/*--------------------------------------------------------------------*/ /*--- An expandable array implementation. m_xarray.h ---*/ /*--------------------------------------------------------------------*/ /* This file is part of Valgrind, a dynamic binary instrumentation framework. Copyright (C) 2007-2009 OpenWorks LLP info@open-works.co.uk This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include "pub_core_basics.h" #include "pub_core_libcbase.h" #include "pub_core_libcassert.h" #include "pub_core_libcprint.h" #include "pub_core_xarray.h" /* self */ /* See pub_tool_xarray.h for details of what this is all about. */ struct _XArray { void* (*alloc) ( HChar*, SizeT ); /* alloc fn (nofail) */ HChar* cc; /* cost centre for alloc */ void (*free) ( void* ); /* free fn */ Int (*cmpFn) ( void*, void* ); /* cmp fn (may be NULL) */ Word elemSzB; /* element size in bytes */ void* arr; /* pointer to elements */ Word usedsizeE; /* # used elements in arr */ Word totsizeE; /* max size of arr, in elements */ Bool sorted; /* is it sorted? */ }; XArray* VG_(newXA) ( void*(*alloc_fn)(HChar*,SizeT), HChar* cc, void(*free_fn)(void*), Word elemSzB ) { struct _XArray* xa; /* Implementation relies on Word being signed and (possibly) on SizeT being unsigned. */ vg_assert( sizeof(Word) == sizeof(void*) ); vg_assert( ((Word)(-1)) < ((Word)(0)) ); vg_assert( ((SizeT)(-1)) > ((SizeT)(0)) ); /* check user-supplied info .. */ vg_assert(alloc_fn); vg_assert(free_fn); vg_assert(elemSzB > 0); xa = alloc_fn( cc, sizeof(struct _XArray) ); vg_assert(xa); xa->alloc = alloc_fn; xa->cc = cc; xa->free = free_fn; xa->cmpFn = NULL; xa->elemSzB = elemSzB; xa->usedsizeE = 0; xa->totsizeE = 0; xa->sorted = False; xa->arr = NULL; return xa; } XArray* VG_(cloneXA)( HChar* cc, XArray* xao ) { struct _XArray* xa = (struct _XArray*)xao; struct _XArray* nyu; HChar* nyu_cc; vg_assert(xa); vg_assert(xa->alloc); vg_assert(xa->free); vg_assert(xa->elemSzB >= 1); nyu_cc = cc ? cc : xa->cc; nyu = xa->alloc( nyu_cc, sizeof(struct _XArray) ); if (!nyu) return NULL; /* Copy everything verbatim ... */ *nyu = *xa; nyu->cc = nyu_cc; /* ... except we have to clone the contents-array */ if (nyu->arr) { /* Restrict the total size of the new array to its current actual size. That means we don't waste space copying the unused tail of the original. The tradeoff is that it guarantees we will have to resize the child if even one more element is later added to it, unfortunately. */ nyu->totsizeE = nyu->usedsizeE; /* and allocate .. */ nyu->arr = nyu->alloc( nyu->cc, nyu->totsizeE * nyu->elemSzB ); if (!nyu->arr) { nyu->free(nyu); return NULL; } VG_(memcpy)( nyu->arr, xa->arr, nyu->totsizeE * nyu->elemSzB ); } /* We're done! */ return nyu; } void VG_(deleteXA) ( XArray* xao ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(xa->free); if (xa->arr) xa->free(xa->arr); xa->free(xa); } void VG_(setCmpFnXA) ( XArray* xao, Int (*compar)(void*,void*) ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(compar); xa->cmpFn = compar; xa->sorted = False; } inline void* VG_(indexXA) ( XArray* xao, Word n ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(n >= 0); vg_assert(n < xa->usedsizeE); return ((char*)xa->arr) + n * xa->elemSzB; } static inline void ensureSpaceXA ( struct _XArray* xa ) { if (xa->usedsizeE == xa->totsizeE) { void* tmp; Word newsz; if (xa->totsizeE == 0) vg_assert(!xa->arr); if (xa->totsizeE > 0) vg_assert(xa->arr); if (xa->totsizeE == 0) { /* No point in having tiny (eg) 2-byte allocations for the element array, since all allocs are rounded up to 8 anyway. Hence increase the initial array size for tiny elements in an attempt to avoid reallocations of size 2, 4, 8 if the array does start to fill up. */ if (xa->elemSzB == 1) newsz = 8; else if (xa->elemSzB == 2) newsz = 4; else newsz = 2; } else { newsz = 2 + (3 * xa->totsizeE) / 2; /* 2 * xa->totsizeE; */ } if (0 && xa->totsizeE >= 10000) VG_(printf)("addToXA: increasing from %ld to %ld\n", xa->totsizeE, newsz); tmp = xa->alloc(xa->cc, newsz * xa->elemSzB); vg_assert(tmp); if (xa->usedsizeE > 0) VG_(memcpy)(tmp, xa->arr, xa->usedsizeE * xa->elemSzB); if (xa->arr) xa->free(xa->arr); xa->arr = tmp; xa->totsizeE = newsz; } } Word VG_(addToXA) ( XArray* xao, void* elem ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(elem); vg_assert(xa->totsizeE >= 0); vg_assert(xa->usedsizeE >= 0 && xa->usedsizeE <= xa->totsizeE); ensureSpaceXA( xa ); vg_assert(xa->usedsizeE < xa->totsizeE); vg_assert(xa->arr); VG_(memcpy)( ((UChar*)xa->arr) + xa->usedsizeE * xa->elemSzB, elem, xa->elemSzB ); xa->usedsizeE++; xa->sorted = False; return xa->usedsizeE-1; } Word VG_(addBytesToXA) ( XArray* xao, void* bytesV, Word nbytes ) { Word r, i; struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(xa->elemSzB == 1); vg_assert(nbytes >= 0); vg_assert(xa->totsizeE >= 0); vg_assert(xa->usedsizeE >= 0 && xa->usedsizeE <= xa->totsizeE); r = xa->usedsizeE; for (i = 0; i < nbytes; i++) { ensureSpaceXA( xa ); vg_assert(xa->usedsizeE < xa->totsizeE); vg_assert(xa->arr); * (((UChar*)xa->arr) + xa->usedsizeE) = ((UChar*)bytesV)[i]; xa->usedsizeE++; } xa->sorted = False; return r; } void VG_(sortXA) ( XArray* xao ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(xa->cmpFn); VG_(ssort)( xa->arr, xa->usedsizeE, xa->elemSzB, xa->cmpFn ); xa->sorted = True; } Bool VG_(lookupXA) ( XArray* xao, void* key, Word* first, Word* last ) { Word lo, mid, hi, cres; void* midv; struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(xa->cmpFn); vg_assert(xa->sorted); vg_assert(first); vg_assert(last); lo = 0; hi = xa->usedsizeE-1; while (True) { /* current unsearched space is from lo to hi, inclusive. */ if (lo > hi) return False; /* not found */ mid = (lo + hi) / 2; midv = VG_(indexXA)( xa, mid ); cres = xa->cmpFn( key, midv ); if (cres < 0) { hi = mid-1; continue; } if (cres > 0) { lo = mid+1; continue; } /* Found it, at mid. See how far we can expand this. */ vg_assert(xa->cmpFn( key, VG_(indexXA)(xa, lo) ) >= 0); vg_assert(xa->cmpFn( key, VG_(indexXA)(xa, hi) ) <= 0); *first = *last = mid; while (*first > 0 && 0 == xa->cmpFn( key, VG_(indexXA)(xa, (*first)-1))) (*first)--; while (*last < xa->usedsizeE-1 && 0 == xa->cmpFn( key, VG_(indexXA)(xa, (*last)+1))) (*last)++; return True; } } Word VG_(sizeXA) ( XArray* xao ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); return xa->usedsizeE; } void VG_(dropTailXA) ( XArray* xao, Word n ) { struct _XArray* xa = (struct _XArray*)xao; vg_assert(xa); vg_assert(n >= 0); vg_assert(n <= xa->usedsizeE); xa->usedsizeE -= n; } /*--------------------------------------------------------------------*/ /*--- end m_xarray.c ---*/ /*--------------------------------------------------------------------*/