // translation cache whenever a segment became +WX. segA = VG_(am_find_nsegment)(addr); if (segA && segA->hasX && segA->hasW) check = True; # endif if (!check) { switch (VG_(clo_smc_check)) { case Vg_SmcNone: /* never check (except as per Darwin hack above) */ break; case Vg_SmcAll: /* always check */ check = True; break; case Vg_SmcStack: { /* check if the address is in the same segment as this thread's stack pointer */ Addr sp = VG_(get_SP)(closure->tid); if (!segA) { segA = VG_(am_find_nsegment)(addr); } NSegment const* segSP = VG_(am_find_nsegment)(sp); if (segA && segSP && segA == segSP) check = True; break; } case Vg_SmcAllNonFile: { /* check if any part of the extent is not in a file-mapped segment */ if (!segA) { segA = VG_(am_find_nsegment)(addr); } if (segA && segA->kind == SkFileC && segA->start <= addr && (len == 0 || addr + len <= segA->end + 1)) { /* in a file-mapped segment; skip the check */ } else { check = True; } break; } default: vg_assert(0); } } if (check) bitset |= (1 << i); if (pxStatusMightChange && segA) { vg_assert(i < sizeof(segs)/sizeof(segs[0])); segs[i] = segA; } } /* Now, possibly do a second pass, to see if the PX status might change. This can happen if the user specified value via --px-file-backed= which is different from the default PX value specified via --vex-iropt-register-updates (also known by the shorter alias --px-default). */ if (pxStatusMightChange) { Bool allFileBacked = True; for (i = 0; i < vge->n_used; i++) { Addr addr = vge->base[i]; SizeT len = vge->len[i]; NSegment const* segA = segs[i]; if (!segA) { /* If we don't have a cached value for |segA|, compute it now. */ segA = VG_(am_find_nsegment)(addr); } vg_assert(segA); /* Can this ever fail? */ if (segA && segA->kind == SkFileC && segA->start <= addr && (len == 0 || addr + len <= segA->end + 1)) { /* in a file-mapped segment */ } else { /* not in a file-mapped segment, or we can't figure out where it is */ allFileBacked = False; break; } } /* So, finally, if all the extents are in file backed segments, perform the user-specified PX change. */ if (allFileBacked) { *pxControl = VG_(clo_px_file_backed); } } /* Update running PX stats, as it is difficult without these to check that the system is behaving as expected. */ switch (*pxControl) { case VexRegUpdSpAtMemAccess: n_PX_VexRegUpdSpAtMemAccess++; break; case VexRegUpdUnwindregsAtMemAccess: n_PX_VexRegUpdUnwindregsAtMemAccess++; break; case VexRegUpdAllregsAtMemAccess: n_PX_VexRegUpdAllregsAtMemAccess++; break; case VexRegUpdAllregsAtEachInsn: n_PX_VexRegUpdAllregsAtEachInsn++; break; default: vg_assert(0); } return bitset; } /* This is a callback passed to LibVEX_Translate. It stops Vex from chasing into function entry points that we wish to redirect. Chasing across them obviously defeats the redirect mechanism, with bad effects for Memcheck, Helgrind, DRD, Massif, and possibly others. */ static Bool chase_into_ok ( void* closureV, Addr addr ) { NSegment const* seg = VG_(am_find_nsegment)(addr); /* Work through a list of possibilities why we might not want to allow a chase. */ /* Destination not in a plausible segment? */ if (!translations_allowable_from_seg(seg, addr)) goto dontchase; /* Destination is redirected? */ if (addr != VG_(redir_do_lookup)(addr, NULL)) goto dontchase; # if defined(VG_PLAT_USES_PPCTOC) || defined(VGP_ppc64le_linux) /* This needs to be at the start of its own block. Don't chase. */ if (addr == (Addr)&VG_(ppctoc_magic_redirect_return_stub)) goto dontchase; # endif /* overly conservative, but .. don't chase into the distinguished address that m_transtab uses as an empty-slot marker for VG_(tt_fast). */ if (addr == TRANSTAB_BOGUS_GUEST_ADDR) goto dontchase; # if defined(VGA_s390x) /* Never chase into an EX instruction. Generating IR for EX causes a round-trip through the scheduler including VG_(discard_translations). And that's expensive as shown by perf/tinycc.c: Chasing into EX increases the number of EX translations from 21 to 102666 causing a 7x runtime increase for "none" and a 3.2x runtime increase for memcheck. */ if (((UChar *)addr)[0] == 0x44 || /* EX */ ((UChar *)addr)[0] == 0xC6) /* EXRL */ goto dontchase; # endif /* well, ok then. go on and chase. */ return True; vg_assert(0); /*NOTREACHED*/ dontchase: if (0) VG_(printf)("not chasing into 0x%lx\n", addr); return False; } /* --------------- helpers for with-TOC platforms --------------- */ /* NOTE: with-TOC platforms are: ppc64-linux. */ static IRExpr* mkU64 ( ULong n ) { return IRExpr_Const(IRConst_U64(n)); } static IRExpr* mkU32 ( UInt n ) { return IRExpr_Const(IRConst_U32(n)); } #if defined(VG_PLAT_USES_PPCTOC) || defined(VGP_ppc64le_linux) static IRExpr* mkU8 ( UChar n ) { return IRExpr_Const(IRConst_U8(n)); } static IRExpr* narrowTo32 ( IRTypeEnv* tyenv, IRExpr* e ) { if (typeOfIRExpr(tyenv, e) == Ity_I32) { return e; } else { vg_assert(typeOfIRExpr(tyenv, e) == Ity_I64); return IRExpr_Unop(Iop_64to32, e); } } /* Generate code to push word-typed expression 'e' onto this thread's redir stack, checking for stack overflow and generating code to bomb out if so. */ static void gen_PUSH ( IRSB* bb, IRExpr* e ) { IRRegArray* descr; IRTemp t1; IRExpr* one; # if defined(VGP_ppc64be_linux) || defined(VGP_ppc64le_linux) Int stack_size = VEX_GUEST_PPC64_REDIR_STACK_SIZE; Int offB_REDIR_SP = offsetof(VexGuestPPC64State,guest_REDIR_SP); Int offB_REDIR_STACK = offsetof(VexGuestPPC64State,guest_REDIR_STACK); Int offB_EMNOTE = offsetof(VexGuestPPC64State,guest_EMNOTE); Int offB_CIA = offsetof(VexGuestPPC64State,guest_CIA); Bool is64 = True; IRType ty_Word = Ity_I64; IROp op_CmpNE = Iop_CmpNE64; IROp op_Sar = Iop_Sar64; IROp op_Sub = Iop_Sub64; IROp op_Add = Iop_Add64; IRExpr*(*mkU)(ULong) = mkU64; vg_assert(VG_WORDSIZE == 8); # else Int stack_size = VEX_GUEST_PPC32_REDIR_STACK_SIZE; Int offB_REDIR_SP = offsetof(VexGuestPPC32State,guest_REDIR_SP); Int offB_REDIR_STACK = offsetof(VexGuestPPC32State,guest_REDIR_STACK); Int offB_EMNOTE = offsetof(VexGuestPPC32State,guest_EMNOTE); Int offB_CIA = offsetof(VexGuestPPC32State,guest_CIA); Bool is64 = False; IRType ty_Word = Ity_I32; IROp op_CmpNE = Iop_CmpNE32; IROp op_Sar = Iop_Sar32; IROp op_Sub = Iop_Sub32; IROp op_Add = Iop_Add32; IRExpr*(*mkU)(UInt) = mkU32; vg_assert(VG_WORDSIZE == 4); # endif vg_assert(sizeof(void*) == VG_WORDSIZE); vg_assert(sizeof(Word) == VG_WORDSIZE); vg_assert(sizeof(Addr) == VG_WORDSIZE); descr = mkIRRegArray( offB_REDIR_STACK, ty_Word, stack_size ); t1 = newIRTemp( bb->tyenv, ty_Word ); one = mkU(1); vg_assert(typeOfIRExpr(bb->tyenv, e) == ty_Word); /* t1 = guest_REDIR_SP + 1 */ addStmtToIRSB( bb, IRStmt_WrTmp( t1, IRExpr_Binop(op_Add, IRExpr_Get( offB_REDIR_SP, ty_Word ), one) ) ); /* Bomb out if t1 >=s stack_size, that is, (stack_size-1)-t1 tyenv,IRExpr_RdTmp(t1)), 0, e))); } /* Generate code to pop a word-sized value from this thread's redir stack, binding it to a new temporary, which is returned. As with gen_PUSH, an overflow check is also performed. */ static IRTemp gen_POP ( IRSB* bb ) { # if defined(VGP_ppc64be_linux) || defined(VGP_ppc64le_linux) Int stack_size = VEX_GUEST_PPC64_REDIR_STACK_SIZE; Int offB_REDIR_SP = offsetof(VexGuestPPC64State,guest_REDIR_SP); Int offB_REDIR_STACK = offsetof(VexGuestPPC64State,guest_REDIR_STACK); Int offB_EMNOTE = offsetof(VexGuestPPC64State,guest_EMNOTE); Int offB_CIA = offsetof(VexGuestPPC64State,guest_CIA); Bool is64 = True; IRType ty_Word = Ity_I64; IROp op_CmpNE = Iop_CmpNE64; IROp op_Sar = Iop_Sar64; IROp op_Sub = Iop_Sub64; IRExpr*(*mkU)(ULong) = mkU64; # else Int stack_size = VEX_GUEST_PPC32_REDIR_STACK_SIZE; Int offB_REDIR_SP = offsetof(VexGuestPPC32State,guest_REDIR_SP); Int offB_REDIR_STACK = offsetof(VexGuestPPC32State,guest_REDIR_STACK); Int offB_EMNOTE = offsetof(VexGuestPPC32State,guest_EMNOTE); Int offB_CIA = offsetof(VexGuestPPC32State,guest_CIA); Bool is64 = False; IRType ty_Word = Ity_I32; IROp op_CmpNE = Iop_CmpNE32; IROp op_Sar = Iop_Sar32; IROp op_Sub = Iop_Sub32; IRExpr*(*mkU)(UInt) = mkU32; # endif IRRegArray* descr = mkIRRegArray( offB_REDIR_STACK, ty_Word, stack_size ); IRTemp t1 = newIRTemp( bb->tyenv, ty_Word ); IRTemp res = newIRTemp( bb->tyenv, ty_Word ); IRExpr* one = mkU(1); vg_assert(sizeof(void*) == VG_WORDSIZE); vg_assert(sizeof(Word) == VG_WORDSIZE); vg_assert(sizeof(Addr) == VG_WORDSIZE); /* t1 = guest_REDIR_SP */ addStmtToIRSB( bb, IRStmt_WrTmp( t1, IRExpr_Get( offB_REDIR_SP, ty_Word ) ) ); /* Bomb out if t1 < 0. Same comments as gen_PUSH apply. */ addStmtToIRSB( bb, IRStmt_Put(offB_EMNOTE, mkU32(EmWarn_PPC64_redir_underflow)) ); addStmtToIRSB( bb, IRStmt_Exit( IRExpr_Binop( op_CmpNE, IRExpr_Binop( op_Sar, IRExpr_RdTmp(t1), mkU8(8 * VG_WORDSIZE - 1) ), mkU(0) ), Ijk_EmFail, is64 ? IRConst_U64(0) : IRConst_U32(0), offB_CIA ) ); /* res = guest_REDIR_STACK[t1+0] */ /* PutI/GetI have I32-typed indexes regardless of guest word size */ addStmtToIRSB( bb, IRStmt_WrTmp( res, IRExpr_GetI(descr, narrowTo32(bb->tyenv,IRExpr_RdTmp(t1)), 0) ) ); /* guest_REDIR_SP = t1-1 */ addStmtToIRSB( bb, IRStmt_Put(offB_REDIR_SP, IRExpr_Binop(op_Sub, IRExpr_RdTmp(t1), one)) ); return res; } #endif #if defined(VG_PLAT_USES_PPCTOC) /* Generate code to push LR and R2 onto this thread's redir stack, then set R2 to the new value (which is the TOC pointer to be used for the duration of the replacement function, as determined by m_debuginfo), and set LR to the magic return stub, so we get to intercept the return and restore R2 and L2 to the values saved here. */ static void gen_push_and_set_LR_R2 ( IRSB* bb, Addr new_R2_value ) { # if defined(VGP_ppc64be_linux) Addr bogus_RA = (Addr)&VG_(ppctoc_magic_redirect_return_stub); Int offB_GPR2 = offsetof(VexGuestPPC64State,guest_GPR2); Int offB_LR = offsetof(VexGuestPPC64State,guest_LR); gen_PUSH( bb, IRExpr_Get(offB_LR, Ity_I64) ); gen_PUSH( bb, IRExpr_Get(offB_GPR2, Ity_I64) ); addStmtToIRSB( bb, IRStmt_Put( offB_LR, mkU64( bogus_RA )) ); addStmtToIRSB( bb, IRStmt_Put( offB_GPR2, mkU64( new_R2_value )) ); # else # error Platform is not TOC-afflicted, fortunately # endif } #endif #if defined(VG_PLAT_USES_PPCTOC) || defined(VGP_ppc64le_linux) static void gen_pop_R2_LR_then_bLR ( IRSB* bb ) { # if defined(VGP_ppc64be_linux) || defined(VGP_ppc64le_linux) Int offB_GPR2 = offsetof(VexGuestPPC64State,guest_GPR2); Int offB_LR = offsetof(VexGuestPPC64State,guest_LR); Int offB_CIA = offsetof(VexGuestPPC64State,guest_CIA); IRTemp old_R2 = newIRTemp( bb->tyenv, Ity_I64 ); IRTemp old_LR = newIRTemp( bb->tyenv, Ity_I64 ); /* Restore R2 */ old_R2 = gen_POP( bb ); addStmtToIRSB( bb, IRStmt_Put( offB_GPR2, IRExpr_RdTmp(old_R2)) ); /* Restore LR */ old_LR = gen_POP( bb ); addStmtToIRSB( bb, IRStmt_Put( offB_LR, IRExpr_RdTmp(old_LR)) ); /* Branch to LR */ /* re boring, we arrived here precisely because a wrapped fn did a blr (hence Ijk_Ret); so we should just mark this jump as Boring, else one _Call will have resulted in two _Rets. */ bb->jumpkind = Ijk_Boring; bb->next = IRExpr_Binop(Iop_And64, IRExpr_RdTmp(old_LR), mkU64(~(3ULL))); bb->offsIP = offB_CIA; # else # error Platform is not TOC-afflicted, fortunately # endif } #endif #if defined(VG_PLAT_USES_PPCTOC) || defined(VGP_ppc64le_linux) static Bool mk_preamble__ppctoc_magic_return_stub ( void* closureV, IRSB* bb ) { VgCallbackClosure* closure = (VgCallbackClosure*)closureV; /* Since we're creating the entire IRSB right here, give it a proper IMark, as it won't get one any other way, and cachegrind will barf if it doesn't have one (fair enough really). */ addStmtToIRSB( bb, IRStmt_IMark( closure->readdr, 4, 0 ) ); /* Generate the magic sequence: pop R2 from hidden stack pop LR from hidden stack goto LR */ gen_pop_R2_LR_then_bLR(bb); return True; /* True == this is the entire BB; don't disassemble any real insns into it - just hand it directly to optimiser/instrumenter/backend. */ } #endif #if defined(VGP_ppc64le_linux) /* Generate code to push LR and R2 onto this thread's redir stack. Need to save R2 in case we redirect to a global entry point. The value of R2 is not preserved when entering the global entry point. Need to make sure R2 gets restored on return. Set LR to the magic return stub, so we get to intercept the return and restore R2 and L2 to the values saved here. The existing infrastruture for the TOC enabled architectures is being exploited here. So, we need to enable a number of the code sections used by VG_PLAT_USES_PPCTOC. */ static void gen_push_R2_and_set_LR ( IRSB* bb ) { Addr bogus_RA = (Addr)&VG_(ppctoc_magic_redirect_return_stub); Int offB_GPR2 = offsetof(VexGuestPPC64State,guest_GPR2); Int offB_LR = offsetof(VexGuestPPC64State,guest_LR); gen_PUSH( bb, IRExpr_Get(offB_LR, Ity_I64) ); gen_PUSH( bb, IRExpr_Get(offB_GPR2, Ity_I64) ); addStmtToIRSB( bb, IRStmt_Put( offB_LR, mkU64( bogus_RA )) ); } # endif /* --------------- END helpers for with-TOC platforms --------------- */ /* This is the IR preamble generator used for replacement functions. It adds code to set the guest_NRADDR{_GPR2} to zero (technically not necessary, but facilitates detecting mixups in which a replacement function has been erroneously declared using VG_REPLACE_FUNCTION_Z{U,Z} when instead it should have been written using VG_WRAP_FUNCTION_Z{U,Z}). On with-TOC platforms the follow hacks are also done: LR and R2 are pushed onto a hidden stack, R2 is set to the correct value for the replacement function, and LR is set to point at the magic return-stub address. Setting LR causes the return of the wrapped/redirected function to lead to our magic return stub, which restores LR and R2 from said stack and returns for real. VG_(get_StackTrace_wrk) understands that the LR value may point to the return stub address, and that in that case it can get the real LR value from the hidden stack instead. */ static Bool mk_preamble__set_NRADDR_to_zero ( void* closureV, IRSB* bb ) { Int nraddr_szB = sizeof(((VexGuestArchState*)0)->guest_NRADDR); vg_assert(nraddr_szB == 4 || nraddr_szB == 8); vg_assert(nraddr_szB == VG_WORDSIZE); addStmtToIRSB( bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR), nraddr_szB == 8 ? mkU64(0) : mkU32(0) ) ); // t9 needs to be set to point to the start of the redirected function. # if defined(VGP_mips32_linux) VgCallbackClosure* closure = (VgCallbackClosure*)closureV; Int offB_GPR25 = offsetof(VexGuestMIPS32State, guest_r25); addStmtToIRSB(bb, IRStmt_Put(offB_GPR25, mkU32(closure->readdr))); # endif # if defined(VGP_mips64_linux) VgCallbackClosure* closure = (VgCallbackClosure*)closureV; Int offB_GPR25 = offsetof(VexGuestMIPS64State, guest_r25); addStmtToIRSB(bb, IRStmt_Put(offB_GPR25, mkU64(closure->readdr))); # endif # if defined(VG_PLAT_USES_PPCTOC) { VgCallbackClosure* closure = (VgCallbackClosure*)closureV; addStmtToIRSB( bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR_GPR2), VG_WORDSIZE==8 ? mkU64(0) : mkU32(0) ) ); gen_push_and_set_LR_R2 ( bb, VG_(get_tocptr)( closure->readdr ) ); } # endif #if defined(VGP_ppc64le_linux) VgCallbackClosure* closure = (VgCallbackClosure*)closureV; Int offB_GPR12 = offsetof(VexGuestArchState, guest_GPR12); addStmtToIRSB(bb, IRStmt_Put(offB_GPR12, mkU64(closure->readdr))); addStmtToIRSB(bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR_GPR2), VG_WORDSIZE==8 ? mkU64(0) : mkU32(0) ) ); gen_push_R2_and_set_LR ( bb ); #endif return False; } /* Ditto, except set guest_NRADDR to nraddr (the un-redirected guest address). This is needed for function wrapping - so the wrapper can read _NRADDR and find the address of the function being wrapped. On toc-afflicted platforms we must also snarf r2. */ static Bool mk_preamble__set_NRADDR_to_nraddr ( void* closureV, IRSB* bb ) { VgCallbackClosure* closure = (VgCallbackClosure*)closureV; Int nraddr_szB = sizeof(((VexGuestArchState*)0)->guest_NRADDR); vg_assert(nraddr_szB == 4 || nraddr_szB == 8); vg_assert(nraddr_szB == VG_WORDSIZE); addStmtToIRSB( bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR), nraddr_szB == 8 ? IRExpr_Const(IRConst_U64( closure->nraddr )) : IRExpr_Const(IRConst_U32( (UInt)closure->nraddr )) ) ); // t9 needs to be set to point to the start of the redirected function. # if defined(VGP_mips32_linux) Int offB_GPR25 = offsetof(VexGuestMIPS32State, guest_r25); addStmtToIRSB(bb, IRStmt_Put(offB_GPR25, mkU32(closure->readdr))); # endif # if defined(VGP_mips64_linux) Int offB_GPR25 = offsetof(VexGuestMIPS64State, guest_r25); addStmtToIRSB(bb, IRStmt_Put(offB_GPR25, mkU64(closure->readdr))); # endif # if defined(VG_PLAT_USES_PPCTOC) addStmtToIRSB( bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR_GPR2), IRExpr_Get(offsetof(VexGuestArchState,guest_GPR2), VG_WORDSIZE==8 ? Ity_I64 : Ity_I32) ) ); gen_push_and_set_LR_R2 ( bb, VG_(get_tocptr)( closure->readdr ) ); # endif #if defined(VGP_ppc64le_linux) /* This saves the r2 before leaving the function. We need to move * guest_NRADDR_GPR2 back to R2 on return. */ Int offB_GPR12 = offsetof(VexGuestArchState, guest_GPR12); addStmtToIRSB( bb, IRStmt_Put( offsetof(VexGuestArchState,guest_NRADDR_GPR2), IRExpr_Get(offsetof(VexGuestArchState,guest_GPR2), VG_WORDSIZE==8 ? Ity_I64 : Ity_I32) ) ); addStmtToIRSB(bb, IRStmt_Put(offB_GPR12, mkU64(closure->readdr))); gen_push_R2_and_set_LR ( bb ); #endif return False; } /* --- Helpers to do with PPC related stack redzones. --- */ __attribute__((unused)) static Bool const_True ( Addr guest_addr ) { return True; } /* --------------- main translation function --------------- */ /* Note: see comments at top of m_redir.c for the Big Picture on how redirections are managed. */ typedef enum { /* normal translation, redir neither requested nor inhibited */ T_Normal, /* redir translation, function-wrap (set _NRADDR) style */ T_Redir_Wrap, /* redir translation, replacement (don't set _NRADDR) style */ T_Redir_Replace, /* a translation in which redir is specifically disallowed */ T_NoRedir } T_Kind; /* Translate the basic block beginning at NRADDR, and add it to the translation cache & translation table. Unless DEBUGGING_TRANSLATION is true, in which case the call is being done for debugging purposes, so (a) throw away the translation once it is made, and (b) produce a load of debugging output. If ALLOW_REDIRECTION is False, do not attempt redirection of NRADDR, and also, put the resulting translation into the no-redirect tt/tc instead of the normal one. TID is the identity of the thread requesting this translation. */ Bool VG_(translate) ( ThreadId tid, Addr nraddr, Bool debugging_translation, Int debugging_verbosity, ULong bbs_done, Bool allow_redirection ) { Addr addr; T_Kind kind; Int tmpbuf_used, verbosity, i; Bool (*preamble_fn)(void*,IRSB*); VexArch vex_arch; VexArchInfo vex_archinfo; VexAbiInfo vex_abiinfo; VexGuestExtents vge; VexTranslateArgs vta; VexTranslateResult tres; VgCallbackClosure closure; /* Make sure Vex is initialised right. */ static Bool vex_init_done = False; if (!vex_init_done) { LibVEX_Init ( &failure_exit, &log_bytes, 1, /* debug_paranoia */ &VG_(clo_vex_control) ); vex_init_done = True; } /* Establish the translation kind and actual guest address to start from. Sets (addr,kind). */ if (allow_redirection) { Bool isWrap; Addr tmp = VG_(redir_do_lookup)( nraddr, &isWrap ); if (tmp == nraddr) { /* no redirection found */ addr = nraddr; kind = T_Normal; } else { /* found a redirect */ addr = tmp; kind = isWrap ? T_Redir_Wrap : T_Redir_Replace; } } else { addr = nraddr; kind = T_NoRedir; } /* Established: (nraddr, addr, kind) */ /* Printing redirection info. */ if ((kind == T_Redir_Wrap || kind == T_Redir_Replace) && (VG_(clo_verbosity) >= 2 || VG_(clo_trace_redir))) { Bool ok; const HChar *buf; const HChar *name2; /* Try also to get the soname (not the filename) of the "from" object. This makes it much easier to debug redirection problems. */ const HChar* nraddr_soname = "???"; DebugInfo* nraddr_di = VG_(find_DebugInfo)(nraddr); if (nraddr_di) { const HChar* t = VG_(DebugInfo_get_soname)(nraddr_di); if (t) nraddr_soname = t; } ok = VG_(get_fnname_w_offset)(nraddr, &buf); if (!ok) buf = "???"; // Stash away name1 HChar name1[VG_(strlen)(buf) + 1]; VG_(strcpy)(name1, buf); ok = VG_(get_fnname_w_offset)(addr, &name2); if (!ok) name2 = "???"; VG_(message)(Vg_DebugMsg, "REDIR: 0x%lx (%s:%s) redirected to 0x%lx (%s)\n", nraddr, nraddr_soname, name1, addr, name2 ); } if (!debugging_translation) VG_TRACK( pre_mem_read, Vg_CoreTranslate, tid, "(translator)", addr, 1 ); /* If doing any code printing, print a basic block start marker */ if (VG_(clo_trace_flags) || debugging_translation) { const HChar* objname = "UNKNOWN_OBJECT"; OffT objoff = 0; DebugInfo* di = VG_(find_DebugInfo)( addr ); if (di) { objname = VG_(DebugInfo_get_filename)(di); objoff = addr - VG_(DebugInfo_get_text_bias)(di); } vg_assert(objname); const HChar *fnname; Bool ok = VG_(get_fnname_w_offset)(addr, &fnname); if (!ok) fnname = "UNKNOWN_FUNCTION"; VG_(printf)( "==== SB %u (evchecks %llu) [tid %u] 0x%lx %s %s%c0x%lx\n", VG_(get_bbs_translated)(), bbs_done, tid, addr, fnname, objname, objoff >= 0 ? '+' : '-', (UWord)(objoff >= 0 ? objoff : -objoff) ); } /* Are we allowed to translate here? */ { /* BEGIN new scope specially for 'seg' */ NSegment const* seg = VG_(am_find_nsegment)(addr); if ( (!translations_allowable_from_seg(seg, addr)) || addr == TRANSTAB_BOGUS_GUEST_ADDR ) { if (VG_(clo_trace_signals)) VG_(message)(Vg_DebugMsg, "translations not allowed here (0x%lx)" " - throwing SEGV\n", addr); /* U R busted, sonny. Place your hands on your head and step away from the orig_addr. */ /* Code address is bad - deliver a signal instead */ if (seg != NULL) { /* There's some kind of segment at the requested place, but we aren't allowed to execute code here. */ if (debugging_translation) VG_(printf)("translations not allowed here (segment not executable)" "(0x%lx)\n", addr); else VG_(synth_fault_perms)(tid, addr); } else { /* There is no segment at all; we are attempting to execute in the middle of nowhere. */ if (debugging_translation) VG_(printf)("translations not allowed here (no segment)" "(0x%lx)\n", addr); else VG_(synth_fault_mapping)(tid, addr); } return False; } /* True if a debug trans., or if bit N set in VG_(clo_trace_codegen). */ verbosity = 0; if (debugging_translation) { verbosity = debugging_verbosity; } else if ( (VG_(clo_trace_flags) > 0 && VG_(get_bbs_translated)() <= VG_(clo_trace_notabove) && VG_(get_bbs_translated)() >= VG_(clo_trace_notbelow) )) { verbosity = VG_(clo_trace_flags); } /* Figure out which preamble-mangling callback to send. */ preamble_fn = NULL; if (kind == T_Redir_Replace) preamble_fn = mk_preamble__set_NRADDR_to_zero; else if (kind == T_Redir_Wrap) preamble_fn = mk_preamble__set_NRADDR_to_nraddr; /* LE we setup the LR */ # if defined(VG_PLAT_USES_PPCTOC) || defined(VGP_ppc64le_linux) if (nraddr == (Addr)&VG_(ppctoc_magic_redirect_return_stub)) { /* If entering the special return stub, this means a wrapped or redirected function is returning. Make this translation one which restores R2 and LR from the thread's hidden redir stack, and branch to the (restored) link register, thereby really causing the function to return. */ vg_assert(kind == T_Normal); vg_assert(nraddr == addr); preamble_fn = mk_preamble__ppctoc_magic_return_stub; } # endif /* ------ Actually do the translation. ------ */ vg_assert2(VG_(tdict).tool_instrument, "you forgot to set VgToolInterface function 'tool_instrument'"); /* Get the CPU info established at startup. */ VG_(machine_get_VexArchInfo)( &vex_arch, &vex_archinfo ); /* Set up 'abiinfo' structure with stuff Vex needs to know about the guest and host ABIs. */ LibVEX_default_VexAbiInfo( &vex_abiinfo ); vex_abiinfo.guest_stack_redzone_size = VG_STACK_REDZONE_SZB; # if defined(VGP_amd64_linux) vex_abiinfo.guest_amd64_assume_fs_is_const = True; vex_abiinfo.guest_amd64_assume_gs_is_const = True; # endif # if defined(VGP_amd64_darwin) vex_abiinfo.guest_amd64_assume_gs_is_const = True; # endif # if defined(VGP_ppc32_linux) vex_abiinfo.guest_ppc_zap_RZ_at_blr = False; vex_abiinfo.guest_ppc_zap_RZ_at_bl = NULL; # endif # if defined(VGP_ppc64be_linux) vex_abiinfo.guest_ppc_zap_RZ_at_blr = True; vex_abiinfo.guest_ppc_zap_RZ_at_bl = const_True; vex_abiinfo.host_ppc_calls_use_fndescrs = True; # endif # if defined(VGP_ppc64le_linux) vex_abiinfo.guest_ppc_zap_RZ_at_blr = True; vex_abiinfo.guest_ppc_zap_RZ_at_bl = const_True; vex_abiinfo.host_ppc_calls_use_fndescrs = False; # endif # if defined(VGP_amd64_solaris) vex_abiinfo.guest_amd64_assume_fs_is_const = True; # endif /* Set up closure args. */ closure.tid = tid; closure.nraddr = nraddr; closure.readdr = addr; /* Set up args for LibVEX_Translate. */ vta.arch_guest = vex_arch; vta.archinfo_guest = vex_archinfo; vta.arch_host = vex_arch; vta.archinfo_host = vex_archinfo; vta.abiinfo_both = vex_abiinfo; vta.callback_opaque = (void*)&closure; vta.guest_bytes = (UChar*)addr; vta.guest_bytes_addr = addr; vta.chase_into_ok = chase_into_ok; vta.guest_extents = &vge; vta.host_bytes = tmpbuf; vta.host_bytes_size = N_TMPBUF; vta.host_bytes_used = &tmpbuf_used; { /* At this point we have to reconcile Vex's view of the instrumentation callback - which takes a void* first argument - with Valgrind's view, in which the first arg is a VgCallbackClosure*. Hence the following longwinded casts. They are entirely legal but longwinded so as to maximise the chance of the C typechecker picking up any type snafus. */ IRSB*(*f)(VgCallbackClosure*, IRSB*,const VexGuestLayout*,const VexGuestExtents*, const VexArchInfo*,IRType,IRType) = VG_(clo_vgdb) != Vg_VgdbNo ? tool_instrument_then_gdbserver_if_needed : VG_(tdict).tool_instrument; IRSB*(*g)(void*, IRSB*,const VexGuestLayout*,const VexGuestExtents*, const VexArchInfo*,IRType,IRType) = (__typeof__(g)) f; vta.instrument1 = g; } /* No need for type kludgery here. */ vta.instrument2 = need_to_handle_SP_assignment() ? vg_SP_update_pass : NULL; vta.finaltidy = VG_(needs).final_IR_tidy_pass ? VG_(tdict).tool_final_IR_tidy_pass : NULL; vta.needs_self_check = needs_self_check; vta.preamble_function = preamble_fn; vta.traceflags = verbosity; vta.sigill_diag = VG_(clo_sigill_diag); vta.addProfInc = VG_(clo_profyle_sbs) && kind != T_NoRedir; /* Set up the dispatch continuation-point info. If this is a no-redir translation then it cannot be chained, and the chain-me points are set to NULL to indicate that. The indir point must also be NULL, since we can't allow this translation to do an indir transfer -- that would take it back into the main translation cache too. All this is because no-redir translations live outside the main translation cache (in a secondary one) and chaining them would involve more adminstrative complexity that isn't worth the hassle, because we don't expect them to get used often. So don't bother. */ if (allow_redirection) { vta.disp_cp_chain_me_to_slowEP = VG_(fnptr_to_fnentry)( &VG_(disp_cp_chain_me_to_slowEP) ); vta.disp_cp_chain_me_to_fastEP = VG_(fnptr_to_fnentry)( &VG_(disp_cp_chain_me_to_fastEP) ); vta.disp_cp_xindir = VG_(fnptr_to_fnentry)( &VG_(disp_cp_xindir) ); } else { vta.disp_cp_chain_me_to_slowEP = NULL; vta.disp_cp_chain_me_to_fastEP = NULL; vta.disp_cp_xindir = NULL; } /* This doesn't involve chaining and so is always allowable. */ vta.disp_cp_xassisted = VG_(fnptr_to_fnentry)( &VG_(disp_cp_xassisted) ); /* Sheesh. Finally, actually _do_ the translation! */ tres = LibVEX_Translate ( &vta ); vg_assert(tres.status == VexTransOK); vg_assert(tres.n_sc_extents >= 0 && tres.n_sc_extents <= 3); vg_assert(tmpbuf_used <= N_TMPBUF); vg_assert(tmpbuf_used > 0); } /* END new scope specially for 'seg' */ /* Tell aspacem of all segments that have had translations taken from them. */ for (i = 0; i < vge.n_used; i++) { VG_(am_set_segment_hasT)( vge.base[i] ); } /* Copy data at trans_addr into the translation cache. */ vg_assert(tmpbuf_used > 0 && tmpbuf_used < 65536); // If debugging, don't do anything with the translated block; we // only did this for the debugging output produced along the way. if (!debugging_translation) { if (kind != T_NoRedir) { // Put it into the normal TT/TC structures. This is the // normal case. // Note that we use nraddr (the non-redirected address), not // addr, which might have been changed by the redirection VG_(add_to_transtab)( &vge, nraddr, (Addr)(&tmpbuf[0]), tmpbuf_used, tres.n_sc_extents > 0, tres.offs_profInc, tres.n_guest_instrs ); } else { vg_assert(tres.offs_profInc == -1); /* -1 == unset */ VG_(add_to_unredir_transtab)( &vge, nraddr, (Addr)(&tmpbuf[0]), tmpbuf_used ); } } return True; } /*--------------------------------------------------------------------*/ /*--- end ---*/ /*--------------------------------------------------------------------*/