aboutsummaryrefslogtreecommitdiff
path: root/coregrind/m_deduppoolalloc.c
blob: 92016d88c9f644c09dec8152d2d20538d5044ec9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*--------------------------------------------------------------------*/
/*--- A pool (memory) allocator that avoids duplicated copies.     ---*/
/*---                                           m_deduppoolalloc.c ---*/
/*--------------------------------------------------------------------*/
/*
   This file is part of Valgrind, a dynamic binary instrumentation
   framework.

   Copyright (C) 2014-2015 Philippe Waroquiers philippe.waroquiers@skynet.be

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 2 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307, USA.

   The GNU General Public License is contained in the file COPYING.
*/

#include "pub_core_basics.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcassert.h"
#include "pub_core_xarray.h"
#include "pub_core_deduppoolalloc.h" /* self */
#include "pub_core_hashtable.h"
#include "pub_core_poolalloc.h"
#include "pub_core_options.h"
#include "pub_core_mallocfree.h"
#include "pub_core_debuglog.h"

struct _DedupPoolAlloc {
   SizeT  poolSzB; /* Minimum size of a pool. */
   SizeT  fixedSzb; /* If using VG_(allocFixedEltDedupPA), size of elements */
   SizeT  eltAlign;
   void*   (*alloc_fn)(const HChar*, SizeT); /* pool allocator */
   const HChar*  cc; /* pool allocator's cost centre */
   void    (*free_fn)(void*); /* pool allocator's deallocation function */
   /* XArray of void* (pointers to pools).  The pools themselves.
      Each element is a pointer to a block of size at least PoolSzB bytes.
      The last block might be smaller due to a call to shrink_block. */
   XArray *pools;

   /* hash table of pool elements, used to dedup.
      If NULL, it means the DedupPoolAlloc is frozen. */
   VgHashTable *ht_elements;

   /* Hash table nodes of pool_elements are allocated with a pool, to
      decrease memory overhead during insertion in the DedupPoolAlloc. */
   PoolAlloc *ht_node_pa;

   UChar *curpool;       /* last allocated pool. */
   UChar *curpool_free;  /* Pos in current pool to allocate next elt.
                            always aligned on eltAlign. */
   UChar *curpool_limit; /* Last pos in current pool. */
   /* Note that for a fixed size pool, we only have a single pool to allow
      simple/fast indexing. This single pool is grown, which might change
      the address of the already allocated elements. */

   /* Total nr of alloc calls, resulting in (we hope) a lot less
      real (dedup) elements. */
   ULong nr_alloc_calls;
};

typedef
   struct _ht_node {
      struct _ht_node *next; // Read/Write by hashtable (pub_tool_hashtable.h)
      UWord   key;           // Read by hashtable (pub_tool_hashtable.h)
      SizeT   eltSzB;
      const void *elt;
   }
   ht_node;

DedupPoolAlloc* VG_(newDedupPA) ( SizeT  poolSzB,
                                  SizeT  eltAlign,
                                  void*  (*alloc_fn)(const HChar*, SizeT),
                                  const  HChar* cc,
                                  void   (*free_fn)(void*) )
{
   DedupPoolAlloc* ddpa;
   vg_assert(poolSzB >= eltAlign);
   vg_assert(poolSzB >= 100); /* let's say */
   vg_assert(poolSzB >= 10*eltAlign); /* let's say */
   vg_assert(alloc_fn);
   vg_assert(cc);
   vg_assert(free_fn);
   ddpa = alloc_fn(cc, sizeof(*ddpa));
   VG_(memset)(ddpa, 0, sizeof(*ddpa));
   ddpa->poolSzB  = poolSzB;
   ddpa->fixedSzb = 0;
   ddpa->eltAlign = eltAlign;
   ddpa->alloc_fn = alloc_fn;
   ddpa->cc       = cc;
   ddpa->free_fn  = free_fn;
   ddpa->pools    = VG_(newXA)( alloc_fn, cc, free_fn, sizeof(void*) );

   ddpa->ht_elements = VG_(HT_construct) (cc);
   ddpa->ht_node_pa = VG_(newPA) ( sizeof(ht_node),
                                   1000,
                                   alloc_fn,
                                   cc,
                                   free_fn);
   ddpa->curpool = NULL;
   ddpa->curpool_limit = NULL;
   ddpa->curpool_free = NULL;

   return ddpa;
}

void VG_(deleteDedupPA) ( DedupPoolAlloc* ddpa)
{
   Word i;
   if (ddpa->ht_elements)
      // Free data structures used for insertion.
      VG_(freezeDedupPA) (ddpa, NULL);
   for (i = 0; i < VG_(sizeXA) (ddpa->pools); i++)
      ddpa->free_fn (*(UWord **)VG_(indexXA) ( ddpa->pools, i ));
   VG_(deleteXA) (ddpa->pools);
   ddpa->free_fn (ddpa);
}

static __inline__
UChar* ddpa_align ( DedupPoolAlloc* ddpa, UChar *c )
{
   return (UChar*)VG_ROUNDUP(c, ddpa->eltAlign);
}

/* Allocate a new pool or grow the (only) pool for a fixed size ddpa. */
__attribute__((noinline))
static void ddpa_add_new_pool_or_grow ( DedupPoolAlloc* ddpa )
{
   vg_assert(ddpa);

   if (ddpa->fixedSzb > 0 && ddpa->curpool != NULL) {
      // Grow (* 2) the current (fixed elt) pool
      UChar *curpool_align = ddpa_align(ddpa, ddpa->curpool);
      SizeT curpool_used = ddpa->curpool_free - curpool_align;
      SizeT curpool_size = ddpa->curpool_limit - ddpa->curpool + 1;
      UChar *newpool = ddpa->alloc_fn (ddpa->cc, 2 * curpool_size);
      UChar *newpool_free = ddpa_align (ddpa, newpool);
      UChar *newpool_limit = newpool + 2 * curpool_size - 1;
      Word reloc_offset = (Addr)newpool_free - (Addr)curpool_align;
      ht_node *n;

      VG_(memcpy) (newpool_free, curpool_align, curpool_used);
      /* We have reallocated the (only) pool. We need to relocate the pointers
         in the hash table nodes. */
      VG_(HT_ResetIter) (ddpa->ht_elements);
      while ((n = VG_(HT_Next) (ddpa->ht_elements))) {
        n->elt = (void*)((Addr)n->elt + reloc_offset);
      }
      newpool_free += curpool_used;

      VG_(dropHeadXA) (ddpa->pools, 1);
      ddpa->free_fn (ddpa->curpool);
      ddpa->curpool = newpool;
      ddpa->curpool_free = newpool_free;
      ddpa->curpool_limit = newpool_limit;
      VG_(addToXA)( ddpa->pools, &ddpa->curpool);
   } else {
      /* Allocate a new pool, or allocate the first/only pool for a
         fixed size ddpa. */
      ddpa->curpool = ddpa->alloc_fn( ddpa->cc, ddpa->poolSzB);
      ddpa->curpool_limit = ddpa->curpool + ddpa->poolSzB - 1;
      ddpa->curpool_free = ddpa_align (ddpa, ddpa->curpool);
      /* add to our collection of pools */
      VG_(addToXA)( ddpa->pools, &ddpa->curpool );
   }
}

/* Compare function for 'gen' hash table. No need to compare the key
   in this function, as the hash table already does it for us,
   and that in any case, if the data is equal, the keys must also be
   equal. */
static Word cmp_pool_elt (const void* node1, const void* node2 )
{
   const ht_node* hnode1 = node1;
   const ht_node* hnode2 = node2;

   /* As this function is called by hashtable, that has already checked
      for key equality, it is likely that it is the 'good' element.
      So, we handle the equal case first. */
   if (hnode1->eltSzB == hnode2->eltSzB)
      return VG_(memcmp) (hnode1->elt, hnode2->elt, hnode1->eltSzB);
   else if (hnode1->eltSzB < hnode2->eltSzB)
      return -1;
   else
      return 1;
}

/* Print some stats. */
static void print_stats (DedupPoolAlloc *ddpa)
{
   VG_(message)(Vg_DebugMsg,
                "dedupPA:%s %ld allocs (%u uniq)"
                " %ld pools (%ld bytes free in last pool)\n",
                ddpa->cc,
                (long int) ddpa->nr_alloc_calls,
                VG_(HT_count_nodes)(ddpa->ht_elements),
                VG_(sizeXA)(ddpa->pools),
                ddpa->curpool ?
                (long int) (ddpa->curpool_limit - ddpa->curpool_free + 1) : 0);
   VG_(HT_print_stats) (ddpa->ht_elements, cmp_pool_elt);
}

/* Dummy free, as the ht elements are allocated in a pool, and
   we will destroy the pool in one single operation. */
static void htelem_dummyfree(void* ht_elem)
{
}

void VG_(freezeDedupPA) (DedupPoolAlloc *ddpa,
                         void (*shrink_block)(void*, SizeT))
{
   if (VG_(clo_stats)
       && (VG_(clo_verbosity) > 2 || VG_(debugLog_getLevel) () >= 2)) {
      print_stats(ddpa);
   }
   vg_assert (!ddpa->fixedSzb || VG_(sizeXA) (ddpa->pools) == 1);
   if (shrink_block && ddpa->curpool_limit > ddpa->curpool_free)
      (*shrink_block)(ddpa->curpool, ddpa->curpool_free - ddpa->curpool);
   VG_(HT_destruct) ( ddpa->ht_elements, htelem_dummyfree);
   ddpa->ht_elements = NULL;
   VG_(deletePA) (ddpa->ht_node_pa);
   ddpa->ht_node_pa = NULL;
}


// hash function used by gawk and SDBM.
static UInt sdbm_hash (const UChar* buf, UInt len )
{
  UInt h;
  UInt i;

  h = 0;
  for (i = 0; i < len; i++)
    h = *buf++ + (h<<6) + (h<<16) - h;
  return h;
}

const void* VG_(allocEltDedupPA) (DedupPoolAlloc *ddpa, SizeT eltSzB,
                                  const void *elt)
{
   ht_node ht_elt;
   void* elt_ins;
   ht_node *ht_ins;
   vg_assert(ddpa);
   vg_assert(ddpa->ht_elements);
   vg_assert (eltSzB <= ddpa->poolSzB);

   ddpa->nr_alloc_calls++;

   ht_elt.key = sdbm_hash (elt, eltSzB);

   ht_elt.eltSzB = eltSzB;
   ht_elt.elt = elt;

   ht_ins = VG_(HT_gen_lookup) (ddpa->ht_elements, &ht_elt, cmp_pool_elt);
   if (ht_ins)
      return ht_ins->elt;

   /* Not found -> we need to allocate a new element from the pool
      and insert it in the hash table of inserted elements. */

   // Add a new pool or grow pool if not enough space in the current pool
   if (UNLIKELY(ddpa->curpool_free == NULL
                || ddpa->curpool_free + eltSzB - 1 > ddpa->curpool_limit)) {
      ddpa_add_new_pool_or_grow (ddpa);
   }

   elt_ins = ddpa->curpool_free;
   VG_(memcpy)(elt_ins, elt, eltSzB);
   ddpa->curpool_free = ddpa_align(ddpa, ddpa->curpool_free + eltSzB);

   ht_ins = VG_(allocEltPA) (ddpa->ht_node_pa);
   ht_ins->key = ht_elt.key;
   ht_ins->eltSzB = eltSzB;
   ht_ins->elt = elt_ins;
   VG_(HT_add_node)(ddpa->ht_elements, ht_ins);
   return elt_ins;
}

static __inline__
UInt elt2nr (DedupPoolAlloc *ddpa, const void *dedup_elt)
{
   vg_assert (dedup_elt >= (const void *)ddpa->curpool
              && dedup_elt < (const void *)ddpa->curpool_free);
   return 1 + ((const UChar*)dedup_elt - (const UChar *)ddpa->curpool)
      / VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign);
}

UInt VG_(allocFixedEltDedupPA) (DedupPoolAlloc *ddpa,
                                SizeT eltSzB, const void *elt)
{
   if (ddpa->fixedSzb == 0) {
      // First insertion in this ddpa
      vg_assert (ddpa->nr_alloc_calls == 0);
      vg_assert (eltSzB > 0);
      ddpa->fixedSzb = eltSzB;
   }
   vg_assert (ddpa->fixedSzb == eltSzB);
   const void *dedup_elt = VG_(allocEltDedupPA) (ddpa, eltSzB, elt);
   return elt2nr (ddpa, dedup_elt);
}

void* VG_(indexEltNumber) (DedupPoolAlloc *ddpa,
                           UInt eltNr)
{
   void *dedup_elt;

   dedup_elt = ddpa->curpool
      + (eltNr - 1) * VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign);

   vg_assert ((UChar*)dedup_elt >= ddpa->curpool
              && (UChar*)dedup_elt < ddpa->curpool_free);

   return dedup_elt;
}

UInt VG_(sizeDedupPA) (DedupPoolAlloc *ddpa)
{
   if (ddpa->curpool == NULL)
      return 0;

   vg_assert (ddpa->fixedSzb);
   return (ddpa->curpool_free - ddpa_align(ddpa, ddpa->curpool))
      / VG_ROUNDUP(ddpa->fixedSzb, ddpa->eltAlign);
}