aboutsummaryrefslogtreecommitdiff
path: root/layers/shader_validation.h
blob: 0ecc6c794d365199cca24f99636a485b046cfcfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/* Copyright (c) 2015-2019 The Khronos Group Inc.
 * Copyright (c) 2015-2019 Valve Corporation
 * Copyright (c) 2015-2019 LunarG, Inc.
 * Copyright (C) 2015-2019 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * Author: Chris Forbes <chrisf@ijw.co.nz>
 */
#ifndef VULKAN_SHADER_VALIDATION_H
#define VULKAN_SHADER_VALIDATION_H

#include <unordered_map>

#include <SPIRV/spirv.hpp>
#include <generated/spirv_tools_commit_id.h>
#include "spirv-tools/optimizer.hpp"

// A forward iterator over spirv instructions. Provides easy access to len, opcode, and content words
// without the caller needing to care too much about the physical SPIRV module layout.
struct spirv_inst_iter {
    std::vector<uint32_t>::const_iterator zero;
    std::vector<uint32_t>::const_iterator it;

    uint32_t len() const {
        auto result = *it >> 16;
        assert(result > 0);
        return result;
    }

    uint32_t opcode() { return *it & 0x0ffffu; }

    uint32_t const &word(unsigned n) const {
        assert(n < len());
        return it[n];
    }

    uint32_t offset() { return (uint32_t)(it - zero); }

    spirv_inst_iter() {}

    spirv_inst_iter(std::vector<uint32_t>::const_iterator zero, std::vector<uint32_t>::const_iterator it) : zero(zero), it(it) {}

    bool operator==(spirv_inst_iter const &other) const { return it == other.it; }

    bool operator!=(spirv_inst_iter const &other) const { return it != other.it; }

    spirv_inst_iter operator++(int) {  // x++
        spirv_inst_iter ii = *this;
        it += len();
        return ii;
    }

    spirv_inst_iter operator++() {  // ++x;
        it += len();
        return *this;
    }

    // The iterator and the value are the same thing.
    spirv_inst_iter &operator*() { return *this; }
    spirv_inst_iter const &operator*() const { return *this; }
};

struct decoration_set {
    enum {
        location_bit = 1 << 0,
        patch_bit = 1 << 1,
        relaxed_precision_bit = 1 << 2,
        block_bit = 1 << 3,
        buffer_block_bit = 1 << 4,
        component_bit = 1 << 5,
        input_attachment_index_bit = 1 << 6,
        descriptor_set_bit = 1 << 7,
        binding_bit = 1 << 8,
        nonwritable_bit = 1 << 9,
        builtin_bit = 1 << 10,
    };
    uint32_t flags = 0;
    uint32_t location = static_cast<uint32_t>(-1);
    uint32_t component = 0;
    uint32_t input_attachment_index = 0;
    uint32_t descriptor_set = 0;
    uint32_t binding = 0;
    uint32_t builtin = static_cast<uint32_t>(-1);

    void merge(decoration_set const &other) {
        if (other.flags & location_bit) location = other.location;
        if (other.flags & component_bit) component = other.component;
        if (other.flags & input_attachment_index_bit) input_attachment_index = other.input_attachment_index;
        if (other.flags & descriptor_set_bit) descriptor_set = other.descriptor_set;
        if (other.flags & binding_bit) binding = other.binding;
        if (other.flags & builtin_bit) builtin = other.builtin;
        flags |= other.flags;
    }

    void add(uint32_t decoration, uint32_t value);
};

struct SHADER_MODULE_STATE {
    // The spirv image itself
    std::vector<uint32_t> words;
    // A mapping of <id> to the first word of its def. this is useful because walking type
    // trees, constant expressions, etc requires jumping all over the instruction stream.
    std::unordered_map<unsigned, unsigned> def_index;
    std::unordered_map<unsigned, decoration_set> decorations;
    struct EntryPoint {
        uint32_t offset;
        VkShaderStageFlags stage;
    };
    std::unordered_multimap<std::string, EntryPoint> entry_points;
    bool has_valid_spirv;
    VkShaderModule vk_shader_module;
    uint32_t gpu_validation_shader_id;

    std::vector<uint32_t> PreprocessShaderBinary(uint32_t *src_binary, size_t binary_size, spv_target_env env) {
        std::vector<uint32_t> src(src_binary, src_binary + binary_size / sizeof(uint32_t));

        // Check if there are any group decoration instructions, and flatten them if found.
        bool has_group_decoration = false;
        bool done = false;

        // Walk through the first part of the SPIR-V module, looking for group decoration instructions.
        // Skip the header (5 words).
        auto itr = spirv_inst_iter(src.begin(), src.begin() + 5);
        auto itrend = spirv_inst_iter(src.begin(), src.end());
        while (itr != itrend && !done) {
            spv::Op opcode = (spv::Op)itr.opcode();
            switch (opcode) {
                case spv::OpDecorationGroup:
                case spv::OpGroupDecorate:
                case spv::OpGroupMemberDecorate:
                    has_group_decoration = true;
                    done = true;
                    break;
                case spv::OpFunction:
                    // An OpFunction indicates there are no more decorations
                    done = true;
                    break;
                default:
                    break;
            }
            itr++;
        }

        if (has_group_decoration) {
            spvtools::Optimizer optimizer(env);
            optimizer.RegisterPass(spvtools::CreateFlattenDecorationPass());
            std::vector<uint32_t> optimized_binary;
            // Run optimizer to flatten decorations only, set skip_validation so as to not re-run validator
            auto result =
                optimizer.Run(src_binary, binary_size / sizeof(uint32_t), &optimized_binary, spvtools::ValidatorOptions(), true);
            if (result) {
                return optimized_binary;
            }
        }
        // Return the original module.
        return src;
    }

    SHADER_MODULE_STATE(VkShaderModuleCreateInfo const *pCreateInfo, VkShaderModule shaderModule, spv_target_env env,
                        uint32_t unique_shader_id)
        : words(PreprocessShaderBinary((uint32_t *)pCreateInfo->pCode, pCreateInfo->codeSize, env)),
          def_index(),
          has_valid_spirv(true),
          vk_shader_module(shaderModule),
          gpu_validation_shader_id(unique_shader_id) {
        BuildDefIndex();
    }

    SHADER_MODULE_STATE() : has_valid_spirv(false), vk_shader_module(VK_NULL_HANDLE) {}

    decoration_set get_decorations(unsigned id) const {
        // return the actual decorations for this id, or a default set.
        auto it = decorations.find(id);
        if (it != decorations.end()) return it->second;
        return decoration_set();
    }

    // Expose begin() / end() to enable range-based for
    spirv_inst_iter begin() const { return spirv_inst_iter(words.begin(), words.begin() + 5); }  // First insn
    spirv_inst_iter end() const { return spirv_inst_iter(words.begin(), words.end()); }          // Just past last insn
    // Given an offset into the module, produce an iterator there.
    spirv_inst_iter at(unsigned offset) const { return spirv_inst_iter(words.begin(), words.begin() + offset); }

    // Gets an iterator to the definition of an id
    spirv_inst_iter get_def(unsigned id) const {
        auto it = def_index.find(id);
        if (it == def_index.end()) {
            return end();
        }
        return at(it->second);
    }

    void BuildDefIndex();
};

class ValidationCache {
    // hashes of shaders that have passed validation before, and can be skipped.
    // we don't store negative results, as we would have to also store what was
    // wrong with them; also, we expect they will get fixed, so we're less
    // likely to see them again.
    std::unordered_set<uint32_t> good_shader_hashes;
    ValidationCache() {}

   public:
    static VkValidationCacheEXT Create(VkValidationCacheCreateInfoEXT const *pCreateInfo) {
        auto cache = new ValidationCache();
        cache->Load(pCreateInfo);
        return VkValidationCacheEXT(cache);
    }

    void Load(VkValidationCacheCreateInfoEXT const *pCreateInfo) {
        const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE;
        auto size = headerSize;
        if (!pCreateInfo->pInitialData || pCreateInfo->initialDataSize < size) return;

        uint32_t const *data = (uint32_t const *)pCreateInfo->pInitialData;
        if (data[0] != size) return;
        if (data[1] != VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT) return;
        uint8_t expected_uuid[VK_UUID_SIZE];
        Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, expected_uuid);
        if (memcmp(&data[2], expected_uuid, VK_UUID_SIZE) != 0) return;  // different version

        data = (uint32_t const *)(reinterpret_cast<uint8_t const *>(data) + headerSize);

        for (; size < pCreateInfo->initialDataSize; data++, size += sizeof(uint32_t)) {
            good_shader_hashes.insert(*data);
        }
    }

    void Write(size_t *pDataSize, void *pData) {
        const auto headerSize = 2 * sizeof(uint32_t) + VK_UUID_SIZE;  // 4 bytes for header size + 4 bytes for version number + UUID
        if (!pData) {
            *pDataSize = headerSize + good_shader_hashes.size() * sizeof(uint32_t);
            return;
        }

        if (*pDataSize < headerSize) {
            *pDataSize = 0;
            return;  // Too small for even the header!
        }

        uint32_t *out = (uint32_t *)pData;
        size_t actualSize = headerSize;

        // Write the header
        *out++ = headerSize;
        *out++ = VK_VALIDATION_CACHE_HEADER_VERSION_ONE_EXT;
        Sha1ToVkUuid(SPIRV_TOOLS_COMMIT_ID, reinterpret_cast<uint8_t *>(out));
        out = (uint32_t *)(reinterpret_cast<uint8_t *>(out) + VK_UUID_SIZE);

        for (auto it = good_shader_hashes.begin(); it != good_shader_hashes.end() && actualSize < *pDataSize;
             it++, out++, actualSize += sizeof(uint32_t)) {
            *out = *it;
        }

        *pDataSize = actualSize;
    }

    void Merge(ValidationCache const *other) {
        good_shader_hashes.reserve(good_shader_hashes.size() + other->good_shader_hashes.size());
        for (auto h : other->good_shader_hashes) good_shader_hashes.insert(h);
    }

    static uint32_t MakeShaderHash(VkShaderModuleCreateInfo const *smci);

    bool Contains(uint32_t hash) { return good_shader_hashes.count(hash) != 0; }

    void Insert(uint32_t hash) { good_shader_hashes.insert(hash); }

   private:
    void Sha1ToVkUuid(const char *sha1_str, uint8_t uuid[VK_UUID_SIZE]) {
        // Convert sha1_str from a hex string to binary. We only need VK_UUID_BYTES of
        // output, so pad with zeroes if the input string is shorter than that, and truncate
        // if it's longer.
        char padded_sha1_str[2 * VK_UUID_SIZE + 1] = {};
        strncpy(padded_sha1_str, sha1_str, 2 * VK_UUID_SIZE + 1);
        char byte_str[3] = {};
        for (uint32_t i = 0; i < VK_UUID_SIZE; ++i) {
            byte_str[0] = padded_sha1_str[2 * i + 0];
            byte_str[1] = padded_sha1_str[2 * i + 1];
            uuid[i] = static_cast<uint8_t>(strtol(byte_str, NULL, 16));
        }
    }
};

#endif  // VULKAN_SHADER_VALIDATION_H