/* Copyright (c) 2015-2017 The Khronos Group Inc. * Copyright (c) 2015-2017 Valve Corporation * Copyright (c) 2015-2017 LunarG, Inc. * Copyright (C) 2015-2017 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: Chris Forbes */ #include #include #include #include #include #include #include #include "vk_loader_platform.h" #include "vk_enum_string_helper.h" #include "vk_layer_table.h" #include "vk_layer_data.h" #include "vk_layer_extension_utils.h" #include "vk_layer_utils.h" #include "core_validation.h" #include "core_validation_types.h" #include "shader_validation.h" #include "spirv-tools/libspirv.h" #include "xxhash.h" enum FORMAT_TYPE { FORMAT_TYPE_FLOAT = 1, // UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader FORMAT_TYPE_SINT = 2, FORMAT_TYPE_UINT = 4, }; typedef std::pair location_t; struct interface_var { uint32_t id; uint32_t type_id; uint32_t offset; bool is_patch; bool is_block_member; bool is_relaxed_precision; // TODO: collect the name, too? Isn't required to be present. }; struct shader_stage_attributes { char const *const name; bool arrayed_input; bool arrayed_output; }; static shader_stage_attributes shader_stage_attribs[] = { {"vertex shader", false, false}, {"tessellation control shader", true, true}, {"tessellation evaluation shader", true, false}, {"geometry shader", true, false}, {"fragment shader", false, false}, }; // SPIRV utility functions void shader_module::build_def_index() { for (auto insn : *this) { switch (insn.opcode()) { // Types case spv::OpTypeVoid: case spv::OpTypeBool: case spv::OpTypeInt: case spv::OpTypeFloat: case spv::OpTypeVector: case spv::OpTypeMatrix: case spv::OpTypeImage: case spv::OpTypeSampler: case spv::OpTypeSampledImage: case spv::OpTypeArray: case spv::OpTypeRuntimeArray: case spv::OpTypeStruct: case spv::OpTypeOpaque: case spv::OpTypePointer: case spv::OpTypeFunction: case spv::OpTypeEvent: case spv::OpTypeDeviceEvent: case spv::OpTypeReserveId: case spv::OpTypeQueue: case spv::OpTypePipe: def_index[insn.word(1)] = insn.offset(); break; // Fixed constants case spv::OpConstantTrue: case spv::OpConstantFalse: case spv::OpConstant: case spv::OpConstantComposite: case spv::OpConstantSampler: case spv::OpConstantNull: def_index[insn.word(2)] = insn.offset(); break; // Specialization constants case spv::OpSpecConstantTrue: case spv::OpSpecConstantFalse: case spv::OpSpecConstant: case spv::OpSpecConstantComposite: case spv::OpSpecConstantOp: def_index[insn.word(2)] = insn.offset(); break; // Variables case spv::OpVariable: def_index[insn.word(2)] = insn.offset(); break; // Functions case spv::OpFunction: def_index[insn.word(2)] = insn.offset(); break; default: // We don't care about any other defs for now. break; } } } static spirv_inst_iter find_entrypoint(shader_module const *src, char const *name, VkShaderStageFlagBits stageBits) { for (auto insn : *src) { if (insn.opcode() == spv::OpEntryPoint) { auto entrypointName = (char const *)&insn.word(3); auto entrypointStageBits = 1u << insn.word(1); if (!strcmp(entrypointName, name) && (entrypointStageBits & stageBits)) { return insn; } } } return src->end(); } static char const *storage_class_name(unsigned sc) { switch (sc) { case spv::StorageClassInput: return "input"; case spv::StorageClassOutput: return "output"; case spv::StorageClassUniformConstant: return "const uniform"; case spv::StorageClassUniform: return "uniform"; case spv::StorageClassWorkgroup: return "workgroup local"; case spv::StorageClassCrossWorkgroup: return "workgroup global"; case spv::StorageClassPrivate: return "private global"; case spv::StorageClassFunction: return "function"; case spv::StorageClassGeneric: return "generic"; case spv::StorageClassAtomicCounter: return "atomic counter"; case spv::StorageClassImage: return "image"; case spv::StorageClassPushConstant: return "push constant"; case spv::StorageClassStorageBuffer: return "storage buffer"; default: return "unknown"; } } // Get the value of an integral constant unsigned get_constant_value(shader_module const *src, unsigned id) { auto value = src->get_def(id); assert(value != src->end()); if (value.opcode() != spv::OpConstant) { // TODO: Either ensure that the specialization transform is already performed on a module we're // considering here, OR -- specialize on the fly now. return 1; } return value.word(3); } static void describe_type_inner(std::ostringstream &ss, shader_module const *src, unsigned type) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypeBool: ss << "bool"; break; case spv::OpTypeInt: ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2); break; case spv::OpTypeFloat: ss << "float" << insn.word(2); break; case spv::OpTypeVector: ss << "vec" << insn.word(3) << " of "; describe_type_inner(ss, src, insn.word(2)); break; case spv::OpTypeMatrix: ss << "mat" << insn.word(3) << " of "; describe_type_inner(ss, src, insn.word(2)); break; case spv::OpTypeArray: ss << "arr[" << get_constant_value(src, insn.word(3)) << "] of "; describe_type_inner(ss, src, insn.word(2)); break; case spv::OpTypePointer: ss << "ptr to " << storage_class_name(insn.word(2)) << " "; describe_type_inner(ss, src, insn.word(3)); break; case spv::OpTypeStruct: { ss << "struct of ("; for (unsigned i = 2; i < insn.len(); i++) { describe_type_inner(ss, src, insn.word(i)); if (i == insn.len() - 1) { ss << ")"; } else { ss << ", "; } } break; } case spv::OpTypeSampler: ss << "sampler"; break; case spv::OpTypeSampledImage: ss << "sampler+"; describe_type_inner(ss, src, insn.word(2)); break; case spv::OpTypeImage: ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")"; break; default: ss << "oddtype"; break; } } static std::string describe_type(shader_module const *src, unsigned type) { std::ostringstream ss; describe_type_inner(ss, src, type); return ss.str(); } static bool is_narrow_numeric_type(spirv_inst_iter type) { if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false; return type.word(2) < 64; } static bool types_match(shader_module const *a, shader_module const *b, unsigned a_type, unsigned b_type, bool a_arrayed, bool b_arrayed, bool relaxed) { // Walk two type trees together, and complain about differences auto a_insn = a->get_def(a_type); auto b_insn = b->get_def(b_type); assert(a_insn != a->end()); assert(b_insn != b->end()); if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) { return types_match(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed); } if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) { // We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type return types_match(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed); } if (a_insn.opcode() == spv::OpTypeVector && relaxed && is_narrow_numeric_type(b_insn)) { return types_match(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false); } if (a_insn.opcode() != b_insn.opcode()) { return false; } if (a_insn.opcode() == spv::OpTypePointer) { // Match on pointee type. storage class is expected to differ return types_match(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed); } if (a_arrayed || b_arrayed) { // If we havent resolved array-of-verts by here, we're not going to. return false; } switch (a_insn.opcode()) { case spv::OpTypeBool: return true; case spv::OpTypeInt: // Match on width, signedness return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3); case spv::OpTypeFloat: // Match on width return a_insn.word(2) == b_insn.word(2); case spv::OpTypeVector: // Match on element type, count. if (!types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false; if (relaxed && is_narrow_numeric_type(a->get_def(a_insn.word(2)))) { return a_insn.word(3) >= b_insn.word(3); } else { return a_insn.word(3) == b_insn.word(3); } case spv::OpTypeMatrix: // Match on element type, count. return types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) && a_insn.word(3) == b_insn.word(3); case spv::OpTypeArray: // Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from // vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray return types_match(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) && get_constant_value(a, a_insn.word(3)) == get_constant_value(b, b_insn.word(3)); case spv::OpTypeStruct: // Match on all element types { if (a_insn.len() != b_insn.len()) { return false; // Structs cannot match if member counts differ } for (unsigned i = 2; i < a_insn.len(); i++) { if (!types_match(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) { return false; } } return true; } default: // Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match. return false; } } static unsigned value_or_default(std::unordered_map const &map, unsigned id, unsigned def) { auto it = map.find(id); if (it == map.end()) return def; else return it->second; } static unsigned get_locations_consumed_by_type(shader_module const *src, unsigned type, bool strip_array_level) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypePointer: // See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing // pointers around. return get_locations_consumed_by_type(src, insn.word(3), strip_array_level); case spv::OpTypeArray: if (strip_array_level) { return get_locations_consumed_by_type(src, insn.word(2), false); } else { return get_constant_value(src, insn.word(3)) * get_locations_consumed_by_type(src, insn.word(2), false); } case spv::OpTypeMatrix: // Num locations is the dimension * element size return insn.word(3) * get_locations_consumed_by_type(src, insn.word(2), false); case spv::OpTypeVector: { auto scalar_type = src->get_def(insn.word(2)); auto bit_width = (scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32; // Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two. return (bit_width * insn.word(3) + 127) / 128; } default: // Everything else is just 1. return 1; // TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations. } } static unsigned get_locations_consumed_by_format(VkFormat format) { switch (format) { case VK_FORMAT_R64G64B64A64_SFLOAT: case VK_FORMAT_R64G64B64A64_SINT: case VK_FORMAT_R64G64B64A64_UINT: case VK_FORMAT_R64G64B64_SFLOAT: case VK_FORMAT_R64G64B64_SINT: case VK_FORMAT_R64G64B64_UINT: return 2; default: return 1; } } static unsigned get_format_type(VkFormat fmt) { if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT; if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT; if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT; if (fmt == VK_FORMAT_UNDEFINED) return 0; // everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader. return FORMAT_TYPE_FLOAT; } // characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above. static unsigned get_fundamental_type(shader_module const *src, unsigned type) { auto insn = src->get_def(type); assert(insn != src->end()); switch (insn.opcode()) { case spv::OpTypeInt: return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT; case spv::OpTypeFloat: return FORMAT_TYPE_FLOAT; case spv::OpTypeVector: return get_fundamental_type(src, insn.word(2)); case spv::OpTypeMatrix: return get_fundamental_type(src, insn.word(2)); case spv::OpTypeArray: return get_fundamental_type(src, insn.word(2)); case spv::OpTypePointer: return get_fundamental_type(src, insn.word(3)); case spv::OpTypeImage: return get_fundamental_type(src, insn.word(2)); default: return 0; } } static uint32_t get_shader_stage_id(VkShaderStageFlagBits stage) { uint32_t bit_pos = uint32_t(u_ffs(stage)); return bit_pos - 1; } static spirv_inst_iter get_struct_type(shader_module const *src, spirv_inst_iter def, bool is_array_of_verts) { while (true) { if (def.opcode() == spv::OpTypePointer) { def = src->get_def(def.word(3)); } else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) { def = src->get_def(def.word(2)); is_array_of_verts = false; } else if (def.opcode() == spv::OpTypeStruct) { return def; } else { return src->end(); } } } static bool collect_interface_block_members(shader_module const *src, std::map *out, std::unordered_map const &blocks, bool is_array_of_verts, uint32_t id, uint32_t type_id, bool is_patch, int /*first_location*/) { // Walk down the type_id presented, trying to determine whether it's actually an interface block. auto type = get_struct_type(src, src->get_def(type_id), is_array_of_verts && !is_patch); if (type == src->end() || blocks.find(type.word(1)) == blocks.end()) { // This isn't an interface block. return false; } std::unordered_map member_components; std::unordered_map member_relaxed_precision; std::unordered_map member_patch; // Walk all the OpMemberDecorate for type's result id -- first pass, collect components. for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { unsigned member_index = insn.word(2); if (insn.word(3) == spv::DecorationComponent) { unsigned component = insn.word(4); member_components[member_index] = component; } if (insn.word(3) == spv::DecorationRelaxedPrecision) { member_relaxed_precision[member_index] = 1; } if (insn.word(3) == spv::DecorationPatch) { member_patch[member_index] = 1; } } } // TODO: correctly handle location assignment from outside // Second pass -- produce the output, from Location decorations for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { unsigned member_index = insn.word(2); unsigned member_type_id = type.word(2 + member_index); if (insn.word(3) == spv::DecorationLocation) { unsigned location = insn.word(4); unsigned num_locations = get_locations_consumed_by_type(src, member_type_id, false); auto component_it = member_components.find(member_index); unsigned component = component_it == member_components.end() ? 0 : component_it->second; bool is_relaxed_precision = member_relaxed_precision.find(member_index) != member_relaxed_precision.end(); bool member_is_patch = is_patch || member_patch.count(member_index) > 0; for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; // TODO: member index in interface_var too? v.type_id = member_type_id; v.offset = offset; v.is_patch = member_is_patch; v.is_block_member = true; v.is_relaxed_precision = is_relaxed_precision; (*out)[std::make_pair(location + offset, component)] = v; } } } } return true; } static std::map collect_interface_by_location(shader_module const *src, spirv_inst_iter entrypoint, spv::StorageClass sinterface, bool is_array_of_verts) { std::unordered_map var_locations; std::unordered_map var_builtins; std::unordered_map var_components; std::unordered_map blocks; std::unordered_map var_patch; std::unordered_map var_relaxed_precision; for (auto insn : *src) { // We consider two interface models: SSO rendezvous-by-location, and builtins. Complain about anything that // fits neither model. if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationLocation) { var_locations[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBuiltIn) { var_builtins[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationComponent) { var_components[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBlock) { blocks[insn.word(1)] = 1; } if (insn.word(2) == spv::DecorationPatch) { var_patch[insn.word(1)] = 1; } if (insn.word(2) == spv::DecorationRelaxedPrecision) { var_relaxed_precision[insn.word(1)] = 1; } } } // TODO: handle grouped decorations // TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber. // Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the // rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator. uint32_t word = 3; while (entrypoint.word(word) & 0xff000000u) { ++word; } ++word; std::map out; for (; word < entrypoint.len(); word++) { auto insn = src->get_def(entrypoint.word(word)); assert(insn != src->end()); assert(insn.opcode() == spv::OpVariable); if (insn.word(3) == static_cast(sinterface)) { unsigned id = insn.word(2); unsigned type = insn.word(1); int location = value_or_default(var_locations, id, static_cast(-1)); int builtin = value_or_default(var_builtins, id, static_cast(-1)); unsigned component = value_or_default(var_components, id, 0); // Unspecified is OK, is 0 bool is_patch = var_patch.find(id) != var_patch.end(); bool is_relaxed_precision = var_relaxed_precision.find(id) != var_relaxed_precision.end(); if (builtin != -1) continue; else if (!collect_interface_block_members(src, &out, blocks, is_array_of_verts, id, type, is_patch, location)) { // A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit // one result for each. unsigned num_locations = get_locations_consumed_by_type(src, type, is_array_of_verts && !is_patch); for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; v.type_id = type; v.offset = offset; v.is_patch = is_patch; v.is_relaxed_precision = is_relaxed_precision; out[std::make_pair(location + offset, component)] = v; } } } } return out; } static std::vector> collect_interface_by_input_attachment_index( shader_module const *src, std::unordered_set const &accessible_ids) { std::vector> out; for (auto insn : *src) { if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationInputAttachmentIndex) { auto attachment_index = insn.word(3); auto id = insn.word(1); if (accessible_ids.count(id)) { auto def = src->get_def(id); assert(def != src->end()); if (def.opcode() == spv::OpVariable && insn.word(3) == spv::StorageClassUniformConstant) { auto num_locations = get_locations_consumed_by_type(src, def.word(1), false); for (unsigned int offset = 0; offset < num_locations; offset++) { interface_var v = {}; v.id = id; v.type_id = def.word(1); v.offset = offset; out.emplace_back(attachment_index + offset, v); } } } } } } return out; } static bool is_writable_descriptor_type(shader_module const *module, uint32_t type_id) { auto type = module->get_def(type_id); // Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension. while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer) { if (type.opcode() == spv::OpTypeArray) { type = module->get_def(type.word(2)); } else { if (type.word(2) == spv::StorageClassStorageBuffer) { return true; } type = module->get_def(type.word(3)); } } switch (type.opcode()) { case spv::OpTypeImage: { auto dim = type.word(3); auto sampled = type.word(7); return sampled == 2 && dim != spv::DimSubpassData; } case spv::OpTypeStruct: for (auto insn : *module) { if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) { if (insn.word(2) == spv::DecorationBufferBlock) { return true; } } } } return false; } static std::vector> collect_interface_by_descriptor_slot( debug_report_data const *report_data, shader_module const *src, std::unordered_set const &accessible_ids, bool *has_writable_descriptor) { std::unordered_map var_sets; std::unordered_map var_bindings; std::unordered_map var_nonwritable; for (auto insn : *src) { // All variables in the Uniform or UniformConstant storage classes are required to be decorated with both // DecorationDescriptorSet and DecorationBinding. if (insn.opcode() == spv::OpDecorate) { if (insn.word(2) == spv::DecorationDescriptorSet) { var_sets[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationBinding) { var_bindings[insn.word(1)] = insn.word(3); } if (insn.word(2) == spv::DecorationNonWritable) { var_nonwritable[insn.word(1)] = 1; } } } std::vector> out; for (auto id : accessible_ids) { auto insn = src->get_def(id); assert(insn != src->end()); if (insn.opcode() == spv::OpVariable && (insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant || insn.word(3) == spv::StorageClassStorageBuffer)) { unsigned set = value_or_default(var_sets, insn.word(2), 0); unsigned binding = value_or_default(var_bindings, insn.word(2), 0); interface_var v = {}; v.id = insn.word(2); v.type_id = insn.word(1); out.emplace_back(std::make_pair(set, binding), v); if (var_nonwritable.find(id) == var_nonwritable.end() && is_writable_descriptor_type(src, insn.word(1))) { *has_writable_descriptor = true; } } } return out; } static bool validate_vi_consistency(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi) { // Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should // be specified only once. std::unordered_map bindings; bool skip = false; for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) { auto desc = &vi->pVertexBindingDescriptions[i]; auto &binding = bindings[desc->binding]; if (binding) { // TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps? skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_INCONSISTENT_VI, "Duplicate vertex input binding descriptions for binding %d", desc->binding); } else { binding = desc; } } return skip; } static bool validate_vi_against_vs_inputs(debug_report_data const *report_data, VkPipelineVertexInputStateCreateInfo const *vi, shader_module const *vs, spirv_inst_iter entrypoint) { bool skip = false; auto inputs = collect_interface_by_location(vs, entrypoint, spv::StorageClassInput, false); // Build index by location std::map attribs; if (vi) { for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; i++) { auto num_locations = get_locations_consumed_by_format(vi->pVertexAttributeDescriptions[i].format); for (auto j = 0u; j < num_locations; j++) { attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i]; } } } auto it_a = attribs.begin(); auto it_b = inputs.begin(); bool used = false; while ((attribs.size() > 0 && it_a != attribs.end()) || (inputs.size() > 0 && it_b != inputs.end())) { bool a_at_end = attribs.size() == 0 || it_a == attribs.end(); bool b_at_end = inputs.size() == 0 || it_b == inputs.end(); auto a_first = a_at_end ? 0 : it_a->first; auto b_first = b_at_end ? 0 : it_b->first.first; if (!a_at_end && (b_at_end || a_first < b_first)) { if (!used && log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "Vertex attribute at location %d not consumed by vertex shader", a_first)) { skip = true; } used = false; it_a++; } else if (!b_at_end && (a_at_end || b_first < a_first)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), SHADER_CHECKER_INPUT_NOT_PRODUCED, "Vertex shader consumes input at location %d but not provided", b_first); it_b++; } else { unsigned attrib_type = get_format_type(it_a->second->format); unsigned input_type = get_fundamental_type(vs, it_b->second.type_id); // Type checking if (!(attrib_type & input_type)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(vs->vk_shader_module), SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "Attribute type of `%s` at location %d does not match vertex shader input type of `%s`", string_VkFormat(it_a->second->format), a_first, describe_type(vs, it_b->second.type_id).c_str()); } // OK! used = true; it_b++; } } return skip; } static bool validate_fs_outputs_against_render_pass(debug_report_data const *report_data, shader_module const *fs, spirv_inst_iter entrypoint, PIPELINE_STATE const *pipeline, uint32_t subpass_index) { auto rpci = pipeline->rp_state->createInfo.ptr(); std::map color_attachments; auto subpass = rpci->pSubpasses[subpass_index]; for (auto i = 0u; i < subpass.colorAttachmentCount; ++i) { uint32_t attachment = subpass.pColorAttachments[i].attachment; if (attachment == VK_ATTACHMENT_UNUSED) continue; if (rpci->pAttachments[attachment].format != VK_FORMAT_UNDEFINED) { color_attachments[i] = rpci->pAttachments[attachment].format; } } bool skip = false; // TODO: dual source blend index (spv::DecIndex, zero if not provided) auto outputs = collect_interface_by_location(fs, entrypoint, spv::StorageClassOutput, false); auto it_a = outputs.begin(); auto it_b = color_attachments.begin(); // Walk attachment list and outputs together while ((outputs.size() > 0 && it_a != outputs.end()) || (color_attachments.size() > 0 && it_b != color_attachments.end())) { bool a_at_end = outputs.size() == 0 || it_a == outputs.end(); bool b_at_end = color_attachments.size() == 0 || it_b == color_attachments.end(); if (!a_at_end && (b_at_end || it_a->first.first < it_b->first)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "fragment shader writes to output location %d with no matching attachment", it_a->first.first); it_a++; } else if (!b_at_end && (a_at_end || it_a->first.first > it_b->first)) { // Only complain if there are unmasked channels for this attachment. If the writemask is 0, it's acceptable for the // shader to not produce a matching output. if (pipeline->attachments[it_b->first].colorWriteMask != 0) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), SHADER_CHECKER_INPUT_NOT_PRODUCED, "Attachment %d not written by fragment shader", it_b->first); } it_b++; } else { unsigned output_type = get_fundamental_type(fs, it_a->second.type_id); unsigned att_type = get_format_type(it_b->second); // Type checking if (!(output_type & att_type)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(fs->vk_shader_module), SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "Attachment %d of type `%s` does not match fragment shader output type of `%s`", it_b->first, string_VkFormat(it_b->second), describe_type(fs, it_a->second.type_id).c_str()); } // OK! it_a++; it_b++; } } return skip; } // For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is // important for identifying the set of shader resources actually used by an entrypoint, for example. // Note: we only explore parts of the image which might actually contain ids we care about for the above analyses. // - NOT the shader input/output interfaces. // // TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth // converting parts of this to be generated from the machine-readable spec instead. static std::unordered_set mark_accessible_ids(shader_module const *src, spirv_inst_iter entrypoint) { std::unordered_set ids; std::unordered_set worklist; worklist.insert(entrypoint.word(2)); while (!worklist.empty()) { auto id_iter = worklist.begin(); auto id = *id_iter; worklist.erase(id_iter); auto insn = src->get_def(id); if (insn == src->end()) { // ID is something we didn't collect in build_def_index. that's OK -- we'll stumble across all kinds of things here // that we may not care about. continue; } // Try to add to the output set if (!ids.insert(id).second) { continue; // If we already saw this id, we don't want to walk it again. } switch (insn.opcode()) { case spv::OpFunction: // Scan whole body of the function, enlisting anything interesting while (++insn, insn.opcode() != spv::OpFunctionEnd) { switch (insn.opcode()) { case spv::OpLoad: case spv::OpAtomicLoad: case spv::OpAtomicExchange: case spv::OpAtomicCompareExchange: case spv::OpAtomicCompareExchangeWeak: case spv::OpAtomicIIncrement: case spv::OpAtomicIDecrement: case spv::OpAtomicIAdd: case spv::OpAtomicISub: case spv::OpAtomicSMin: case spv::OpAtomicUMin: case spv::OpAtomicSMax: case spv::OpAtomicUMax: case spv::OpAtomicAnd: case spv::OpAtomicOr: case spv::OpAtomicXor: worklist.insert(insn.word(3)); // ptr break; case spv::OpStore: case spv::OpAtomicStore: worklist.insert(insn.word(1)); // ptr break; case spv::OpAccessChain: case spv::OpInBoundsAccessChain: worklist.insert(insn.word(3)); // base ptr break; case spv::OpSampledImage: case spv::OpImageSampleImplicitLod: case spv::OpImageSampleExplicitLod: case spv::OpImageSampleDrefImplicitLod: case spv::OpImageSampleDrefExplicitLod: case spv::OpImageSampleProjImplicitLod: case spv::OpImageSampleProjExplicitLod: case spv::OpImageSampleProjDrefImplicitLod: case spv::OpImageSampleProjDrefExplicitLod: case spv::OpImageFetch: case spv::OpImageGather: case spv::OpImageDrefGather: case spv::OpImageRead: case spv::OpImage: case spv::OpImageQueryFormat: case spv::OpImageQueryOrder: case spv::OpImageQuerySizeLod: case spv::OpImageQuerySize: case spv::OpImageQueryLod: case spv::OpImageQueryLevels: case spv::OpImageQuerySamples: case spv::OpImageSparseSampleImplicitLod: case spv::OpImageSparseSampleExplicitLod: case spv::OpImageSparseSampleDrefImplicitLod: case spv::OpImageSparseSampleDrefExplicitLod: case spv::OpImageSparseSampleProjImplicitLod: case spv::OpImageSparseSampleProjExplicitLod: case spv::OpImageSparseSampleProjDrefImplicitLod: case spv::OpImageSparseSampleProjDrefExplicitLod: case spv::OpImageSparseFetch: case spv::OpImageSparseGather: case spv::OpImageSparseDrefGather: case spv::OpImageTexelPointer: worklist.insert(insn.word(3)); // Image or sampled image break; case spv::OpImageWrite: worklist.insert(insn.word(1)); // Image -- different operand order to above break; case spv::OpFunctionCall: for (uint32_t i = 3; i < insn.len(); i++) { worklist.insert(insn.word(i)); // fn itself, and all args } break; case spv::OpExtInst: for (uint32_t i = 5; i < insn.len(); i++) { worklist.insert(insn.word(i)); // Operands to ext inst } break; } } break; } } return ids; } static bool validate_push_constant_block_against_pipeline(debug_report_data const *report_data, std::vector const *push_constant_ranges, shader_module const *src, spirv_inst_iter type, VkShaderStageFlagBits stage) { bool skip = false; // Strip off ptrs etc type = get_struct_type(src, type, false); assert(type != src->end()); // Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step. // TODO: arrays, matrices, weird sizes for (auto insn : *src) { if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) { if (insn.word(3) == spv::DecorationOffset) { unsigned offset = insn.word(4); auto size = 4; // Bytes; TODO: calculate this based on the type bool found_range = false; for (auto const &range : *push_constant_ranges) { if (range.offset <= offset && range.offset + range.size >= offset + size) { found_range = true; if ((range.stageFlags & stage) == 0) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_PUSH_CONSTANT_NOT_ACCESSIBLE_FROM_STAGE, "Push constant range covering variable starting at offset %u not accessible from stage %s", offset, string_VkShaderStageFlagBits(stage)); } break; } } if (!found_range) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_PUSH_CONSTANT_OUT_OF_RANGE, "Push constant range covering variable starting at offset %u not declared in layout", offset); } } } } return skip; } static bool validate_push_constant_usage(debug_report_data const *report_data, std::vector const *push_constant_ranges, shader_module const *src, std::unordered_set accessible_ids, VkShaderStageFlagBits stage) { bool skip = false; for (auto id : accessible_ids) { auto def_insn = src->get_def(id); if (def_insn.opcode() == spv::OpVariable && def_insn.word(3) == spv::StorageClassPushConstant) { skip |= validate_push_constant_block_against_pipeline(report_data, push_constant_ranges, src, src->get_def(def_insn.word(1)), stage); } } return skip; } // Validate that data for each specialization entry is fully contained within the buffer. static bool validate_specialization_offsets(debug_report_data const *report_data, VkPipelineShaderStageCreateInfo const *info) { bool skip = false; VkSpecializationInfo const *spec = info->pSpecializationInfo; if (spec) { for (auto i = 0u; i < spec->mapEntryCount; i++) { // TODO: This is a good place for "VUID-VkSpecializationInfo-offset-00773". if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0, "VUID-VkSpecializationInfo-pMapEntries-00774", "Specialization entry %u (for constant id %u) references memory outside provided specialization " "data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..", i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset, spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize); } } } return skip; } static bool descriptor_type_match(shader_module const *module, uint32_t type_id, VkDescriptorType descriptor_type, unsigned &descriptor_count) { auto type = module->get_def(type_id); bool is_storage_buffer = false; descriptor_count = 1; // Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension. while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) { if (type.opcode() == spv::OpTypeRuntimeArray) { descriptor_count = 0; type = module->get_def(type.word(2)); } else if (type.opcode() == spv::OpTypeArray) { descriptor_count *= get_constant_value(module, type.word(3)); type = module->get_def(type.word(2)); } else { if (type.word(2) == spv::StorageClassStorageBuffer) { is_storage_buffer = true; } type = module->get_def(type.word(3)); } } switch (type.opcode()) { case spv::OpTypeStruct: { for (auto insn : *module) { if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) { if (insn.word(2) == spv::DecorationBlock) { if (is_storage_buffer) { return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC; } else { return descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC; } } else if (insn.word(2) == spv::DecorationBufferBlock) { return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC; } } } // Invalid return false; } case spv::OpTypeSampler: return descriptor_type == VK_DESCRIPTOR_TYPE_SAMPLER || descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; case spv::OpTypeSampledImage: if (descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER) { // Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel // buffer descriptor doesn't really provide one. Allow this slight mismatch. auto image_type = module->get_def(type.word(2)); auto dim = image_type.word(3); auto sampled = image_type.word(7); return dim == spv::DimBuffer && sampled == 1; } return descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; case spv::OpTypeImage: { // Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler. // SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable. auto dim = type.word(3); auto sampled = type.word(7); if (dim == spv::DimSubpassData) { return descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT; } else if (dim == spv::DimBuffer) { if (sampled == 1) { return descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER; } else { return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER; } } else if (sampled == 1) { return descriptor_type == VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE || descriptor_type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; } else { return descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; } } // We shouldn't really see any other junk types -- but if we do, they're a mismatch. default: return false; // Mismatch } } static bool require_feature(debug_report_data const *report_data, VkBool32 feature, char const *feature_name) { if (!feature) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_FEATURE_NOT_ENABLED, "Shader requires %s but is not enabled on the device", feature_name)) { return true; } } return false; } static bool require_extension(debug_report_data const *report_data, bool extension, char const *extension_name) { if (!extension) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_FEATURE_NOT_ENABLED, "Shader requires extension %s but is not enabled on the device", extension_name)) { return true; } } return false; } static bool validate_shader_capabilities(layer_data *dev_data, shader_module const *src, VkShaderStageFlagBits stage, bool has_writable_descriptor) { bool skip = false; auto report_data = GetReportData(dev_data); auto const &enabledFeatures = GetEnabledFeatures(dev_data); auto const &extensions = GetDeviceExtensions(dev_data); auto const &descriptorIndexingFeatures = GetEnabledDescriptorIndexingFeatures(dev_data); struct CapabilityInfo { char const *name; VkBool32 const *feature; bool const *extension; }; // clang-format off static const std::unordered_multimap capabilities = { // Capabilities always supported by a Vulkan 1.0 implementation -- no // feature bits. {spv::CapabilityMatrix, {nullptr}}, {spv::CapabilityShader, {nullptr}}, {spv::CapabilityInputAttachment, {nullptr}}, {spv::CapabilitySampled1D, {nullptr}}, {spv::CapabilityImage1D, {nullptr}}, {spv::CapabilitySampledBuffer, {nullptr}}, {spv::CapabilityImageQuery, {nullptr}}, {spv::CapabilityDerivativeControl, {nullptr}}, // Capabilities that are optionally supported, but require a feature to // be enabled on the device {spv::CapabilityGeometry, {"VkPhysicalDeviceFeatures::geometryShader", &enabledFeatures->geometryShader}}, {spv::CapabilityTessellation, {"VkPhysicalDeviceFeatures::tessellationShader", &enabledFeatures->tessellationShader}}, {spv::CapabilityFloat64, {"VkPhysicalDeviceFeatures::shaderFloat64", &enabledFeatures->shaderFloat64}}, {spv::CapabilityInt64, {"VkPhysicalDeviceFeatures::shaderInt64", &enabledFeatures->shaderInt64}}, {spv::CapabilityTessellationPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &enabledFeatures->shaderTessellationAndGeometryPointSize}}, {spv::CapabilityGeometryPointSize, {"VkPhysicalDeviceFeatures::shaderTessellationAndGeometryPointSize", &enabledFeatures->shaderTessellationAndGeometryPointSize}}, {spv::CapabilityImageGatherExtended, {"VkPhysicalDeviceFeatures::shaderImageGatherExtended", &enabledFeatures->shaderImageGatherExtended}}, {spv::CapabilityStorageImageMultisample, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &enabledFeatures->shaderStorageImageMultisample}}, {spv::CapabilityUniformBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderUniformBufferArrayDynamicIndexing", &enabledFeatures->shaderUniformBufferArrayDynamicIndexing}}, {spv::CapabilitySampledImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderSampledImageArrayDynamicIndexing", &enabledFeatures->shaderSampledImageArrayDynamicIndexing}}, {spv::CapabilityStorageBufferArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageBufferArrayDynamicIndexing", &enabledFeatures->shaderStorageBufferArrayDynamicIndexing}}, {spv::CapabilityStorageImageArrayDynamicIndexing, {"VkPhysicalDeviceFeatures::shaderStorageImageArrayDynamicIndexing", &enabledFeatures->shaderStorageBufferArrayDynamicIndexing}}, {spv::CapabilityClipDistance, {"VkPhysicalDeviceFeatures::shaderClipDistance", &enabledFeatures->shaderClipDistance}}, {spv::CapabilityCullDistance, {"VkPhysicalDeviceFeatures::shaderCullDistance", &enabledFeatures->shaderCullDistance}}, {spv::CapabilityImageCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &enabledFeatures->imageCubeArray}}, {spv::CapabilitySampleRateShading, {"VkPhysicalDeviceFeatures::sampleRateShading", &enabledFeatures->sampleRateShading}}, {spv::CapabilitySparseResidency, {"VkPhysicalDeviceFeatures::shaderResourceResidency", &enabledFeatures->shaderResourceResidency}}, {spv::CapabilityMinLod, {"VkPhysicalDeviceFeatures::shaderResourceMinLod", &enabledFeatures->shaderResourceMinLod}}, {spv::CapabilitySampledCubeArray, {"VkPhysicalDeviceFeatures::imageCubeArray", &enabledFeatures->imageCubeArray}}, {spv::CapabilityImageMSArray, {"VkPhysicalDeviceFeatures::shaderStorageImageMultisample", &enabledFeatures->shaderStorageImageMultisample}}, {spv::CapabilityStorageImageExtendedFormats, {"VkPhysicalDeviceFeatures::shaderStorageImageExtendedFormats", &enabledFeatures->shaderStorageImageExtendedFormats}}, {spv::CapabilityInterpolationFunction, {"VkPhysicalDeviceFeatures::sampleRateShading", &enabledFeatures->sampleRateShading}}, {spv::CapabilityStorageImageReadWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageReadWithoutFormat", &enabledFeatures->shaderStorageImageReadWithoutFormat}}, {spv::CapabilityStorageImageWriteWithoutFormat, {"VkPhysicalDeviceFeatures::shaderStorageImageWriteWithoutFormat", &enabledFeatures->shaderStorageImageWriteWithoutFormat}}, {spv::CapabilityMultiViewport, {"VkPhysicalDeviceFeatures::multiViewport", &enabledFeatures->multiViewport}}, // XXX TODO: Descriptor indexing capability enums are not yet available in the spirv-tools we fetch. #define CapabilityShaderNonUniformEXT 5301 #define CapabilityRuntimeDescriptorArrayEXT 5302 #define CapabilityInputAttachmentArrayDynamicIndexingEXT 5303 #define CapabilityUniformTexelBufferArrayDynamicIndexingEXT 5304 #define CapabilityStorageTexelBufferArrayDynamicIndexingEXT 5305 #define CapabilityUniformBufferArrayNonUniformIndexingEXT 5306 #define CapabilitySampledImageArrayNonUniformIndexingEXT 5307 #define CapabilityStorageBufferArrayNonUniformIndexingEXT 5308 #define CapabilityStorageImageArrayNonUniformIndexingEXT 5309 #define CapabilityInputAttachmentArrayNonUniformIndexingEXT 5310 #define CapabilityUniformTexelBufferArrayNonUniformIndexingEXT 5311 #define CapabilityStorageTexelBufferArrayNonUniformIndexingEXT 5312 {CapabilityShaderNonUniformEXT, {VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME, nullptr, &extensions->vk_ext_descriptor_indexing}}, {CapabilityRuntimeDescriptorArrayEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::runtimeDescriptorArray", &descriptorIndexingFeatures->runtimeDescriptorArray}}, {CapabilityInputAttachmentArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayDynamicIndexing", &descriptorIndexingFeatures->shaderInputAttachmentArrayDynamicIndexing}}, {CapabilityUniformTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayDynamicIndexing", &descriptorIndexingFeatures->shaderUniformTexelBufferArrayDynamicIndexing}}, {CapabilityStorageTexelBufferArrayDynamicIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayDynamicIndexing", &descriptorIndexingFeatures->shaderStorageTexelBufferArrayDynamicIndexing}}, {CapabilityUniformBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformBufferArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderUniformBufferArrayNonUniformIndexing}}, {CapabilitySampledImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderSampledImageArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderSampledImageArrayNonUniformIndexing}}, {CapabilityStorageBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageBufferArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderStorageBufferArrayNonUniformIndexing}}, {CapabilityStorageImageArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageImageArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderStorageImageArrayNonUniformIndexing}}, {CapabilityInputAttachmentArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderInputAttachmentArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderInputAttachmentArrayNonUniformIndexing}}, {CapabilityUniformTexelBufferArrayNonUniformIndexingEXT, {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderUniformTexelBufferArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderUniformTexelBufferArrayNonUniformIndexing}}, {CapabilityStorageTexelBufferArrayNonUniformIndexingEXT , {"VkPhysicalDeviceDescriptorIndexingFeaturesEXT::shaderStorageTexelBufferArrayNonUniformIndexing", &descriptorIndexingFeatures->shaderStorageTexelBufferArrayNonUniformIndexing}}, // Capabilities that require an extension {spv::CapabilityDrawParameters, {VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME, nullptr, &extensions->vk_khr_shader_draw_parameters}}, {spv::CapabilityGeometryShaderPassthroughNV, {VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME, nullptr, &extensions->vk_nv_geometry_shader_passthrough}}, {spv::CapabilitySampleMaskOverrideCoverageNV, {VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME, nullptr, &extensions->vk_nv_sample_mask_override_coverage}}, {spv::CapabilityShaderViewportIndexLayerEXT, {VK_EXT_SHADER_VIEWPORT_INDEX_LAYER_EXTENSION_NAME, nullptr, &extensions->vk_ext_shader_viewport_index_layer}}, {spv::CapabilityShaderViewportIndexLayerNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &extensions->vk_nv_viewport_array2}}, {spv::CapabilityShaderViewportMaskNV, {VK_NV_VIEWPORT_ARRAY2_EXTENSION_NAME, nullptr, &extensions->vk_nv_viewport_array2}}, {spv::CapabilitySubgroupBallotKHR, {VK_EXT_SHADER_SUBGROUP_BALLOT_EXTENSION_NAME, nullptr, &extensions->vk_ext_shader_subgroup_ballot }}, {spv::CapabilitySubgroupVoteKHR, {VK_EXT_SHADER_SUBGROUP_VOTE_EXTENSION_NAME, nullptr, &extensions->vk_ext_shader_subgroup_vote }}, }; // clang-format on for (auto insn : *src) { if (insn.opcode() == spv::OpCapability) { size_t n = capabilities.count(insn.word(1)); if (1 == n) { // key occurs exactly once auto it = capabilities.find(insn.word(1)); if (it != capabilities.end()) { if (it->second.feature) { skip |= require_feature(report_data, *(it->second.feature), it->second.name); } if (it->second.extension) { skip |= require_extension(report_data, *(it->second.extension), it->second.name); } } } else if (1 < n) { // key occurs multiple times, at least one must be enabled bool needs_feature = false, has_feature = false; bool needs_ext = false, has_ext = false; std::string feature_names = "(one of) [ "; std::string extension_names = feature_names; auto caps = capabilities.equal_range(insn.word(1)); for (auto it = caps.first; it != caps.second; ++it) { if (it->second.feature) { needs_feature = true; has_feature = has_feature || *(it->second.feature); feature_names += it->second.name; feature_names += " "; } if (it->second.extension) { needs_ext = true; has_ext = has_ext || *(it->second.extension); extension_names += it->second.name; extension_names += " "; } } if (needs_feature) { feature_names += "]"; skip |= require_feature(report_data, has_feature, feature_names.c_str()); } if (needs_ext) { extension_names += "]"; skip |= require_extension(report_data, has_ext, extension_names.c_str()); } } } } if (has_writable_descriptor) { switch (stage) { case VK_SHADER_STAGE_COMPUTE_BIT: /* No feature requirements for writes and atomics from compute * stage */ break; case VK_SHADER_STAGE_FRAGMENT_BIT: skip |= require_feature(report_data, enabledFeatures->fragmentStoresAndAtomics, "fragmentStoresAndAtomics"); break; default: skip |= require_feature(report_data, enabledFeatures->vertexPipelineStoresAndAtomics, "vertexPipelineStoresAndAtomics"); break; } } return skip; } static uint32_t descriptor_type_to_reqs(shader_module const *module, uint32_t type_id) { auto type = module->get_def(type_id); while (true) { switch (type.opcode()) { case spv::OpTypeArray: case spv::OpTypeSampledImage: type = module->get_def(type.word(2)); break; case spv::OpTypePointer: type = module->get_def(type.word(3)); break; case spv::OpTypeImage: { auto dim = type.word(3); auto arrayed = type.word(5); auto msaa = type.word(6); switch (dim) { case spv::Dim1D: return arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D; case spv::Dim2D: return (msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE) | (arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D); case spv::Dim3D: return DESCRIPTOR_REQ_VIEW_TYPE_3D; case spv::DimCube: return arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE; case spv::DimSubpassData: return msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE; default: // buffer, etc. return 0; } } default: return 0; } } } // For given pipelineLayout verify that the set_layout_node at slot.first // has the requested binding at slot.second and return ptr to that binding static VkDescriptorSetLayoutBinding const *get_descriptor_binding(PIPELINE_LAYOUT_NODE const *pipelineLayout, descriptor_slot_t slot) { if (!pipelineLayout) return nullptr; if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr; return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second); } static void process_execution_modes(shader_module const *src, spirv_inst_iter entrypoint, PIPELINE_STATE *pipeline) { auto entrypoint_id = entrypoint.word(1); bool is_point_mode = false; for (auto insn : *src) { if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) { switch (insn.word(2)) { case spv::ExecutionModePointMode: // In tessellation shaders, PointMode is separate and trumps the tessellation topology. is_point_mode = true; break; case spv::ExecutionModeOutputPoints: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST; break; case spv::ExecutionModeIsolines: case spv::ExecutionModeOutputLineStrip: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP; break; case spv::ExecutionModeTriangles: case spv::ExecutionModeQuads: case spv::ExecutionModeOutputTriangleStrip: pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP; break; } } } if (is_point_mode) pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST; } static bool validate_pipeline_shader_stage(layer_data *dev_data, VkPipelineShaderStageCreateInfo const *pStage, PIPELINE_STATE *pipeline, shader_module const **out_module, spirv_inst_iter *out_entrypoint) { bool skip = false; auto module = *out_module = GetShaderModuleState(dev_data, pStage->module); auto report_data = GetReportData(dev_data); if (!module->has_valid_spirv) return false; // Find the entrypoint auto entrypoint = *out_entrypoint = find_entrypoint(module, pStage->pName, pStage->stage); if (entrypoint == module->end()) { if (log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, "VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s..", pStage->pName, string_VkShaderStageFlagBits(pStage->stage))) { return true; // no point continuing beyond here, any analysis is just going to be garbage. } } // Mark accessible ids auto accessible_ids = mark_accessible_ids(module, entrypoint); process_execution_modes(module, entrypoint, pipeline); // Validate descriptor set layout against what the entrypoint actually uses bool has_writable_descriptor = false; auto descriptor_uses = collect_interface_by_descriptor_slot(report_data, module, accessible_ids, &has_writable_descriptor); // Validate shader capabilities against enabled device features skip |= validate_shader_capabilities(dev_data, module, pStage->stage, has_writable_descriptor); skip |= validate_specialization_offsets(report_data, pStage); skip |= validate_push_constant_usage(report_data, pipeline->pipeline_layout.push_constant_ranges.get(), module, accessible_ids, pStage->stage); // Validate descriptor use for (auto use : descriptor_uses) { // While validating shaders capture which slots are used by the pipeline auto &reqs = pipeline->active_slots[use.first.first][use.first.second]; reqs = descriptor_req(reqs | descriptor_type_to_reqs(module, use.second.type_id)); // Verify given pipelineLayout has requested setLayout with requested binding const auto &binding = get_descriptor_binding(&pipeline->pipeline_layout, use.first); unsigned required_descriptor_count; if (!binding) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_MISSING_DESCRIPTOR, "Shader uses descriptor slot %u.%u (used as type `%s`) but not declared in pipeline layout", use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str()); } else if (~binding->stageFlags & pStage->stage) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, 0, SHADER_CHECKER_DESCRIPTOR_NOT_ACCESSIBLE_FROM_STAGE, "Shader uses descriptor slot %u.%u (used as type `%s`) but descriptor not accessible from stage %s", use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str(), string_VkShaderStageFlagBits(pStage->stage)); } else if (!descriptor_type_match(module, use.second.type_id, binding->descriptorType, required_descriptor_count)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_DESCRIPTOR_TYPE_MISMATCH, "Type mismatch on descriptor slot %u.%u (used as type `%s`) but descriptor of type %s", use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str(), string_VkDescriptorType(binding->descriptorType)); } else if (binding->descriptorCount < required_descriptor_count) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_DESCRIPTOR_TYPE_MISMATCH, "Shader expects at least %u descriptors for binding %u.%u (used as type `%s`) but only %u provided", required_descriptor_count, use.first.first, use.first.second, describe_type(module, use.second.type_id).c_str(), binding->descriptorCount); } } // Validate use of input attachments against subpass structure if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) { auto input_attachment_uses = collect_interface_by_input_attachment_index(module, accessible_ids); auto rpci = pipeline->rp_state->createInfo.ptr(); auto subpass = pipeline->graphicsPipelineCI.subpass; for (auto use : input_attachment_uses) { auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments; auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount) ? input_attachments[use.first].attachment : VK_ATTACHMENT_UNUSED; if (index == VK_ATTACHMENT_UNUSED) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_MISSING_INPUT_ATTACHMENT, "Shader consumes input attachment index %d but not provided in subpass", use.first); } else if (!(get_format_type(rpci->pAttachments[index].format) & get_fundamental_type(module, use.second.type_id))) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_INPUT_ATTACHMENT_TYPE_MISMATCH, "Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first, string_VkFormat(rpci->pAttachments[index].format), describe_type(module, use.second.type_id).c_str()); } } } return skip; } static bool validate_interface_between_stages(debug_report_data const *report_data, shader_module const *producer, spirv_inst_iter producer_entrypoint, shader_stage_attributes const *producer_stage, shader_module const *consumer, spirv_inst_iter consumer_entrypoint, shader_stage_attributes const *consumer_stage) { bool skip = false; auto outputs = collect_interface_by_location(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output); auto inputs = collect_interface_by_location(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input); auto a_it = outputs.begin(); auto b_it = inputs.begin(); // Maps sorted by key (location); walk them together to find mismatches while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) { bool a_at_end = outputs.size() == 0 || a_it == outputs.end(); bool b_at_end = inputs.size() == 0 || b_it == inputs.end(); auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first; auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first; if (b_at_end || ((!a_at_end) && (a_first < b_first))) { skip |= log_msg(report_data, VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), SHADER_CHECKER_OUTPUT_NOT_CONSUMED, "%s writes to output location %u.%u which is not consumed by %s", producer_stage->name, a_first.first, a_first.second, consumer_stage->name); a_it++; } else if (a_at_end || a_first > b_first) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(consumer->vk_shader_module), SHADER_CHECKER_INPUT_NOT_PRODUCED, "%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first, b_first.second, producer_stage->name); b_it++; } else { // subtleties of arrayed interfaces: // - if is_patch, then the member is not arrayed, even though the interface may be. // - if is_block_member, then the extra array level of an arrayed interface is not // expressed in the member type -- it's expressed in the block type. if (!types_match(producer, consumer, a_it->second.type_id, b_it->second.type_id, producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member, consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second, describe_type(producer, a_it->second.type_id).c_str(), describe_type(consumer, b_it->second.type_id).c_str()); } if (a_it->second.is_patch != b_it->second.is_patch) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage", a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name, b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name); } if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, HandleToUint64(producer->vk_shader_module), SHADER_CHECKER_INTERFACE_TYPE_MISMATCH, "Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first, a_first.second, producer_stage->name, consumer_stage->name); } a_it++; b_it++; } } return skip; } // Validate that the shaders used by the given pipeline and store the active_slots // that are actually used by the pipeline into pPipeline->active_slots bool validate_and_capture_pipeline_shader_state(layer_data *dev_data, PIPELINE_STATE *pipeline) { auto pCreateInfo = pipeline->graphicsPipelineCI.ptr(); int vertex_stage = get_shader_stage_id(VK_SHADER_STAGE_VERTEX_BIT); int fragment_stage = get_shader_stage_id(VK_SHADER_STAGE_FRAGMENT_BIT); auto report_data = GetReportData(dev_data); shader_module const *shaders[5]; memset(shaders, 0, sizeof(shaders)); spirv_inst_iter entrypoints[5]; memset(entrypoints, 0, sizeof(entrypoints)); bool skip = false; for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { auto pStage = &pCreateInfo->pStages[i]; auto stage_id = get_shader_stage_id(pStage->stage); skip |= validate_pipeline_shader_stage(dev_data, pStage, pipeline, &shaders[stage_id], &entrypoints[stage_id]); } // if the shader stages are no good individually, cross-stage validation is pointless. if (skip) return true; auto vi = pCreateInfo->pVertexInputState; if (vi) { skip |= validate_vi_consistency(report_data, vi); } if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv) { skip |= validate_vi_against_vs_inputs(report_data, vi, shaders[vertex_stage], entrypoints[vertex_stage]); } int producer = get_shader_stage_id(VK_SHADER_STAGE_VERTEX_BIT); int consumer = get_shader_stage_id(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); while (!shaders[producer] && producer != fragment_stage) { producer++; consumer++; } for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) { assert(shaders[producer]); if (shaders[consumer]) { if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) { skip |= validate_interface_between_stages(report_data, shaders[producer], entrypoints[producer], &shader_stage_attribs[producer], shaders[consumer], entrypoints[consumer], &shader_stage_attribs[consumer]); } producer = consumer; } } if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) { skip |= validate_fs_outputs_against_render_pass(report_data, shaders[fragment_stage], entrypoints[fragment_stage], pipeline, pCreateInfo->subpass); } return skip; } bool validate_compute_pipeline(layer_data *dev_data, PIPELINE_STATE *pipeline) { auto pCreateInfo = pipeline->computePipelineCI.ptr(); shader_module const *module; spirv_inst_iter entrypoint; return validate_pipeline_shader_stage(dev_data, &pCreateInfo->stage, pipeline, &module, &entrypoint); } uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); } static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) { while ((pCreateInfo = (VkShaderModuleCreateInfo const *)pCreateInfo->pNext) != nullptr) { if (pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_VALIDATION_CACHE_CREATE_INFO_EXT) return (ValidationCache *)((VkShaderModuleValidationCacheCreateInfoEXT const *)pCreateInfo)->validationCache; } return nullptr; } bool PreCallValidateCreateShaderModule(layer_data *dev_data, VkShaderModuleCreateInfo const *pCreateInfo, bool *spirv_valid) { bool skip = false; spv_result_t spv_valid = SPV_SUCCESS; auto report_data = GetReportData(dev_data); if (GetDisables(dev_data)->shader_validation) { return false; } auto have_glsl_shader = GetDeviceExtensions(dev_data)->vk_nv_glsl_shader; if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) { skip |= log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, "VUID-VkShaderModuleCreateInfo-pCode-01376", "SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".", pCreateInfo->codeSize); } else { auto cache = GetValidationCacheInfo(pCreateInfo); uint32_t hash = 0; if (cache) { hash = ValidationCache::MakeShaderHash(pCreateInfo); if (cache->Contains(hash)) return false; } // Use SPIRV-Tools validator to try and catch any issues with the module itself spv_context ctx = spvContextCreate(SPV_ENV_VULKAN_1_0); spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)}; spv_diagnostic diag = nullptr; spv_valid = spvValidate(ctx, &binary, &diag); if (spv_valid != SPV_SUCCESS) { if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) { skip |= log_msg(report_data, spv_valid == SPV_WARNING ? VK_DEBUG_REPORT_WARNING_BIT_EXT : VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, 0, SHADER_CHECKER_INCONSISTENT_SPIRV, "SPIR-V module not valid: %s", diag && diag->error ? diag->error : "(no error text)"); } } else { if (cache) { cache->Insert(hash); } } spvDiagnosticDestroy(diag); spvContextDestroy(ctx); } *spirv_valid = (spv_valid == SPV_SUCCESS); return skip; }