//--------------------------------------------------------------------*/ //--- Massif: a heap profiling tool. ms_main.c ---*/ //--------------------------------------------------------------------*/ /* This file is part of Massif, a Valgrind tool for profiling memory usage of programs. Copyright (C) 2003-2009 Nicholas Nethercote njn@valgrind.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ //--------------------------------------------------------------------------- // XXX: //--------------------------------------------------------------------------- // Todo -- nice, but less critical: // - do a graph-drawing test // - make file format more generic. Obstacles: // - unit prefixes are not generic // - preset column widths for stats are not generic // - preset column headers are not generic // - "Massif arguments:" line is not generic // - do snapshots on client requests // - (Michael Meeks): have an interactive way to request a dump // (callgrind_control-style) // - "profile now" // - "show me the extra allocations since the last snapshot" // - "start/stop logging" (eg. quickly skip boring bits) // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. // Give each graph a title. (try to do it generically!) // - allow truncation of long fnnames if the exact line number is // identified? [hmm, could make getting the name of alloc-fns more // difficult] [could dump full names to file, truncate in ms_print] // - make --show-below-main=no work // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' // don't work in a .valgrindrc file or in $VALGRIND_OPTS. // m_commandline.c:add_args_from_string() needs to respect single quotes. // - With --stack=yes, want to add a stack trace for detailed snapshots so // it's clear where/why the peak is occurring. (Mattieu Castet) Also, // possibly useful even with --stack=no? (Andi Yin) // // Performance: // - To run the benchmarks: // // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif // time valgrind --tool=massif --depth=100 konqueror // // The other benchmarks don't do much allocation, and so give similar speeds // to Nulgrind. // // Timing results on 'nevermore' (njn's machine) as of r7013: // // heap 0.53s ma:12.4s (23.5x, -----) // tinycc 0.46s ma: 4.9s (10.7x, -----) // many-xpts 0.08s ma: 2.0s (25.0x, -----) // konqueror 29.6s real 0:21.0s user // // [Introduction of --time-unit=i as the default slowed things down by // roughly 0--20%.] // // - get_XCon accounts for about 9% of konqueror startup time. Try // keeping XPt children sorted by 'ip' and use binary search in get_XCon. // Requires factoring out binary search code from various places into a // VG_(bsearch) function. // // Todo -- low priority: // - In each XPt, record both bytes and the number of allocations, and // possibly the global number of allocations. // - (Andy Lin) Give a stack trace on detailed snapshots? // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger // than a certain size! Because: "linux's malloc allows to set a // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will // be handled directly by the kernel, and are guaranteed to be returned to // the system when freed. So we needed to profile only blocks below this // limit." // // File format working notes: #if 0 desc: --heap-admin=foo cmd: date time_unit: ms #----------- snapshot=0 #----------- time=0 mem_heap_B=0 mem_heap_admin_B=0 mem_stacks_B=0 heap_tree=empty #----------- snapshot=1 #----------- time=353 mem_heap_B=5 mem_heap_admin_B=0 mem_stacks_B=0 heap_tree=detailed n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) n1: 5 0x8049821: (within /bin/date) n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) t_events: B n 0 0 0 0 0 n 0 0 0 0 0 t1: 5 t1: 6 Ideas: - each snapshot specifies an x-axis value and one or more y-axis values. - can display the y-axis values separately if you like - can completely separate connection between snapshots and trees. Challenges: - how to specify and scale/abbreviate units on axes? - how to combine multiple values into the y-axis? --------------------------------------------------------------------------------Command: date Massif arguments: --heap-admin=foo ms_print arguments: massif.out -------------------------------------------------------------------------------- KB 6.472^ :# | :# :: . . ... | ::@ :@ :@ :@:::# :: : :::: 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 Number of snapshots: 50 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) -------------------------------------------------------------------------------- 0 0 0 0 0 0 1 345 5 5 0 0 2 353 5 5 0 0 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) #endif //--------------------------------------------------------------------------- #include "pub_tool_basics.h" #include "pub_tool_vki.h" #include "pub_tool_aspacemgr.h" #include "pub_tool_debuginfo.h" #include "pub_tool_hashtable.h" #include "pub_tool_libcbase.h" #include "pub_tool_libcassert.h" #include "pub_tool_libcfile.h" #include "pub_tool_libcprint.h" #include "pub_tool_libcproc.h" #include "pub_tool_machine.h" #include "pub_tool_mallocfree.h" #include "pub_tool_options.h" #include "pub_tool_replacemalloc.h" #include "pub_tool_stacktrace.h" #include "pub_tool_tooliface.h" #include "pub_tool_xarray.h" #include "pub_tool_clientstate.h" #include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK //------------------------------------------------------------*/ //--- Overview of operation ---*/ //------------------------------------------------------------*/ // The size of the stacks and heap is tracked. The heap is tracked in a lot // of detail, enough to tell how many bytes each line of code is responsible // for, more or less. The main data structure is a tree representing the // call tree beneath all the allocation functions like malloc(). // // "Snapshots" are recordings of the memory usage. There are two basic // kinds: // - Normal: these record the current time, total memory size, total heap // size, heap admin size and stack size. // - Detailed: these record those things in a normal snapshot, plus a very // detailed XTree (see below) indicating how the heap is structured. // // Snapshots are taken every so often. There are two storage classes of // snapshots: // - Temporary: Massif does a temporary snapshot every so often. The idea // is to always have a certain number of temporary snapshots around. So // we take them frequently to begin with, but decreasingly often as the // program continues to run. Also, we remove some old ones after a while. // Overall it's a kind of exponential decay thing. Most of these are // normal snapshots, a small fraction are detailed snapshots. // - Permanent: Massif takes a permanent (detailed) snapshot in some // circumstances. They are: // - Peak snapshot: When the memory usage peak is reached, it takes a // snapshot. It keeps this, unless the peak is subsequently exceeded, // in which case it will overwrite the peak snapshot. // - User-requested snapshots: These are done in response to client // requests. They are always kept. // Used for printing things when clo_verbosity > 1. #define VERB(verb, format, args...) \ if (VG_(clo_verbosity) > verb) { \ VG_DMSG("Massif: " format, ##args); \ } //------------------------------------------------------------// //--- Statistics ---// //------------------------------------------------------------// // Konqueror startup, to give an idea of the numbers involved with a biggish // program, with default depth: // // depth=3 depth=40 // - 310,000 allocations // - 300,000 frees // - 15,000 XPts 800,000 XPts // - 1,800 top-XPts static UInt n_heap_allocs = 0; static UInt n_heap_reallocs = 0; static UInt n_heap_frees = 0; static UInt n_ignored_heap_allocs = 0; static UInt n_ignored_heap_frees = 0; static UInt n_ignored_heap_reallocs = 0; static UInt n_stack_allocs = 0; static UInt n_stack_frees = 0; static UInt n_xpts = 0; static UInt n_xpt_init_expansions = 0; static UInt n_xpt_later_expansions = 0; static UInt n_sxpt_allocs = 0; static UInt n_sxpt_frees = 0; static UInt n_skipped_snapshots = 0; static UInt n_real_snapshots = 0; static UInt n_detailed_snapshots = 0; static UInt n_peak_snapshots = 0; static UInt n_cullings = 0; static UInt n_XCon_redos = 0; //------------------------------------------------------------// //--- Globals ---// //------------------------------------------------------------// // Number of guest instructions executed so far. Only used with // --time-unit=i. static Long guest_instrs_executed = 0; static SizeT heap_szB = 0; // Live heap size static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes static SizeT stacks_szB = 0; // Live stacks size // This is the total size from the current peak snapshot, or 0 if no peak // snapshot has been taken yet. static SizeT peak_snapshot_total_szB = 0; // Incremented every time memory is allocated/deallocated, by the // allocated/deallocated amount; includes heap, heap-admin and stack // memory. An alternative to milliseconds as a unit of program "time". static ULong total_allocs_deallocs_szB = 0; // We don't start taking snapshots until the first basic block is executed, // rather than doing it in ms_post_clo_init (which is the obvious spot), for // two reasons. // - It lets us ignore stack events prior to that, because they're not // really proper ones and just would screw things up. // - Because there's still some core initialisation to do, and so there // would be an artificial time gap between the first and second snapshots. // static Bool have_started_executing_code = False; //------------------------------------------------------------// //--- Alloc fns ---// //------------------------------------------------------------// static XArray* alloc_fns; static XArray* ignore_fns; static void init_alloc_fns(void) { // Create the list, and add the default elements. alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", VG_(free), sizeof(Char*)); #define DO(x) { Char* s = x; VG_(addToXA)(alloc_fns, &s); } // Ordered according to (presumed) frequency. // Nb: The C++ "operator new*" ones are overloadable. We include them // always anyway, because even if they're overloaded, it would be a // prodigiously stupid overloading that caused them to not allocate // memory. DO("malloc" ); DO("__builtin_new" ); DO("operator new(unsigned)" ); DO("operator new(unsigned long)" ); DO("__builtin_vec_new" ); DO("operator new[](unsigned)" ); DO("operator new[](unsigned long)" ); DO("calloc" ); DO("realloc" ); DO("memalign" ); DO("operator new(unsigned, std::nothrow_t const&)" ); DO("operator new[](unsigned, std::nothrow_t const&)" ); DO("operator new(unsigned long, std::nothrow_t const&)" ); DO("operator new[](unsigned long, std::nothrow_t const&)"); } static void init_ignore_fns(void) { // Create the (empty) list. ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", VG_(free), sizeof(Char*)); } // Determines if the named function is a member of the XArray. static Bool is_member_fn(XArray* fns, Char* fnname) { Char** fn_ptr; Int i; // Nb: It's a linear search through the list, because we're comparing // strings rather than pointers to strings. // Nb: This gets called a lot. It was an OSet, but they're quite slow to // iterate through so it wasn't a good choice. for (i = 0; i < VG_(sizeXA)(fns); i++) { fn_ptr = VG_(indexXA)(fns, i); if (VG_STREQ(fnname, *fn_ptr)) return True; } return False; } //------------------------------------------------------------// //--- Command line args ---// //------------------------------------------------------------// #define MAX_DEPTH 200 typedef enum { TimeI, TimeMS, TimeB } TimeUnit; static Char* TimeUnit_to_string(TimeUnit time_unit) { switch (time_unit) { case TimeI: return "i"; case TimeMS: return "ms"; case TimeB: return "B"; default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); } } static Bool clo_heap = True; // clo_heap_admin is deliberately a word-sized type. At one point it was // a UInt, but this caused problems on 64-bit machines when it was // multiplied by a small negative number and then promoted to a // word-sized type -- it ended up with a value of 4.2 billion. Sigh. static SSizeT clo_heap_admin = 8; static Bool clo_stacks = False; static Int clo_depth = 30; static double clo_threshold = 1.0; // percentage static double clo_peak_inaccuracy = 1.0; // percentage static Int clo_time_unit = TimeI; static Int clo_detailed_freq = 10; static Int clo_max_snapshots = 100; static Char* clo_massif_out_file = "massif.out.%p"; static XArray* args_for_massif; static Bool ms_process_cmd_line_option(Char* arg) { Char* tmp_str; // Remember the arg for later use. VG_(addToXA)(args_for_massif, &arg); if VG_BOOL_CLO(arg, "--heap", clo_heap) {} else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {} else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 10000) {} else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { VG_(addToXA)(alloc_fns, &tmp_str); } else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { VG_(addToXA)(ignore_fns, &tmp_str); } else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} else return VG_(replacement_malloc_process_cmd_line_option)(arg); return True; } static void ms_print_usage(void) { VG_(printf)( " --heap=no|yes profile heap blocks [yes]\n" " --heap-admin= average admin bytes per heap block;\n" " ignored if --heap=no [8]\n" " --stacks=no|yes profile stack(s) [no]\n" " --depth= depth of contexts [30]\n" " --alloc-fn= specify as an alloc function [empty]\n" " --ignore-fn= ignore heap allocations within [empty]\n" " --threshold= significance threshold, as a percentage [1.0]\n" " --peak-inaccuracy= maximum peak inaccuracy, as a percentage [1.0]\n" " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" " or heap bytes alloc'd/dealloc'd [i]\n" " --detailed-freq= every Nth snapshot should be detailed [10]\n" " --max-snapshots= maximum number of snapshots recorded [100]\n" " --massif-out-file= output file name [massif.out.%%p]\n" ); VG_(replacement_malloc_print_usage)(); } static void ms_print_debug_usage(void) { VG_(replacement_malloc_print_debug_usage)(); } //------------------------------------------------------------// //--- XPts, XTrees and XCons ---// //------------------------------------------------------------// // An XPt represents an "execution point", ie. a code address. Each XPt is // part of a tree of XPts (an "execution tree", or "XTree"). The details of // the heap are represented by a single XTree. // // The root of the tree is 'alloc_xpt', which represents all allocation // functions, eg: // - malloc/calloc/realloc/memalign/new/new[]; // - user-specified allocation functions (using --alloc-fn); // - custom allocation (MALLOCLIKE) points // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because // it makes the code simpler. // // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom // of an XTree (leaf nodes) are "bottom-XPTs". // // Each path from a top-XPt to a bottom-XPt through an XTree gives an // execution context ("XCon"), ie. a stack trace. (And sub-paths represent // stack sub-traces.) The number of XCons in an XTree is equal to the // number of bottom-XPTs in that XTree. // // alloc_xpt XTrees are bi-directional. // | ^ // v | // > parent < Example: if child1() calls parent() and child2() // / | \ also calls parent(), and parent() calls malloc(), // | / \ | the XTree will look like this. // | v v | // child1 child2 // // (Note that malformed stack traces can lead to difficulties. See the // comment at the bottom of get_XCon.) // // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short // for "saved". When the XTree is duplicated for a snapshot, we duplicate // it as an SXTree, which is similar but omits some things it does not need, // and aggregates up insignificant nodes. This is important as an SXTree is // typically much smaller than an XTree. // XXX: make XPt and SXPt extensible arrays, to avoid having to do two // allocations per Pt. typedef struct _XPt XPt; struct _XPt { Addr ip; // code address // Bottom-XPts: space for the precise context. // Other XPts: space of all the descendent bottom-XPts. // Nb: this value goes up and down as the program executes. SizeT szB; XPt* parent; // pointer to parent XPt // Children. // n_children and max_children are 32-bit integers. 16-bit integers // are too small -- a very big program might have more than 65536 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. UInt n_children; // number of children UInt max_children; // capacity of children array XPt** children; // pointers to children XPts }; typedef enum { SigSXPt, InsigSXPt } SXPtTag; typedef struct _SXPt SXPt; struct _SXPt { SXPtTag tag; SizeT szB; // memory size for the node, be it Sig or Insig union { // An SXPt representing a single significant code location. Much like // an XPt, minus the fields that aren't necessary. struct { Addr ip; UInt n_children; SXPt** children; } Sig; // An SXPt representing one or more code locations, all below the // significance threshold. struct { Int n_xpts; // number of aggregated XPts } Insig; }; }; // Fake XPt representing all allocation functions like malloc(). Acts as // parent node to all top-XPts. static XPt* alloc_xpt; // Cheap allocation for blocks that never need to be freed. Saves about 10% // for Konqueror startup with --depth=40. static void* perm_malloc(SizeT n_bytes) { static Addr hp = 0; // current heap pointer static Addr hp_lim = 0; // maximum usable byte in current block #define SUPERBLOCK_SIZE (1 << 20) // 1 MB if (hp + n_bytes > hp_lim) { hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE); if (0 == hp) VG_(out_of_memory_NORETURN)( "massif:perm_malloc", SUPERBLOCK_SIZE); hp_lim = hp + SUPERBLOCK_SIZE - 1; } hp += n_bytes; return (void*)(hp - n_bytes); } static XPt* new_XPt(Addr ip, XPt* parent) { // XPts are never freed, so we can use perm_malloc to allocate them. // Note that we cannot use perm_malloc for the 'children' array, because // that needs to be resizable. XPt* xpt = perm_malloc(sizeof(XPt)); xpt->ip = ip; xpt->szB = 0; xpt->parent = parent; // We don't initially allocate any space for children. We let that // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any // children anyway. xpt->n_children = 0; xpt->max_children = 0; xpt->children = NULL; // Update statistics n_xpts++; return xpt; } static void add_child_xpt(XPt* parent, XPt* child) { // Expand 'children' if necessary. tl_assert(parent->n_children <= parent->max_children); if (parent->n_children == parent->max_children) { if (0 == parent->max_children) { parent->max_children = 4; parent->children = VG_(malloc)( "ms.main.acx.1", parent->max_children * sizeof(XPt*) ); n_xpt_init_expansions++; } else { parent->max_children *= 2; // Double size parent->children = VG_(realloc)( "ms.main.acx.2", parent->children, parent->max_children * sizeof(XPt*) ); n_xpt_later_expansions++; } } // Insert new child XPt in parent's children list. parent->children[ parent->n_children++ ] = child; } // Reverse comparison for a reverse sort -- biggest to smallest. static Int SXPt_revcmp_szB(void* n1, void* n2) { SXPt* sxpt1 = *(SXPt**)n1; SXPt* sxpt2 = *(SXPt**)n2; return ( sxpt1->szB < sxpt2->szB ? 1 : sxpt1->szB > sxpt2->szB ? -1 : 0); } //------------------------------------------------------------// //--- XTree Operations ---// //------------------------------------------------------------// // Duplicates an XTree as an SXTree. static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) { Int i, n_sig_children, n_insig_children, n_child_sxpts; SizeT sig_child_threshold_szB; SXPt* sxpt; // Number of XPt children Action for SXPT // ------------------ --------------- // 0 sig, 0 insig alloc 0 children // N sig, 0 insig alloc N children, dup all // N sig, M insig alloc N+1, dup first N, aggregate remaining M // 0 sig, M insig alloc 1, aggregate M // Work out how big a child must be to be significant. If the current // total_szB is zero, then we set it to 1, which means everything will be // judged insignificant -- this is sensible, as there's no point showing // any detail for this case. Unless they used --threshold=0, in which // case we show them everything because that's what they asked for. // // Nb: We do this once now, rather than once per child, because if we do // that the cost of all the divisions adds up to something significant. if (0 == total_szB && 0 != clo_threshold) { sig_child_threshold_szB = 1; } else { sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); } // How many children are significant? And do we need an aggregate SXPt? n_sig_children = 0; for (i = 0; i < xpt->n_children; i++) { if (xpt->children[i]->szB >= sig_child_threshold_szB) { n_sig_children++; } } n_insig_children = xpt->n_children - n_sig_children; n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); // Duplicate the XPt. sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt)); n_sxpt_allocs++; sxpt->tag = SigSXPt; sxpt->szB = xpt->szB; sxpt->Sig.ip = xpt->ip; sxpt->Sig.n_children = n_child_sxpts; // Create the SXPt's children. if (n_child_sxpts > 0) { Int j; SizeT sig_children_szB = 0, insig_children_szB = 0; sxpt->Sig.children = VG_(malloc)("ms.main.dX.2", n_child_sxpts * sizeof(SXPt*)); // Duplicate the significant children. (Nb: sig_children_szB + // insig_children_szB doesn't necessarily equal xpt->szB.) j = 0; for (i = 0; i < xpt->n_children; i++) { if (xpt->children[i]->szB >= sig_child_threshold_szB) { sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); sig_children_szB += xpt->children[i]->szB; } else { insig_children_szB += xpt->children[i]->szB; } } // Create the SXPt for the insignificant children, if any, and put it // in the last child entry. if (n_insig_children > 0) { // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt // doesn't involve a call to dup_XTree(). SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt)); n_sxpt_allocs++; insig_sxpt->tag = InsigSXPt; insig_sxpt->szB = insig_children_szB; insig_sxpt->Insig.n_xpts = n_insig_children; sxpt->Sig.children[n_sig_children] = insig_sxpt; } } else { sxpt->Sig.children = NULL; } return sxpt; } static void free_SXTree(SXPt* sxpt) { Int i; tl_assert(sxpt != NULL); switch (sxpt->tag) { case SigSXPt: // Free all children SXPts, then the children array. for (i = 0; i < sxpt->Sig.n_children; i++) { free_SXTree(sxpt->Sig.children[i]); sxpt->Sig.children[i] = NULL; } VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; break; case InsigSXPt: break; default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); } // Free the SXPt itself. VG_(free)(sxpt); sxpt = NULL; n_sxpt_frees++; } // Sanity checking: we periodically check the heap XTree with // ms_expensive_sanity_check. static void sanity_check_XTree(XPt* xpt, XPt* parent) { tl_assert(xpt != NULL); // Check back-pointer. tl_assert2(xpt->parent == parent, "xpt->parent = %p, parent = %p\n", xpt->parent, parent); // Check children counts look sane. tl_assert(xpt->n_children <= xpt->max_children); // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's // children's sizes. See comment at the bottom of get_XCon. } // Sanity checking: we check SXTrees (which are in snapshots) after // snapshots are created, before they are deleted, and before they are // printed. static void sanity_check_SXTree(SXPt* sxpt) { Int i; tl_assert(sxpt != NULL); // Check the sum of any children szBs equals the SXPt's szB. Check the // children at the same time. switch (sxpt->tag) { case SigSXPt: { if (sxpt->Sig.n_children > 0) { for (i = 0; i < sxpt->Sig.n_children; i++) { sanity_check_SXTree(sxpt->Sig.children[i]); } } break; } case InsigSXPt: break; // do nothing default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); } } //------------------------------------------------------------// //--- XCon Operations ---// //------------------------------------------------------------// // This is the limit on the number of removed alloc-fns that can be in a // single XCon. #define MAX_OVERESTIMATE 50 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) // This is used for various buffers which can hold function names/IP // description. Some C++ names can get really long so 1024 isn't big // enough. #define BUF_LEN 2048 // Determine if the given IP belongs to a function that should be ignored. static Bool fn_should_be_ignored(Addr ip) { static Char buf[BUF_LEN]; return ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf) ? True : False ); } // Get the stack trace for an XCon, filtering out uninteresting entries: // alloc-fns and entries above alloc-fns, and entries below main-or-below-main. // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c // becomes: a / b / main // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked // as an alloc-fn. This is ok. static Int get_IPs( ThreadId tid, Bool is_custom_alloc, Addr ips[]) { static Char buf[BUF_LEN]; Int n_ips, i, n_alloc_fns_removed; Int overestimate; Bool redo; // We ask for a few more IPs than clo_depth suggests we need. Then we // remove every entry that is an alloc-fn. Depending on the // circumstances, we may need to redo it all, asking for more IPs. // Details: // - If the original stack trace is smaller than asked-for, redo=False // - Else if after filtering we have >= clo_depth IPs, redo=False // - Else redo=True // In other words, to redo, we'd have to get a stack trace as big as we // asked for and remove more than 'overestimate' alloc-fns. // Main loop. redo = True; // Assume this to begin with. for (overestimate = 3; redo; overestimate += 6) { // This should never happen -- would require MAX_OVERESTIMATE // alloc-fns to be removed from the stack trace. if (overestimate > MAX_OVERESTIMATE) VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); // Ask for more IPs than clo_depth suggests we need. n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, NULL/*array to dump SP values in*/, NULL/*array to dump FP values in*/, 0/*first_ip_delta*/ ); tl_assert(n_ips > 0); // If the original stack trace is smaller than asked-for, redo=False. if (n_ips < clo_depth + overestimate) { redo = False; } // If it's a non-custom block, we will always remove the first stack // trace entry (which will be one of malloc, __builtin_new, etc). n_alloc_fns_removed = ( is_custom_alloc ? 0 : 1 ); // Filter out alloc fns. If it's a non-custom block, we remove the // first entry (which will be one of malloc, __builtin_new, etc) // without looking at it, because VG_(get_fnname) is expensive (it // involves calls to VG_(malloc)/VG_(free)). for (i = n_alloc_fns_removed; i < n_ips; i++) { if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) { if (is_member_fn(alloc_fns, buf)) { n_alloc_fns_removed++; } else { break; } } } // Remove the alloc fns by shuffling the rest down over them. n_ips -= n_alloc_fns_removed; for (i = 0; i < n_ips; i++) { ips[i] = ips[i + n_alloc_fns_removed]; } // If after filtering we have >= clo_depth IPs, redo=False if (n_ips >= clo_depth) { redo = False; n_ips = clo_depth; // Ignore any IPs below --depth. } if (redo) { n_XCon_redos++; } } return n_ips; } // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. // Unless the allocation should be ignored, in which case we return NULL. static XPt* get_XCon( ThreadId tid, Bool is_custom_alloc ) { static Addr ips[MAX_IPS]; Int i; XPt* xpt = alloc_xpt; // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. Int n_ips = get_IPs(tid, is_custom_alloc, ips); // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if // 'main' is marked as an alloc-fn.) if (n_ips > 0 && fn_should_be_ignored(ips[0])) { return NULL; } // Now do the search/insertion of the XCon. for (i = 0; i < n_ips; i++) { Addr ip = ips[i]; Int ch; // Look for IP in xpt's children. // Linear search, ugh -- about 10% of time for konqueror startup tried // caching last result, only hit about 4% for konqueror. // Nb: this search hits about 98% of the time for konqueror for (ch = 0; True; ch++) { if (ch == xpt->n_children) { // IP not found in the children. // Create and add new child XPt, then stop. XPt* new_child_xpt = new_XPt(ip, xpt); add_child_xpt(xpt, new_child_xpt); xpt = new_child_xpt; break; } else if (ip == xpt->children[ch]->ip) { // Found the IP in the children, stop. xpt = xpt->children[ch]; break; } } } // [Note: several comments refer to this comment. Do not delete it // without updating them.] // // A complication... If all stack traces were well-formed, then the // returned xpt would always be a bottom-XPt. As a consequence, an XPt's // size would always be equal to the sum of its children's sizes, which // is an excellent sanity check. // // Unfortunately, stack traces occasionally are malformed, ie. truncated. // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; // nor can we do sanity check an XPt's size against its children's sizes. // This is annoying, but must be dealt with. (Older versions of Massif // had this assertion in, and it was reported to fail by real users a // couple of times.) Even more annoyingly, I can't come up with a simple // test case that exhibit such a malformed stack trace, so I can't // regression test it. Sigh. // // However, we can print a warning, so that if it happens (unexpectedly) // in existing regression tests we'll know. Also, it warns users that // the output snapshots may not add up the way they might expect. // //tl_assert(0 == xpt->n_children); // Must be bottom-XPt if (0 != xpt->n_children) { static Int n_moans = 0; if (n_moans < 3) { VG_UMSG( "Warning: Malformed stack trace detected. In Massif's output,"); VG_UMSG( " the size of an entry's child entries may not sum up"); VG_UMSG( " to the entry's size as they normally do."); n_moans++; if (3 == n_moans) VG_UMSG( " (And Massif now won't warn about this again.)"); } } return xpt; } // Update 'szB' of every XPt in the XCon, by percolating upwards. static void update_XCon(XPt* xpt, SSizeT space_delta) { tl_assert(True == clo_heap); tl_assert(NULL != xpt); if (0 == space_delta) return; while (xpt != alloc_xpt) { if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); xpt->szB += space_delta; xpt = xpt->parent; } if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); alloc_xpt->szB += space_delta; } //------------------------------------------------------------// //--- Snapshots ---// //------------------------------------------------------------// // Snapshots are done in a way so that we always have a reasonable number of // them. We start by taking them quickly. Once we hit our limit, we cull // some (eg. half), and start taking them more slowly. Once we hit the // limit again, we again cull and then take them even more slowly, and so // on. // Time is measured either in i or ms or bytes, depending on the --time-unit // option. It's a Long because it can exceed 32-bits reasonably easily, and // because we need to allow negative values to represent unset times. typedef Long Time; #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. typedef enum { Normal = 77, Peak, Unused } SnapshotKind; typedef struct { SnapshotKind kind; Time time; SizeT heap_szB; SizeT heap_extra_szB;// Heap slop + admin bytes. SizeT stacks_szB; SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, } // otherwise NULL. Snapshot; static UInt next_snapshot_i = 0; // Index of where next snapshot will go. static Snapshot* snapshots; // Array of snapshots. static Bool is_snapshot_in_use(Snapshot* snapshot) { if (Unused == snapshot->kind) { // If snapshot is unused, check all the fields are unset. tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); tl_assert(snapshot->heap_extra_szB == 0); tl_assert(snapshot->heap_szB == 0); tl_assert(snapshot->stacks_szB == 0); tl_assert(snapshot->alloc_sxpt == NULL); return False; } else { tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); return True; } } static Bool is_detailed_snapshot(Snapshot* snapshot) { return (snapshot->alloc_sxpt ? True : False); } static Bool is_uncullable_snapshot(Snapshot* snapshot) { return &snapshots[0] == snapshot // First snapshot || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot || snapshot->kind == Peak; // Peak snapshot } static void sanity_check_snapshot(Snapshot* snapshot) { if (snapshot->alloc_sxpt) { sanity_check_SXTree(snapshot->alloc_sxpt); } } // All the used entries should look used, all the unused ones should be clear. static void sanity_check_snapshots_array(void) { Int i; for (i = 0; i < next_snapshot_i; i++) { tl_assert( is_snapshot_in_use( & snapshots[i] )); } for ( ; i < clo_max_snapshots; i++) { tl_assert(!is_snapshot_in_use( & snapshots[i] )); } } // This zeroes all the fields in the snapshot, but does not free the heap // XTree if present. It also does a sanity check unless asked not to; we // can't sanity check at startup when clearing the initial snapshots because // they're full of junk. static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) { if (do_sanity_check) sanity_check_snapshot(snapshot); snapshot->kind = Unused; snapshot->time = UNUSED_SNAPSHOT_TIME; snapshot->heap_extra_szB = 0; snapshot->heap_szB = 0; snapshot->stacks_szB = 0; snapshot->alloc_sxpt = NULL; } // This zeroes all the fields in the snapshot, and frees the heap XTree if // present. static void delete_snapshot(Snapshot* snapshot) { // Nb: if there's an XTree, we free it after calling clear_snapshot, // because clear_snapshot does a sanity check which includes checking the // XTree. SXPt* tmp_sxpt = snapshot->alloc_sxpt; clear_snapshot(snapshot, /*do_sanity_check*/True); if (tmp_sxpt) { free_SXTree(tmp_sxpt); } } static void VERB_snapshot(Int verbosity, Char* prefix, Int i) { Snapshot* snapshot = &snapshots[i]; Char* suffix; switch (snapshot->kind) { case Peak: suffix = "p"; break; case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; case Unused: suffix = "u"; break; default: tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); } VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)", prefix, suffix, i, snapshot->time, snapshot->heap_szB, snapshot->heap_extra_szB, snapshot->stacks_szB ); } // Cull half the snapshots; we choose those that represent the smallest // time-spans, because that gives us the most even distribution of snapshots // over time. (It's possible to lose interesting spikes, however.) // // Algorithm for N snapshots: We find the snapshot representing the smallest // timeframe, and remove it. We repeat this until (N/2) snapshots are gone. // We have to do this one snapshot at a time, rather than finding the (N/2) // smallest snapshots in one hit, because when a snapshot is removed, its // neighbours immediately cover greater timespans. So it's O(N^2), but N is // small, and it's not done very often. // // Once we're done, we return the new smallest interval between snapshots. // That becomes our minimum time interval. static UInt cull_snapshots(void) { Int i, jp, j, jn, min_timespan_i; Int n_deleted = 0; Time min_timespan; n_cullings++; // Sets j to the index of the first not-yet-removed snapshot at or after i #define FIND_SNAPSHOT(i, j) \ for (j = i; \ j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ j++) { } VERB(2, "Culling..."); // First we remove enough snapshots by clearing them in-place. Once // that's done, we can slide the remaining ones down. for (i = 0; i < clo_max_snapshots/2; i++) { // Find the snapshot representing the smallest timespan. The timespan // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between // snapshot A and B. We don't consider the first and last snapshots for // removal. Snapshot* min_snapshot; Int min_j; // Initial triple: (prev, curr, next) == (jp, j, jn) // Initial min_timespan is the first one. jp = 0; FIND_SNAPSHOT(1, j); FIND_SNAPSHOT(j+1, jn); min_timespan = 0x7fffffffffffffffLL; min_j = -1; while (jn < clo_max_snapshots) { Time timespan = snapshots[jn].time - snapshots[jp].time; tl_assert(timespan >= 0); // Nb: We never cull the peak snapshot. if (Peak != snapshots[j].kind && timespan < min_timespan) { min_timespan = timespan; min_j = j; } // Move on to next triple jp = j; j = jn; FIND_SNAPSHOT(jn+1, jn); } // We've found the least important snapshot, now delete it. First // print it if necessary. tl_assert(-1 != min_j); // Check we found a minimum. min_snapshot = & snapshots[ min_j ]; if (VG_(clo_verbosity) > 1) { Char buf[64]; VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); VERB_snapshot(2, buf, min_j); } delete_snapshot(min_snapshot); n_deleted++; } // Slide down the remaining snapshots over the removed ones. First set i // to point to the first empty slot, and j to the first full slot after // i. Then slide everything down. for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } for ( ; j < clo_max_snapshots; j++) { if (is_snapshot_in_use( &snapshots[j] )) { snapshots[i++] = snapshots[j]; clear_snapshot(&snapshots[j], /*do_sanity_check*/True); } } next_snapshot_i = i; // Check snapshots array looks ok after changes. sanity_check_snapshots_array(); // Find the minimum timespan remaining; that will be our new minimum // time interval. Note that above we were finding timespans by measuring // two intervals around a snapshot that was under consideration for // deletion. Here we only measure single intervals because all the // deletions have occurred. // // But we have to be careful -- some snapshots (eg. snapshot 0, and the // peak snapshot) are uncullable. If two uncullable snapshots end up // next to each other, they'll never be culled (assuming the peak doesn't // change), and the time gap between them will not change. However, the // time between the remaining cullable snapshots will grow ever larger. // This means that the min_timespan found will always be that between the // two uncullable snapshots, and it will be much smaller than it should // be. To avoid this problem, when computing the minimum timespan, we // ignore any timespans between two uncullable snapshots. tl_assert(next_snapshot_i > 1); min_timespan = 0x7fffffffffffffffLL; min_timespan_i = -1; for (i = 1; i < next_snapshot_i; i++) { if (is_uncullable_snapshot(&snapshots[i]) && is_uncullable_snapshot(&snapshots[i-1])) { VERB(2, "(Ignoring interval %d--%d when computing minimum)", i-1, i); } else { Time timespan = snapshots[i].time - snapshots[i-1].time; tl_assert(timespan >= 0); if (timespan < min_timespan) { min_timespan = timespan; min_timespan_i = i; } } } tl_assert(-1 != min_timespan_i); // Check we found a minimum. // Print remaining snapshots, if necessary. if (VG_(clo_verbosity) > 1) { VERB(2, "Finished culling (%3d of %3d deleted)", n_deleted, clo_max_snapshots); for (i = 0; i < next_snapshot_i; i++) { VERB_snapshot(2, " post-cull", i); } VERB(2, "New time interval = %lld (between snapshots %d and %d)", min_timespan, min_timespan_i-1, min_timespan_i); } return min_timespan; } static Time get_time(void) { // Get current time, in whatever time unit we're using. if (clo_time_unit == TimeI) { return guest_instrs_executed; } else if (clo_time_unit == TimeMS) { // Some stuff happens between the millisecond timer being initialised // to zero and us taking our first snapshot. We determine that time // gap so we can subtract it from all subsequent times so that our // first snapshot is considered to be at t = 0ms. Unfortunately, a // bunch of symbols get read after the first snapshot is taken but // before the second one (which is triggered by the first allocation), // so when the time-unit is 'ms' we always have a big gap between the // first two snapshots. But at least users won't have to wonder why // the first snapshot isn't at t=0. static Bool is_first_get_time = True; static Time start_time_ms; if (is_first_get_time) { start_time_ms = VG_(read_millisecond_timer)(); is_first_get_time = False; return 0; } else { return VG_(read_millisecond_timer)() - start_time_ms; } } else if (clo_time_unit == TimeB) { return total_allocs_deallocs_szB; } else { tl_assert2(0, "bad --time-unit value"); } } // Take a snapshot, and only that -- decisions on whether to take a // snapshot, or what kind of snapshot, are made elsewhere. // Nb: we call the arg "my_time" because "time" shadows a global declaration // in /usr/include/time.h on Darwin. static void take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, Bool is_detailed) { tl_assert(!is_snapshot_in_use(snapshot)); tl_assert(have_started_executing_code); // Heap and heap admin. if (clo_heap) { snapshot->heap_szB = heap_szB; if (is_detailed) { SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); tl_assert( alloc_xpt->szB == heap_szB); tl_assert(snapshot->alloc_sxpt->szB == heap_szB); } snapshot->heap_extra_szB = heap_extra_szB; } // Stack(s). if (clo_stacks) { snapshot->stacks_szB = stacks_szB; } // Rest of snapshot. snapshot->kind = kind; snapshot->time = my_time; sanity_check_snapshot(snapshot); // Update stats. if (Peak == kind) n_peak_snapshots++; if (is_detailed) n_detailed_snapshots++; n_real_snapshots++; } // Take a snapshot, if it's time, or if we've hit a peak. static void maybe_take_snapshot(SnapshotKind kind, Char* what) { // 'min_time_interval' is the minimum time interval between snapshots. // If we try to take a snapshot and less than this much time has passed, // we don't take it. It gets larger as the program runs longer. It's // initialised to zero so that we begin by taking snapshots as quickly as // possible. static Time min_time_interval = 0; // Zero allows startup snapshot. static Time earliest_possible_time_of_next_snapshot = 0; static Int n_snapshots_since_last_detailed = 0; static Int n_skipped_snapshots_since_last_snapshot = 0; Snapshot* snapshot; Bool is_detailed; // Nb: we call this variable "my_time" because "time" shadows a global // declaration in /usr/include/time.h on Darwin. Time my_time = get_time(); switch (kind) { case Normal: // Only do a snapshot if it's time. if (my_time < earliest_possible_time_of_next_snapshot) { n_skipped_snapshots++; n_skipped_snapshots_since_last_snapshot++; return; } is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); break; case Peak: { // Because we're about to do a deallocation, we're coming down from a // local peak. If it is (a) actually a global peak, and (b) a certain // amount bigger than the previous peak, then we take a peak snapshot. // By not taking a snapshot for every peak, we save a lot of effort -- // because many peaks remain peak only for a short time. SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; SizeT excess_szB_for_new_peak = (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { return; } is_detailed = True; break; } default: tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); } // Take the snapshot. snapshot = & snapshots[next_snapshot_i]; take_snapshot(snapshot, kind, my_time, is_detailed); // Record if it was detailed. if (is_detailed) { n_snapshots_since_last_detailed = 0; } else { n_snapshots_since_last_detailed++; } // Update peak data, if it's a Peak snapshot. if (Peak == kind) { Int i, number_of_peaks_snapshots_found = 0; // Sanity check the size, then update our recorded peak. SizeT snapshot_total_szB = snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); peak_snapshot_total_szB = snapshot_total_szB; // Find the old peak snapshot, if it exists, and mark it as normal. for (i = 0; i < next_snapshot_i; i++) { if (Peak == snapshots[i].kind) { snapshots[i].kind = Normal; number_of_peaks_snapshots_found++; } } tl_assert(number_of_peaks_snapshots_found <= 1); } // Finish up verbosity and stats stuff. if (n_skipped_snapshots_since_last_snapshot > 0) { VERB(2, " (skipped %d snapshot%s)", n_skipped_snapshots_since_last_snapshot, ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); } VERB_snapshot(2, what, next_snapshot_i); n_skipped_snapshots_since_last_snapshot = 0; // Cull the entries, if our snapshot table is full. next_snapshot_i++; if (clo_max_snapshots == next_snapshot_i) { min_time_interval = cull_snapshots(); } // Work out the earliest time when the next snapshot can happen. earliest_possible_time_of_next_snapshot = my_time + min_time_interval; } //------------------------------------------------------------// //--- Sanity checking ---// //------------------------------------------------------------// static Bool ms_cheap_sanity_check ( void ) { return True; // Nothing useful we can cheaply check. } static Bool ms_expensive_sanity_check ( void ) { sanity_check_XTree(alloc_xpt, /*parent*/NULL); sanity_check_snapshots_array(); return True; } //------------------------------------------------------------// //--- Heap management ---// //------------------------------------------------------------// // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, // which is a foothold into the XCon at which it was allocated. From // HP_Chunks, XPt 'space' fields are incremented (at allocation) and // decremented (at deallocation). // // Nb: first two fields must match core's VgHashNode. typedef struct _HP_Chunk { struct _HP_Chunk* next; Addr data; // Ptr to actual block SizeT req_szB; // Size requested SizeT slop_szB; // Extra bytes given above those requested XPt* where; // Where allocated; bottom-XPt } HP_Chunk; static VgHashTable malloc_list = NULL; // HP_Chunks static void update_alloc_stats(SSizeT szB_delta) { // Update total_allocs_deallocs_szB. if (szB_delta < 0) szB_delta = -szB_delta; total_allocs_deallocs_szB += szB_delta; } static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) { if (heap_szB_delta < 0) tl_assert(heap_szB >= -heap_szB_delta); if (heap_extra_szB_delta < 0) tl_assert(heap_extra_szB >= -heap_extra_szB_delta); heap_extra_szB += heap_extra_szB_delta; heap_szB += heap_szB_delta; update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); } static void* new_block ( ThreadId tid, void* p, SizeT req_szB, SizeT req_alignB, Bool is_zeroed ) { HP_Chunk* hc; Bool is_custom_alloc = (NULL != p); SizeT actual_szB, slop_szB; if ((SSizeT)req_szB < 0) return NULL; // Allocate and zero if necessary if (!p) { p = VG_(cli_malloc)( req_alignB, req_szB ); if (!p) { return NULL; } if (is_zeroed) VG_(memset)(p, 0, req_szB); actual_szB = VG_(malloc_usable_size)(p); tl_assert(actual_szB >= req_szB); slop_szB = actual_szB - req_szB; } else { slop_szB = 0; } // Make new HP_Chunk node, add to malloc_list hc = VG_(malloc)("ms.main.nb.1", sizeof(HP_Chunk)); hc->req_szB = req_szB; hc->slop_szB = slop_szB; hc->data = (Addr)p; hc->where = NULL; VG_(HT_add_node)(malloc_list, hc); if (clo_heap) { VERB(3, "<<< new_mem_heap (%lu, %lu)", req_szB, slop_szB); hc->where = get_XCon( tid, is_custom_alloc ); if (hc->where) { // Update statistics. n_heap_allocs++; // Update heap stats. update_heap_stats(req_szB, clo_heap_admin + slop_szB); // Update XTree. update_XCon(hc->where, req_szB); // Maybe take a snapshot. maybe_take_snapshot(Normal, " alloc"); } else { // Ignored allocation. n_ignored_heap_allocs++; VERB(3, "(ignored)"); } VERB(3, ">>>"); } return p; } static __inline__ void die_block ( void* p, Bool custom_free ) { // Remove HP_Chunk from malloc_list HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); if (NULL == hc) { return; // must have been a bogus free() } if (clo_heap) { VERB(3, "<<< die_mem_heap"); if (hc->where) { // Update statistics. n_heap_frees++; // Maybe take a peak snapshot, since it's a deallocation. maybe_take_snapshot(Peak, "de-PEAK"); // Update heap stats. update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); // Update XTree. update_XCon(hc->where, -hc->req_szB); // Maybe take a snapshot. maybe_take_snapshot(Normal, "dealloc"); } else { n_ignored_heap_frees++; VERB(3, "(ignored)"); } VERB(3, ">>> (-%lu, -%lu)", hc->req_szB, hc->slop_szB); } // Actually free the chunk, and the heap block (if necessary) VG_(free)( hc ); hc = NULL; if (!custom_free) VG_(cli_free)( p ); } // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was // ignored, but the realloc is not requested to be ignored, and we are // shrinking the block, then we have to ignore the realloc -- otherwise we // could end up with negative heap sizes. This isn't a danger if we are // growing such a block, but for consistency (it also simplifies things) we // ignore such reallocs as well. static __inline__ void* renew_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) { HP_Chunk* hc; void* p_new; SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; XPt *old_where, *new_where; Bool is_ignored = False; // Remove the old block hc = VG_(HT_remove)(malloc_list, (UWord)p_old); if (hc == NULL) { return NULL; // must have been a bogus realloc() } old_req_szB = hc->req_szB; old_slop_szB = hc->slop_szB; if (clo_heap) { VERB(3, "<<< renew_mem_heap (%lu)", new_req_szB); if (hc->where) { // Update statistics. n_heap_reallocs++; // Maybe take a peak snapshot, if it's (effectively) a deallocation. if (new_req_szB < old_req_szB) { maybe_take_snapshot(Peak, "re-PEAK"); } } else { // The original malloc was ignored, so we have to ignore the // realloc as well. is_ignored = True; } } // Actually do the allocation, if necessary. if (new_req_szB <= old_req_szB + old_slop_szB) { // New size is smaller or same; block not moved. p_new = p_old; new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); } else { // New size is bigger; make new block, copy shared contents, free old. p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); if (!p_new) { // Nb: if realloc fails, NULL is returned but the old block is not // touched. What an awful function. return NULL; } VG_(memcpy)(p_new, p_old, old_req_szB); VG_(cli_free)(p_old); new_actual_szB = VG_(malloc_usable_size)(p_new); tl_assert(new_actual_szB >= new_req_szB); new_slop_szB = new_actual_szB - new_req_szB; } if (p_new) { // Update HP_Chunk. hc->data = (Addr)p_new; hc->req_szB = new_req_szB; hc->slop_szB = new_slop_szB; old_where = hc->where; hc->where = NULL; // Update XTree. if (clo_heap) { new_where = get_XCon( tid, /*custom_malloc*/False); if (!is_ignored && new_where) { hc->where = new_where; update_XCon(old_where, -old_req_szB); update_XCon(new_where, new_req_szB); } else { // The realloc itself is ignored. is_ignored = True; // Update statistics. n_ignored_heap_reallocs++; } } } // Now insert the new hc (with a possibly new 'data' field) into // malloc_list. If this realloc() did not increase the memory size, we // will have removed and then re-added hc unnecessarily. But that's ok // because shrinking a block with realloc() is (presumably) much rarer // than growing it, and this way simplifies the growing case. VG_(HT_add_node)(malloc_list, hc); if (clo_heap) { if (!is_ignored) { // Update heap stats. update_heap_stats(new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); // Maybe take a snapshot. maybe_take_snapshot(Normal, "realloc"); } else { VERB(3, "(ignored)"); } VERB(3, ">>> (%ld, %ld)", new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); } return p_new; } //------------------------------------------------------------// //--- malloc() et al replacement wrappers ---// //------------------------------------------------------------// static void* ms_malloc ( ThreadId tid, SizeT szB ) { return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); } static void* ms___builtin_new ( ThreadId tid, SizeT szB ) { return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); } static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) { return new_block( tid, NULL, szB, VG_(clo_alignment), /*is_zeroed*/False ); } static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) { return new_block( tid, NULL, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); } static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) { return new_block( tid, NULL, szB, alignB, False ); } static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) { die_block( p, /*custom_free*/False ); } static void ms___builtin_delete ( ThreadId tid, void* p ) { die_block( p, /*custom_free*/False); } static void ms___builtin_vec_delete ( ThreadId tid, void* p ) { die_block( p, /*custom_free*/False ); } static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) { return renew_block(tid, p_old, new_szB); } static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) { HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); return ( hc ? hc->req_szB + hc->slop_szB : 0 ); } //------------------------------------------------------------// //--- Stacks ---// //------------------------------------------------------------// // We really want the inlining to occur... #define INLINE inline __attribute__((always_inline)) static void update_stack_stats(SSizeT stack_szB_delta) { if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); stacks_szB += stack_szB_delta; update_alloc_stats(stack_szB_delta); } static INLINE void new_mem_stack_2(SizeT len, Char* what) { if (have_started_executing_code) { VERB(3, "<<< new_mem_stack (%ld)", len); n_stack_allocs++; update_stack_stats(len); maybe_take_snapshot(Normal, what); VERB(3, ">>>"); } } static INLINE void die_mem_stack_2(SizeT len, Char* what) { if (have_started_executing_code) { VERB(3, "<<< die_mem_stack (%ld)", -len); n_stack_frees++; maybe_take_snapshot(Peak, "stkPEAK"); update_stack_stats(-len); maybe_take_snapshot(Normal, what); VERB(3, ">>>"); } } static void new_mem_stack(Addr a, SizeT len) { new_mem_stack_2(len, "stk-new"); } static void die_mem_stack(Addr a, SizeT len) { die_mem_stack_2(len, "stk-die"); } static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) { new_mem_stack_2(len, "sig-new"); } static void die_mem_stack_signal(Addr a, SizeT len) { die_mem_stack_2(len, "sig-die"); } //------------------------------------------------------------// //--- Client Requests ---// //------------------------------------------------------------// static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) { switch (argv[0]) { case VG_USERREQ__MALLOCLIKE_BLOCK: { void* res; void* p = (void*)argv[1]; SizeT szB = argv[2]; res = new_block( tid, p, szB, /*alignB--ignored*/0, /*is_zeroed*/False ); tl_assert(res == p); *ret = 0; return True; } case VG_USERREQ__FREELIKE_BLOCK: { void* p = (void*)argv[1]; die_block( p, /*custom_free*/True ); *ret = 0; return True; } default: *ret = 0; return False; } } //------------------------------------------------------------// //--- Instrumentation ---// //------------------------------------------------------------// static void add_counter_update(IRSB* sbOut, Int n) { #if defined(VG_BIGENDIAN) # define END Iend_BE #elif defined(VG_LITTLEENDIAN) # define END Iend_LE #else # error "Unknown endianness" #endif // Add code to increment 'guest_instrs_executed' by 'n', like this: // WrTmp(t1, Load64(&guest_instrs_executed)) // WrTmp(t2, Add64(RdTmp(t1), Const(n))) // Store(&guest_instrs_executed, t2) IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); IRStmt* st2 = IRStmt_WrTmp(t2, IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), IRExpr_Const(IRConst_U64(n)))); IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); addStmtToIRSB( sbOut, st1 ); addStmtToIRSB( sbOut, st2 ); addStmtToIRSB( sbOut, st3 ); } static IRSB* ms_instrument2( IRSB* sbIn ) { Int i, n = 0; IRSB* sbOut; // We increment the instruction count in two places: // - just before any Ist_Exit statements; // - just before the IRSB's end. // In the former case, we zero 'n' and then continue instrumenting. sbOut = deepCopyIRSBExceptStmts(sbIn); for (i = 0; i < sbIn->stmts_used; i++) { IRStmt* st = sbIn->stmts[i]; if (!st || st->tag == Ist_NoOp) continue; if (st->tag == Ist_IMark) { n++; } else if (st->tag == Ist_Exit) { if (n > 0) { // Add an increment before the Exit statement, then reset 'n'. add_counter_update(sbOut, n); n = 0; } } addStmtToIRSB( sbOut, st ); } if (n > 0) { // Add an increment before the SB end. add_counter_update(sbOut, n); } return sbOut; } static IRSB* ms_instrument ( VgCallbackClosure* closure, IRSB* sbIn, VexGuestLayout* layout, VexGuestExtents* vge, IRType gWordTy, IRType hWordTy ) { if (! have_started_executing_code) { // Do an initial sample to guarantee that we have at least one. // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure // 'maybe_take_snapshot's internal static variables are initialised. have_started_executing_code = True; maybe_take_snapshot(Normal, "startup"); } if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } else if (clo_time_unit == TimeMS) { return sbIn; } else if (clo_time_unit == TimeB) { return sbIn; } else { tl_assert2(0, "bad --time-unit value"); } } //------------------------------------------------------------// //--- Writing snapshots ---// //------------------------------------------------------------// Char FP_buf[BUF_LEN]; // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here. // Then change Cachegrind to use it too. #define FP(format, args...) ({ \ VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ }) // Nb: uses a static buffer, each call trashes the last string returned. static Char* make_perc(ULong x, ULong y) { static Char mbuf[32]; // tl_assert(x <= y); XXX; put back in later... // XXX: I'm not confident that VG_(percentify) works as it should... VG_(percentify)(x, y, 2, 6, mbuf); // XXX: this is bogus if the denominator was zero -- resulting string is // something like "0 --%") if (' ' == mbuf[0]) mbuf[0] = '0'; return mbuf; } static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str, Int depth_str_len, SizeT snapshot_heap_szB, SizeT snapshot_total_szB) { Int i, j, n_insig_children_sxpts; SXPt* child = NULL; // Used for printing function names. Is made static to keep it out // of the stack frame -- this function is recursive. Obviously this // now means its contents are trashed across the recursive call. static Char ip_desc_array[BUF_LEN]; Char* ip_desc = ip_desc_array; switch (sxpt->tag) { case SigSXPt: // Print the SXPt itself. if (0 == depth) { ip_desc = "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."; } else { // If it's main-or-below-main, we (if appropriate) ignore everything // below it by pretending it has no children. if ( ! VG_(clo_show_below_main) ) { Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip); if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) { sxpt->Sig.n_children = 0; } } // We need the -1 to get the line number right, But I'm not sure why. ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN); } // Do the non-ip_desc part first... FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB); // For ip_descs beginning with "0xABCD...:" addresses, we first // measure the length of the "0xabcd: " address at the start of the // ip_desc. j = 0; if ('0' == ip_desc[0] && 'x' == ip_desc[1]) { j = 2; while (True) { if (ip_desc[j]) { if (':' == ip_desc[j]) break; j++; } else { tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc); } } } // Nb: We treat this specially (ie. we don't use FP) so that if the // ip_desc is too long (eg. due to a long C++ function name), it'll // get truncated, but the '\n' is still there so its a valid file. // (At one point we were truncating without adding the '\n', which // caused bug #155929.) // // Also, we account for the length of the address in ip_desc when // truncating. (The longest address we could have is 18 chars: "0x" // plus 16 address digits.) This ensures that the truncated function // name always has the same length, which makes truncation // deterministic and thus makes testing easier. tl_assert(j <= 18); VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc); FP_buf[BUF_LEN-18+j-5] = '.'; // "..." at the end make the FP_buf[BUF_LEN-18+j-4] = '.'; // truncation more obvious. FP_buf[BUF_LEN-18+j-3] = '.'; FP_buf[BUF_LEN-18+j-2] = '\n'; // The last char is '\n'. FP_buf[BUF_LEN-18+j-1] = '\0'; // The string is terminated. VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); // Indent. tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char depth_str[depth+0] = ' '; depth_str[depth+1] = '\0'; // Sort SXPt's children by szB (reverse order: biggest to smallest). // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for // two reasons. First, if we do it during dup_XTree, it can get // expensive (eg. 15% of execution time for konqueror // startup/shutdown). Second, this way we get the Insig SXPt (if one // is present) in its sorted position, not at the end. VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), SXPt_revcmp_szB); // Print the SXPt's children. They should already be in sorted order. n_insig_children_sxpts = 0; for (i = 0; i < sxpt->Sig.n_children; i++) { child = sxpt->Sig.children[i]; if (InsigSXPt == child->tag) n_insig_children_sxpts++; // Ok, print the child. NB: contents of ip_desc_array will be // trashed by this recursive call. Doesn't matter currently, // but worth noting. pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len, snapshot_heap_szB, snapshot_total_szB); } // Unindent. depth_str[depth+0] = '\0'; depth_str[depth+1] = '\0'; // There should be 0 or 1 Insig children SXPts. tl_assert(n_insig_children_sxpts <= 1); break; case InsigSXPt: { Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" ); FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n", depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, make_perc((ULong)clo_threshold, 100)); break; } default: tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); } } static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n) { sanity_check_snapshot(snapshot); FP("#-----------\n"); FP("snapshot=%d\n", snapshot_n); FP("#-----------\n"); FP("time=%lld\n", snapshot->time); FP("mem_heap_B=%lu\n", snapshot->heap_szB); FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); if (is_detailed_snapshot(snapshot)) { // Detailed snapshot -- print heap tree. Int depth_str_len = clo_depth + 3; Char* depth_str = VG_(malloc)("ms.main.pps.1", sizeof(Char) * depth_str_len); SizeT snapshot_total_szB = snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; depth_str[0] = '\0'; // Initialise depth_str to "". FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str, depth_str_len, snapshot->heap_szB, snapshot_total_szB); VG_(free)(depth_str); } else { FP("heap_tree=empty\n"); } } static void write_snapshots_to_file(void) { Int i, fd; SysRes sres; // Setup output filename. Nb: it's important to do this now, ie. as late // as possible. If we do it at start-up and the program forks and the // output file format string contains a %p (pid) specifier, both the // parent and child will incorrectly write to the same file; this // happened in 3.3.0. Char* massif_out_file = VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, VKI_S_IRUSR|VKI_S_IWUSR); if (sr_isError(sres)) { // If the file can't be opened for whatever reason (conflict // between multiple cachegrinded processes?), give up now. VG_UMSG("error: can't open output file '%s'", massif_out_file ); VG_UMSG(" ... so profiling results will be missing."); VG_(free)(massif_out_file); return; } else { fd = sr_Res(sres); VG_(free)(massif_out_file); } // Print massif-specific options that were used. // XXX: is it worth having a "desc:" line? Could just call it "options:" // -- this file format isn't as generic as Cachegrind's, so the // implied genericity of "desc:" is bogus. FP("desc:"); for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i); FP(" %s", arg); } if (0 == i) FP(" (none)"); FP("\n"); // Print "cmd:" line. FP("cmd: "); if (VG_(args_the_exename)) { FP("%s", VG_(args_the_exename)); for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); if (arg) FP(" %s", arg); } } else { FP(" ???"); } FP("\n"); FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); for (i = 0; i < next_snapshot_i; i++) { Snapshot* snapshot = & snapshots[i]; pp_snapshot(fd, snapshot, i); // Detailed snapshot! } } //------------------------------------------------------------// //--- Finalisation ---// //------------------------------------------------------------// static void ms_fini(Int exit_status) { // Output. write_snapshots_to_file(); // Stats tl_assert(n_xpts > 0); // always have alloc_xpt VERB(1, "heap allocs: %u", n_heap_allocs); VERB(1, "heap reallocs: %u", n_heap_reallocs); VERB(1, "heap frees: %u", n_heap_frees); VERB(1, "ignored heap allocs: %u", n_ignored_heap_allocs); VERB(1, "ignored heap frees: %u", n_ignored_heap_frees); VERB(1, "ignored heap reallocs: %u", n_ignored_heap_reallocs); VERB(1, "stack allocs: %u", n_stack_allocs); VERB(1, "stack frees: %u", n_stack_frees); VERB(1, "XPts: %u", n_xpts); VERB(1, "top-XPts: %u (%d%%)", alloc_xpt->n_children, ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); VERB(1, "XPt init expansions: %u", n_xpt_init_expansions); VERB(1, "XPt later expansions: %u", n_xpt_later_expansions); VERB(1, "SXPt allocs: %u", n_sxpt_allocs); VERB(1, "SXPt frees: %u", n_sxpt_frees); VERB(1, "skipped snapshots: %u", n_skipped_snapshots); VERB(1, "real snapshots: %u", n_real_snapshots); VERB(1, "detailed snapshots: %u", n_detailed_snapshots); VERB(1, "peak snapshots: %u", n_peak_snapshots); VERB(1, "cullings: %u", n_cullings); VERB(1, "XCon redos: %u", n_XCon_redos); } //------------------------------------------------------------// //--- Initialisation ---// //------------------------------------------------------------// static void ms_post_clo_init(void) { Int i; // Check options. if (clo_threshold < 0 || clo_threshold > 100) { VG_UMSG("--threshold must be between 0.0 and 100.0"); VG_(err_bad_option)("--threshold"); } // If we have --heap=no, set --heap-admin to zero, just to make sure we // don't accidentally use a non-zero heap-admin size somewhere. if (!clo_heap) { clo_heap_admin = 0; } // Print alloc-fns and ignore-fns, if necessary. if (VG_(clo_verbosity) > 1) { VERB(1, "alloc-fns:"); for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { Char** fn_ptr = VG_(indexXA)(alloc_fns, i); VERB(1, " %d: %s", i, *fn_ptr); } VERB(1, "ignore-fns:"); if (0 == VG_(sizeXA)(ignore_fns)) { VERB(1, " "); } for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { Char** fn_ptr = VG_(indexXA)(ignore_fns, i); VERB(1, " %d: %s", i, *fn_ptr); } } // Events to track. if (clo_stacks) { VG_(track_new_mem_stack) ( new_mem_stack ); VG_(track_die_mem_stack) ( die_mem_stack ); VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); } // Initialise snapshot array, and sanity-check it. snapshots = VG_(malloc)("ms.main.mpoci.1", sizeof(Snapshot) * clo_max_snapshots); // We don't want to do snapshot sanity checks here, because they're // currently uninitialised. for (i = 0; i < clo_max_snapshots; i++) { clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); } sanity_check_snapshots_array(); } static void ms_pre_clo_init(void) { VG_(details_name) ("Massif"); VG_(details_version) (NULL); VG_(details_description) ("a heap profiler"); VG_(details_copyright_author)( "Copyright (C) 2003-2009, and GNU GPL'd, by Nicholas Nethercote"); VG_(details_bug_reports_to) (VG_BUGS_TO); // Basic functions. VG_(basic_tool_funcs) (ms_post_clo_init, ms_instrument, ms_fini); // Needs. VG_(needs_libc_freeres)(); VG_(needs_command_line_options)(ms_process_cmd_line_option, ms_print_usage, ms_print_debug_usage); VG_(needs_client_requests) (ms_handle_client_request); VG_(needs_sanity_checks) (ms_cheap_sanity_check, ms_expensive_sanity_check); VG_(needs_malloc_replacement) (ms_malloc, ms___builtin_new, ms___builtin_vec_new, ms_memalign, ms_calloc, ms_free, ms___builtin_delete, ms___builtin_vec_delete, ms_realloc, ms_malloc_usable_size, 0 ); // HP_Chunks. malloc_list = VG_(HT_construct)( "Massif's malloc list" ); // Dummy node at top of the context structure. alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); // Initialise alloc_fns and ignore_fns. init_alloc_fns(); init_ignore_fns(); // Initialise args_for_massif. args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", VG_(free), sizeof(HChar*)); } VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) //--------------------------------------------------------------------// //--- end ---// //--------------------------------------------------------------------//