// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // YUV->RGB conversion functions // // Author: Skal (pascal.massimino@gmail.com) #include "./yuv.h" #if defined(WEBP_USE_SSE2) #include #include // for memcpy typedef union { // handy struct for converting SSE2 registers int32_t i32[4]; uint8_t u8[16]; __m128i m; } VP8kCstSSE2; #if defined(WEBP_YUV_USE_SSE2_TABLES) #include "./yuv_tables_sse2.h" void VP8YUVInitSSE2(void) {} #else static int done_sse2 = 0; static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256]; void VP8YUVInitSSE2(void) { if (!done_sse2) { int i; for (i = 0; i < 256; ++i) { VP8kYtoRGBA[i].i32[0] = VP8kYtoRGBA[i].i32[1] = VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2; VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2; VP8kUtoRGBA[i].i32[0] = 0; VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128); VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128); VP8kUtoRGBA[i].i32[3] = 0; VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128); VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128); VP8kVtoRGBA[i].i32[2] = 0; VP8kVtoRGBA[i].i32[3] = 0; } done_sse2 = 1; #if 0 // code used to generate 'yuv_tables_sse2.h' printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n", VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1], VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]); } printf("};\n\n"); printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n", VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]); } printf("};\n\n"); printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n", VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]); } printf("};\n\n"); #endif } } #endif // WEBP_YUV_USE_SSE2_TABLES //----------------------------------------------------------------------------- static WEBP_INLINE __m128i LoadUVPart(int u, int v) { const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m); const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m); const __m128i uv_part = _mm_add_epi32(u_part, v_part); return uv_part; } static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) { const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m); const __m128i rgba1 = _mm_add_epi32(y_part, uv_part); const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2); return rgba2; } static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) { const __m128i uv_part = LoadUVPart(u, v); return GetRGBA32bWithUV(y, uv_part); } static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { const __m128i tmp0 = GetRGBA32b(y, u, v); const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0); const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1); // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp _mm_storel_epi64((__m128i*)rgb, tmp2); } static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgr) { const __m128i tmp0 = GetRGBA32b(y, u, v); const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1); const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2); // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp _mm_storel_epi64((__m128i*)bgr, tmp3); } //----------------------------------------------------------------------------- // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. #ifdef FANCY_UPSAMPLING void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; for (n = 0; n < 32; n += 4) { const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]); const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]); const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); _mm_storeu_si128((__m128i*)dst, tmp2); dst += 4 * 4; } } void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; for (n = 0; n < 32; n += 2) { const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; } } void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; uint8_t tmp0[2 * 3 + 5 + 15]; uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3); } // Last two pixels are special: we write in a tmp buffer before sending // to dst. YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); memcpy(dst + n * 3, tmp, 2 * 3); } void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; uint8_t tmp0[2 * 3 + 5 + 15]; uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align for (n = 0; n < 30; ++n) { YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3); } YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); memcpy(dst + n * 3, tmp, 2 * 3); } #endif // FANCY_UPSAMPLING //----------------------------------------------------------------------------- // Arbitrary-length row conversion functions static void YuvToRgbaRowSSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 4 <= len; n += 4) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i uv_1 = LoadUVPart(u[1], v[1]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1); const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1); const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); _mm_storeu_si128((__m128i*)dst, tmp2); dst += 4 * 4; y += 4; u += 2; v += 2; } // Finish off while (n < len) { VP8YuvToRgba(y[0], u[0], v[0], dst); dst += 4; ++y; u += (n & 1); v += (n & 1); ++n; } } static void YuvToBgraRowSSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 <= len; n += 2) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; y += 2; ++u; ++v; } // Finish off if (len & 1) { VP8YuvToBgra(y[0], u[0], v[0], dst); } } static void YuvToArgbRowSSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 <= len; n += 2) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; y += 2; ++u; ++v; } // Finish off if (len & 1) { VP8YuvToArgb(y[0], u[0], v[0], dst); } } static void YuvToRgbRowSSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes dst += 3; ++y; u += (n & 1); v += (n & 1); } VP8YuvToRgb(y[0], u[0], v[0], dst); if (len > 1) { VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3); } } static void YuvToBgrRowSSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes dst += 3; ++y; u += (n & 1); v += (n & 1); } VP8YuvToBgr(y[0], u[0], v[0], dst + 0); if (len > 1) { VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3); } } #endif // WEBP_USE_SSE2 //------------------------------------------------------------------------------ // Entry point extern void WebPInitSamplersSSE2(void); void WebPInitSamplersSSE2(void) { #if defined(WEBP_USE_SSE2) WebPSamplers[MODE_RGB] = YuvToRgbRowSSE2; WebPSamplers[MODE_RGBA] = YuvToRgbaRowSSE2; WebPSamplers[MODE_BGR] = YuvToBgrRowSSE2; WebPSamplers[MODE_BGRA] = YuvToBgraRowSSE2; WebPSamplers[MODE_ARGB] = YuvToArgbRowSSE2; #endif // WEBP_USE_SSE2 }