aboutsummaryrefslogtreecommitdiff
path: root/src/enc/quant.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/enc/quant.c')
-rw-r--r--src/enc/quant.c923
1 files changed, 923 insertions, 0 deletions
diff --git a/src/enc/quant.c b/src/enc/quant.c
new file mode 100644
index 00000000..e4399194
--- /dev/null
+++ b/src/enc/quant.c
@@ -0,0 +1,923 @@
+// Copyright 2011 Google Inc.
+//
+// This code is licensed under the same terms as WebM:
+// Software License Agreement: http://www.webmproject.org/license/software/
+// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
+// -----------------------------------------------------------------------------
+//
+// Quantization
+//
+// Author: Skal (pascal.massimino@gmail.com)
+
+#include <assert.h>
+#include <math.h>
+
+#include "vp8enci.h"
+#include "cost.h"
+
+#define DO_TRELLIS_I4 1
+#define DO_TRELLIS_I16 1 // not a huge gain, but ok at low bitrate.
+#define DO_TRELLIS_UV 0 // disable trellis for UV. Risky. Not worth.
+#define USE_TDISTO 1
+
+#define MID_ALPHA 64 // neutral value for susceptibility
+#define MIN_ALPHA 30 // lowest usable value for susceptibility
+#define MAX_ALPHA 100 // higher meaninful value for susceptibility
+
+#define SNS_TO_DQ 0.9 // Scaling constant between the sns value and the QP
+ // power-law modulation. Must be strictly less than 1.
+
+#define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
+
+#if defined(__cplusplus) || defined(c_plusplus)
+extern "C" {
+#endif
+
+//-----------------------------------------------------------------------------
+
+static inline int clip(int v, int m, int M) {
+ return v < m ? m : v > M ? M : v;
+}
+
+const uint8_t VP8Zigzag[16] = {
+ 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
+};
+
+static const uint8_t kDcTable[128] = {
+ 4, 5, 6, 7, 8, 9, 10, 10,
+ 11, 12, 13, 14, 15, 16, 17, 17,
+ 18, 19, 20, 20, 21, 21, 22, 22,
+ 23, 23, 24, 25, 25, 26, 27, 28,
+ 29, 30, 31, 32, 33, 34, 35, 36,
+ 37, 37, 38, 39, 40, 41, 42, 43,
+ 44, 45, 46, 46, 47, 48, 49, 50,
+ 51, 52, 53, 54, 55, 56, 57, 58,
+ 59, 60, 61, 62, 63, 64, 65, 66,
+ 67, 68, 69, 70, 71, 72, 73, 74,
+ 75, 76, 76, 77, 78, 79, 80, 81,
+ 82, 83, 84, 85, 86, 87, 88, 89,
+ 91, 93, 95, 96, 98, 100, 101, 102,
+ 104, 106, 108, 110, 112, 114, 116, 118,
+ 122, 124, 126, 128, 130, 132, 134, 136,
+ 138, 140, 143, 145, 148, 151, 154, 157
+};
+
+static const uint16_t kAcTable[128] = {
+ 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27,
+ 28, 29, 30, 31, 32, 33, 34, 35,
+ 36, 37, 38, 39, 40, 41, 42, 43,
+ 44, 45, 46, 47, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 58, 60,
+ 62, 64, 66, 68, 70, 72, 74, 76,
+ 78, 80, 82, 84, 86, 88, 90, 92,
+ 94, 96, 98, 100, 102, 104, 106, 108,
+ 110, 112, 114, 116, 119, 122, 125, 128,
+ 131, 134, 137, 140, 143, 146, 149, 152,
+ 155, 158, 161, 164, 167, 170, 173, 177,
+ 181, 185, 189, 193, 197, 201, 205, 209,
+ 213, 217, 221, 225, 229, 234, 239, 245,
+ 249, 254, 259, 264, 269, 274, 279, 284
+};
+
+static const uint16_t kAcTable2[128] = {
+ 8, 8, 9, 10, 12, 13, 15, 17,
+ 18, 20, 21, 23, 24, 26, 27, 29,
+ 31, 32, 34, 35, 37, 38, 40, 41,
+ 43, 44, 46, 48, 49, 51, 52, 54,
+ 55, 57, 58, 60, 62, 63, 65, 66,
+ 68, 69, 71, 72, 74, 75, 77, 79,
+ 80, 82, 83, 85, 86, 88, 89, 93,
+ 96, 99, 102, 105, 108, 111, 114, 117,
+ 120, 124, 127, 130, 133, 136, 139, 142,
+ 145, 148, 151, 155, 158, 161, 164, 167,
+ 170, 173, 176, 179, 184, 189, 193, 198,
+ 203, 207, 212, 217, 221, 226, 230, 235,
+ 240, 244, 249, 254, 258, 263, 268, 274,
+ 280, 286, 292, 299, 305, 311, 317, 323,
+ 330, 336, 342, 348, 354, 362, 370, 379,
+ 385, 393, 401, 409, 416, 424, 432, 440
+};
+
+static const uint16_t kCoeffThresh[16] = {
+ 0, 10, 20, 30,
+ 10, 20, 30, 30,
+ 20, 30, 30, 30,
+ 30, 30, 30, 30
+};
+
+// TODO(skal): tune more. Coeff thresholding?
+static const uint8_t kBiasMatrices[3][16] = { // [3] = [luma-ac,luma-dc,chroma]
+ { 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96 },
+ { 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96 },
+ { 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96,
+ 96, 96, 96, 96 }
+};
+
+// Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
+// Hack-ish but helpful for mid-bitrate range. Use with care.
+static const uint8_t kFreqSharpening[16] = {
+ 0, 30, 60, 90,
+ 30, 60, 90, 90,
+ 60, 90, 90, 90,
+ 90, 90, 90, 90
+};
+
+//-----------------------------------------------------------------------------
+// Initialize quantization parameters in VP8Matrix
+
+// Returns the average quantizer
+static int ExpandMatrix(VP8Matrix* const m, int type) {
+ int i;
+ int sum = 0;
+ for (i = 2; i < 16; ++i) {
+ m->q_[i] = m->q_[1];
+ }
+ for (i = 0; i < 16; ++i) {
+ const int j = VP8Zigzag[i];
+ const int bias = kBiasMatrices[type][j];
+ m->iq_[j] = (1 << QFIX) / m->q_[j];
+ m->bias_[j] = BIAS(bias);
+ // TODO(skal): tune kCoeffThresh[]
+ m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
+ m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
+ sum += m->q_[j];
+ }
+ return (sum + 8) >> 4;
+}
+
+static void SetupMatrices(VP8Encoder* enc) {
+ int i;
+ const int tlambda_scale =
+ (enc->method_ >= 4) ? enc->config_->sns_strength
+ : 0;
+ const int num_segments = enc->segment_hdr_.num_segments_;
+ for (i = 0; i < num_segments; ++i) {
+ VP8SegmentInfo* const m = &enc->dqm_[i];
+ const int q = m->quant_;
+ int q4, q16, quv;
+ m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
+ m->y1_.q_[1] = kAcTable[clip(q, 0, 127)];
+
+ m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
+ m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
+
+ m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
+ m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
+
+ q4 = ExpandMatrix(&m->y1_, 0);
+ q16 = ExpandMatrix(&m->y2_, 1);
+ quv = ExpandMatrix(&m->uv_, 2);
+
+ // TODO: Switch to kLambda*[] tables?
+ {
+ m->lambda_i4_ = (3 * q4 * q4) >> 7;
+ m->lambda_i16_ = (3 * q16 * q16);
+ m->lambda_uv_ = (3 * quv * quv) >> 6;
+ m->lambda_mode_ = (1 * q4 * q4) >> 7;
+ m->lambda_trellis_i4_ = (7 * q4 * q4) >> 3;
+ m->lambda_trellis_i16_ = (q16 * q16) >> 2;
+ m->lambda_trellis_uv_ = (quv *quv) << 1;
+ m->tlambda_ = (tlambda_scale * q4) >> 5;
+ }
+ }
+}
+
+//-----------------------------------------------------------------------------
+// Initialize filtering parameters
+
+// Very small filter-strength values have close to no visual effect. So we can
+// save a little decoding-CPU by turning filtering off for these.
+#define FSTRENGTH_CUTOFF 3
+
+static void SetupFilterStrength(VP8Encoder* const enc) {
+ int i;
+ const int level0 = enc->config_->filter_strength;
+ for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
+ // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
+ const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
+ const int f = level / (256 + enc->dqm_[i].beta_);
+ enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
+ }
+ // We record the initial strength (mainly for the case of 1-segment only).
+ enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
+ enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
+ enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
+}
+
+//-----------------------------------------------------------------------------
+
+// Note: if you change the values below, remember that the max range
+// allowed by the syntax for DQ_UV is [-16,16].
+#define MAX_DQ_UV (6)
+#define MIN_DQ_UV (-4)
+
+// We want to emulate jpeg-like behaviour where the expected "good" quality
+// is around q=75. Internally, our "good" middle is around c=50. So we
+// map accordingly using linear piece-wise function
+static double QualityToCompression(double q) {
+ const double c = q / 100.;
+ return (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
+}
+
+void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
+ int i;
+ int dq_uv_ac, dq_uv_dc;
+ const int num_segments = enc->config_->segments;
+ const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
+ const double c_base = QualityToCompression(quality);
+ for (i = 0; i < num_segments; ++i) {
+ // The file size roughly scales as pow(quantizer, 3.). Actually, the
+ // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
+ // in the mid-quant range. So we scale the compressibility inversely to
+ // this power-law: quant ~= compression ^ 1/3. This law holds well for
+ // low quant. Finer modelling for high-quant would make use of kAcTable[]
+ // more explicitely.
+ // Additionally, we modulate the base exponent 1/3 to accommodate for the
+ // quantization susceptibility and allow denser segments to be quantized
+ // more.
+ const double expn = (1. - amp * enc->dqm_[i].alpha_) / 3.;
+ const double c = pow(c_base, expn);
+ const int q = (int)(127. * (1. - c));
+ assert(expn > 0.);
+ enc->dqm_[i].quant_ = clip(q, 0, 127);
+ }
+
+ // purely indicative in the bitstream (except for the 1-segment case)
+ enc->base_quant_ = enc->dqm_[0].quant_;
+
+ // fill-in values for the unused segments (required by the syntax)
+ for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
+ enc->dqm_[i].quant_ = enc->base_quant_;
+ }
+
+ // uv_alpha_ is normally spread around ~60. The useful range is
+ // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
+ // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
+ dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
+ / (MAX_ALPHA - MIN_ALPHA);
+ // we rescale by the user-defined strength of adaptation
+ dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
+ // and make it safe.
+ dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
+ // We also boost the dc-uv-quant a little, based on sns-strength, since
+ // U/V channels are quite more reactive to high quants (flat DC-blocks
+ // tend to appear, and are displeasant).
+ dq_uv_dc = -4 * enc->config_->sns_strength / 100;
+ dq_uv_dc = clip(dq_uv_dc, -15, 15); // 4bit-signed max allowed
+
+ enc->dq_y1_dc_ = 0; // TODO(skal): dq-lum
+ enc->dq_y2_dc_ = 0;
+ enc->dq_y2_ac_ = 0;
+ enc->dq_uv_dc_ = dq_uv_dc;
+ enc->dq_uv_ac_ = dq_uv_ac;
+
+ SetupMatrices(enc);
+
+ SetupFilterStrength(enc); // initialize segments' filtering, eventually
+}
+
+//-----------------------------------------------------------------------------
+// Form the predictions in cache
+
+// Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
+const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
+const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
+
+// Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
+const int VP8I4ModeOffsets[NUM_BMODES] = {
+ I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
+};
+
+void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
+ VP8Encoder* const enc = it->enc_;
+ const uint8_t* left = it->x_ ? enc->y_left_ : NULL;
+ const uint8_t* top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
+ VP8EncPredLuma16(it->yuv_p_, left, top);
+}
+
+void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
+ VP8Encoder* const enc = it->enc_;
+ const uint8_t* left = it->x_ ? enc->u_left_ : NULL;
+ const uint8_t* top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
+ VP8EncPredChroma8(it->yuv_p_, left, top);
+}
+
+void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
+ VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
+}
+
+//-----------------------------------------------------------------------------
+// Quantize
+
+// Layout:
+// +----+
+// |YYYY| 0
+// |YYYY| 4
+// |YYYY| 8
+// |YYYY| 12
+// +----+
+// |UUVV| 16
+// |UUVV| 20
+// +----+
+
+const int VP8Scan[16 + 4 + 4] = {
+ // Luma
+ 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
+ 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
+ 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
+ 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
+
+ 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
+ 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
+};
+
+//-----------------------------------------------------------------------------
+// Distortion measurement
+
+static const uint16_t kWeightY[16] = {
+ 38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
+};
+
+static const uint16_t kWeightTrellis[16] = {
+#if USE_TDISTO == 0
+ 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
+#else
+ 30, 27, 19, 11,
+ 27, 24, 17, 10,
+ 19, 17, 12, 8,
+ 11, 10, 8, 6
+#endif
+};
+
+// Init/Copy the common fields in score.
+static void InitScore(VP8ModeScore* const rd) {
+ rd->D = 0;
+ rd->SD = 0;
+ rd->R = 0;
+ rd->nz = 0;
+ rd->score = MAX_COST;
+}
+
+static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
+ dst->D = src->D;
+ dst->SD = src->SD;
+ dst->R = src->R;
+ dst->nz = src->nz; // note that nz is not accumulated, but just copied.
+ dst->score = src->score;
+}
+
+static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
+ dst->D += src->D;
+ dst->SD += src->SD;
+ dst->R += src->R;
+ dst->nz |= src->nz; // here, new nz bits are accumulated.
+ dst->score += src->score;
+}
+
+//-----------------------------------------------------------------------------
+// Performs trellis-optimized quantization.
+
+// Trellis
+
+typedef struct {
+ int prev; // best previous
+ int level; // level
+ int sign; // sign of coeff_i
+ score_t cost; // bit cost
+ score_t error; // distortion = sum of (|coeff_i| - level_i * Q_i)^2
+ int ctx; // context (only depends on 'level'. Could be spared.)
+} Node;
+
+// If a coefficient was quantized to a value Q (using a neutral bias),
+// we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
+// We don't test negative values though.
+#define MIN_DELTA 0 // how much lower level to try
+#define MAX_DELTA 1 // how much higher
+#define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
+#define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
+
+static inline void SetRDScore(int lambda, VP8ModeScore* const rd) {
+ // TODO: incorporate the "* 256" in the tables?
+ rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
+}
+
+static inline score_t RDScoreTrellis(int lambda, score_t rate,
+ score_t distortion) {
+ return rate * lambda + 256 * distortion;
+}
+
+static int TrellisQuantizeBlock(const VP8EncIterator* const it,
+ int16_t in[16], int16_t out[16],
+ int ctx0, int coeff_type,
+ const VP8Matrix* const mtx,
+ int lambda) {
+ ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
+ CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
+ const int first = (coeff_type == 0) ? 1 : 0;
+ Node nodes[17][NUM_NODES];
+ int best_path[3] = {-1, -1, -1}; // store best-last/best-level/best-previous
+ score_t best_score;
+ int best_node;
+ int last = first - 1;
+ int n, m, p, nz;
+
+ {
+ score_t cost;
+ score_t max_error;
+ const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
+ const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
+
+ // compute maximal distortion.
+ max_error = 0;
+ for (n = first; n < 16; ++n) {
+ const int j = VP8Zigzag[n];
+ const int err = in[j] * in[j];
+ max_error += kWeightTrellis[j] * err;
+ if (err > thresh) last = n;
+ }
+ // we don't need to go inspect up to n = 16 coeffs. We can just go up
+ // to last + 1 (inclusive) without losing much.
+ if (last < 15) ++last;
+
+ // compute 'skip' score. This is the max score one can do.
+ cost = VP8BitCost(0, last_proba);
+ best_score = RDScoreTrellis(lambda, cost, max_error);
+
+ // initialize source node.
+ n = first - 1;
+ for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
+ NODE(n, m).cost = 0;
+ NODE(n, m).error = max_error;
+ NODE(n, m).ctx = ctx0;
+ }
+ }
+
+ // traverse trellis.
+ for (n = first; n <= last; ++n) {
+ const int j = VP8Zigzag[n];
+ const int Q = mtx->q_[j];
+ const int iQ = mtx->iq_[j];
+ const int B = BIAS(0x00); // neutral bias
+ // note: it's important to take sign of the _original_ coeff,
+ // so we don't have to consider level < 0 afterward.
+ const int sign = (in[j] < 0);
+ int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
+ int level0;
+ if (coeff0 > 2047) coeff0 = 2047;
+
+ level0 = QUANTDIV(coeff0, iQ, B);
+ // test all alternate level values around level0.
+ for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
+ Node* const cur = &NODE(n, m);
+ int delta_error, new_error;
+ score_t cur_score = MAX_COST;
+ int level = level0 + m;
+ int last_proba;
+
+ cur->sign = sign;
+ cur->level = level;
+ cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
+ if (level >= 2048 || level < 0) { // node is dead?
+ cur->cost = MAX_COST;
+ continue;
+ }
+ last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
+
+ // Compute delta_error = how much coding this level will
+ // subtract as distortion to max_error
+ new_error = coeff0 - level * Q;
+ delta_error =
+ kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
+
+ // Inspect all possible non-dead predecessors. Retain only the best one.
+ for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
+ const Node* const prev = &NODE(n - 1, p);
+ const int prev_ctx = prev->ctx;
+ const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
+ const score_t total_error = prev->error - delta_error;
+ score_t cost, base_cost, score;
+
+ if (prev->cost >= MAX_COST) { // dead node?
+ continue;
+ }
+
+ // Base cost of both terminal/non-terminal
+ base_cost = prev->cost + VP8LevelCost(tcost, level);
+
+ // Examine node assuming it's a non-terminal one.
+ cost = base_cost;
+ if (level && n < 15) {
+ cost += VP8BitCost(1, last_proba);
+ }
+ score = RDScoreTrellis(lambda, cost, total_error);
+ if (score < cur_score) {
+ cur_score = score;
+ cur->cost = cost;
+ cur->error = total_error;
+ cur->prev = p;
+ }
+
+ // Now, record best terminal node (and thus best entry in the graph).
+ if (level) {
+ cost = base_cost;
+ if (n < 15) cost += VP8BitCost(0, last_proba);
+ score = RDScoreTrellis(lambda, cost, total_error);
+ if (score < best_score) {
+ best_score = score;
+ best_path[0] = n; // best eob position
+ best_path[1] = m; // best level
+ best_path[2] = p; // best predecessor
+ }
+ }
+ }
+ }
+ }
+
+ // Fresh start
+ memset(in + first, 0, (16 - first) * sizeof(*in));
+ memset(out + first, 0, (16 - first) * sizeof(*out));
+ if (best_path[0] == -1) {
+ return 0; // skip!
+ }
+
+ // Unwind the best path.
+ // Note: best-prev on terminal node is not necessarily equal to the
+ // best_prev for non-terminal. So we patch best_path[2] in.
+ n = best_path[0];
+ best_node = best_path[1];
+ NODE(n, best_node).prev = best_path[2]; // force best-prev for terminal
+ nz = 0;
+
+ for (; n >= first; --n) {
+ const Node* const node = &NODE(n, best_node);
+ const int j = VP8Zigzag[n];
+ out[n] = node->sign ? -node->level : node->level;
+ nz |= (node->level != 0);
+ in[j] = out[n] * mtx->q_[j];
+ best_node = node->prev;
+ }
+ return nz;
+}
+
+#undef NODE
+
+//-----------------------------------------------------------------------------
+// Performs: difference, transform, quantize, back-transform, add
+// all at once. Output is the reconstructed block in *yuv_out, and the
+// quantized levels in *levels.
+
+static int ReconstructIntra16(VP8EncIterator* const it,
+ VP8ModeScore* const rd,
+ uint8_t* const yuv_out,
+ int mode) {
+ const VP8Encoder* const enc = it->enc_;
+ const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
+ const uint8_t* const src = it->yuv_in_ + Y_OFF;
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ int nz = 0;
+ int n;
+ int16_t tmp[16][16], dc_tmp[16];
+
+ for (n = 0; n < 16; ++n) {
+ VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
+ }
+ VP8FTransformWHT(tmp[0], dc_tmp);
+ nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
+
+ if (DO_TRELLIS_I16 && it->do_trellis_) {
+ int x, y;
+ VP8IteratorNzToBytes(it);
+ for (y = 0, n = 0; y < 4; ++y) {
+ for (x = 0; x < 4; ++x, ++n) {
+ const int ctx = it->top_nz_[x] + it->left_nz_[y];
+ const int non_zero =
+ TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
+ &dqm->y1_, dqm->lambda_trellis_i16_);
+ it->top_nz_[x] = it->left_nz_[y] = non_zero;
+ nz |= non_zero << n;
+ }
+ }
+ } else {
+ for (n = 0; n < 16; ++n) {
+ nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
+ }
+ }
+
+ // Transform back
+ VP8ITransformWHT(dc_tmp, tmp[0]);
+ for (n = 0; n < 16; ++n) {
+ VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n]);
+ }
+
+ return nz;
+}
+
+static int ReconstructIntra4(VP8EncIterator* const it,
+ int16_t levels[16],
+ const uint8_t* const src,
+ uint8_t* const yuv_out,
+ int mode) {
+ const VP8Encoder* const enc = it->enc_;
+ const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ int nz = 0;
+ int16_t tmp[16];
+
+ VP8FTransform(src, ref, tmp);
+ if (DO_TRELLIS_I4 && it->do_trellis_) {
+ const int x = it->i4_ & 3, y = it->i4_ >> 2;
+ const int ctx = it->top_nz_[x] + it->left_nz_[y];
+ nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
+ dqm->lambda_trellis_i4_);
+ } else {
+ nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
+ }
+ VP8ITransform(ref, tmp, yuv_out);
+ return nz;
+}
+
+static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
+ uint8_t* const yuv_out, int mode) {
+ const VP8Encoder* const enc = it->enc_;
+ const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
+ const uint8_t* const src = it->yuv_in_ + U_OFF;
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ int nz = 0;
+ int n;
+ int16_t tmp[8][16];
+
+ for (n = 0; n < 8; ++n) {
+ VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
+ }
+ if (DO_TRELLIS_UV && it->do_trellis_) {
+ int ch, x, y;
+ for (ch = 0, n = 0; ch <= 2; ch += 2) {
+ for (y = 0; y < 2; ++y) {
+ for (x = 0; x < 2; ++x, ++n) {
+ const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
+ const int non_zero =
+ TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2, &dqm->uv_,
+ dqm->lambda_trellis_uv_);
+ it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
+ nz |= non_zero << n;
+ }
+ }
+ }
+ } else {
+ for (n = 0; n < 8; ++n) {
+ nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
+ }
+ }
+
+ for (n = 0; n < 8; ++n) {
+ VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n]);
+ }
+ return (nz << 16);
+}
+
+//-----------------------------------------------------------------------------
+// RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
+// Pick the mode is lower RD-cost = Rate + lamba * Distortion.
+
+static void SwapPtr(uint8_t** a, uint8_t** b) {
+ uint8_t* const tmp = *a;
+ *a = *b;
+ *b = tmp;
+}
+
+static void SwapOut(VP8EncIterator* const it) {
+ SwapPtr(&it->yuv_out_, &it->yuv_out2_);
+}
+
+static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
+ VP8Encoder* const enc = it->enc_;
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ const int lambda = dqm->lambda_i16_;
+ const int tlambda = dqm->tlambda_;
+ const uint8_t* const src = it->yuv_in_ + Y_OFF;
+ VP8ModeScore rd16;
+ int mode;
+
+ rd->mode_i16 = -1;
+ for (mode = 0; mode < 4; ++mode) {
+ uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF; // scratch buffer
+ int nz;
+
+ // Reconstruct
+ nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
+
+ // Measure RD-score
+ rd16.D = VP8SSE16x16(src, tmp_dst);
+ rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
+ : 0;
+ rd16.R = VP8GetCostLuma16(it, &rd16);
+ rd16.R += VP8FixedCostsI16[mode];
+
+ // Since we always examine Intra16 first, we can overwrite *rd directly.
+ SetRDScore(lambda, &rd16);
+ if (mode == 0 || rd16.score < rd->score) {
+ CopyScore(rd, &rd16);
+ rd->mode_i16 = mode;
+ rd->nz = nz;
+ memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
+ memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
+ SwapOut(it);
+ }
+ }
+ SetRDScore(dqm->lambda_mode_, rd); // finalize score for mode decision.
+ VP8SetIntra16Mode(it, rd->mode_i16);
+}
+
+//-----------------------------------------------------------------------------
+
+// return the cost array corresponding to the surrounding prediction modes.
+static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
+ const int modes[16]) {
+ const int preds_w = it->enc_->preds_w_;
+ const int x = (it->i4_ & 3), y = it->i4_ >> 2;
+ const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
+ const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
+ return VP8FixedCostsI4[top][left];
+}
+
+static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
+ VP8Encoder* const enc = it->enc_;
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ const int lambda = dqm->lambda_i4_;
+ const int tlambda = dqm->tlambda_;
+ const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
+ uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
+ VP8ModeScore rd_best;
+
+ InitScore(&rd_best);
+ rd_best.score = 0;
+ VP8IteratorStartI4(it);
+ do {
+ VP8ModeScore rd_i4;
+ int mode;
+ int best_mode = -1;
+ const uint8_t* const src = src0 + VP8Scan[it->i4_];
+ const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
+ uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
+ uint8_t* tmp_dst = it->yuv_p_ + I4TMP; // scratch buffer.
+
+ InitScore(&rd_i4);
+ VP8MakeIntra4Preds(it);
+ for (mode = 0; mode < NUM_BMODES; ++mode) {
+ VP8ModeScore rd_tmp;
+ int16_t tmp_levels[16];
+
+ // Reconstruct
+ rd_tmp.nz =
+ ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
+
+ // Compute RD-score
+ rd_tmp.D = VP8SSE4x4(src, tmp_dst);
+ rd_tmp.SD =
+ tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
+ : 0;
+ rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
+ rd_tmp.R += mode_costs[mode];
+
+ SetRDScore(lambda, &rd_tmp);
+ if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
+ CopyScore(&rd_i4, &rd_tmp);
+ best_mode = mode;
+ SwapPtr(&tmp_dst, &best_block);
+ memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
+ }
+ }
+ SetRDScore(dqm->lambda_mode_, &rd_i4);
+ AddScore(&rd_best, &rd_i4);
+ if (rd_best.score >= rd->score) {
+ return 0;
+ }
+ // Copy selected samples if not in the right place already.
+ if (best_block != best_blocks + VP8Scan[it->i4_])
+ VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
+ rd->modes_i4[it->i4_] = best_mode;
+ it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
+ } while (VP8IteratorRotateI4(it, best_blocks));
+
+ // finalize state
+ CopyScore(rd, &rd_best);
+ VP8SetIntra4Mode(it, rd->modes_i4);
+ SwapOut(it);
+ memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
+ return 1; // select intra4x4 over intra16x16
+}
+
+//-----------------------------------------------------------------------------
+
+static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
+ VP8Encoder* const enc = it->enc_;
+ const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
+ const int lambda = dqm->lambda_uv_;
+ const uint8_t* const src = it->yuv_in_ + U_OFF;
+ uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF; // scratch buffer
+ uint8_t* const dst0 = it->yuv_out_ + U_OFF;
+ VP8ModeScore rd_best;
+ int mode;
+
+ rd->mode_uv = -1;
+ InitScore(&rd_best);
+ for (mode = 0; mode < 4; ++mode) {
+ VP8ModeScore rd_uv;
+
+ // Reconstruct
+ rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
+
+ // Compute RD-score
+ rd_uv.D = VP8SSE16x8(src, tmp_dst);
+ rd_uv.SD = 0; // TODO: should we call TDisto? it tends to flatten areas.
+ rd_uv.R = VP8GetCostUV(it, &rd_uv);
+ rd_uv.R += VP8FixedCostsUV[mode];
+
+ SetRDScore(lambda, &rd_uv);
+ if (mode == 0 || rd_uv.score < rd_best.score) {
+ CopyScore(&rd_best, &rd_uv);
+ rd->mode_uv = mode;
+ memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
+ memcpy(dst0, tmp_dst, UV_SIZE); // TODO: SwapUVOut() ?
+ }
+ }
+ VP8SetIntraUVMode(it, rd->mode_uv);
+ AddScore(rd, &rd_best);
+}
+
+//-----------------------------------------------------------------------------
+// Final reconstruction and quantization.
+
+static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
+ const VP8Encoder* const enc = it->enc_;
+ const int i16 = (it->mb_->type_ == 1);
+ int nz = 0;
+
+ if (i16) {
+ nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
+ } else {
+ VP8IteratorStartI4(it);
+ do {
+ const int mode =
+ it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
+ const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
+ uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
+ VP8MakeIntra4Preds(it);
+ nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
+ src, dst, mode) << it->i4_;
+ } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
+ }
+
+ nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
+ rd->nz = nz;
+}
+
+//-----------------------------------------------------------------------------
+// Entry point
+
+int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd, int rd_opt) {
+ int is_skipped;
+
+ InitScore(rd);
+
+ // We can perform predictions for Luma16x16 and Chroma8x8 already.
+ // Luma4x4 predictions needs to be done as-we-go.
+ VP8MakeLuma16Preds(it);
+ VP8MakeChroma8Preds(it);
+
+ // for rd_opt = 2, we perform trellis-quant on the final decision only.
+ // for rd_opt > 2, we use it for every scoring (=much slower).
+ if (rd_opt > 0) {
+ it->do_trellis_ = (rd_opt > 2);
+ PickBestIntra16(it, rd);
+ if (it->enc_->method_ >= 2) {
+ PickBestIntra4(it, rd);
+ }
+ PickBestUV(it, rd);
+ if (rd_opt == 2) {
+ it->do_trellis_ = 1;
+ SimpleQuantize(it, rd);
+ }
+ } else {
+ // TODO: for method_ == 2, pick the best intra4/intra16 based on SSE
+ it->do_trellis_ = (it->enc_->method_ == 2);
+ SimpleQuantize(it, rd);
+ }
+ is_skipped = (rd->nz == 0);
+ VP8SetSkip(it, is_skipped);
+ return is_skipped;
+}
+
+#if defined(__cplusplus) || defined(c_plusplus)
+} // extern "C"
+#endif