aboutsummaryrefslogtreecommitdiff
path: root/src/dsp/yuv.h
blob: add167eafafb46c38cdbd2998ab514cecc7332d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright 2010 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
//  Software License Agreement:  http://www.webmproject.org/license/software/
//  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// inline YUV<->RGB conversion function
//
// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
// More information at: http://en.wikipedia.org/wiki/YCbCr
// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
// We use 16bit fixed point operations for RGB->YUV conversion.
//
// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
//   R = 1.164 * (Y-16) + 1.596 * (V-128)
//   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
//   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
// where Y is in the [16,235] range, and U/V in the [16,240] range.
// But the common term 1.164 * (Y-16) can be handled as an offset in the
// VP8kClip[] table. So the formulae should be read as:
//   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
//   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
//   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
// once factorized. Here too, 16bit fixed precision is used.
//
// Author: Skal (pascal.massimino@gmail.com)

#ifndef WEBP_DSP_YUV_H_
#define WEBP_DSP_YUV_H_

#include "../dec/decode_vp8.h"

#if defined(WEBP_EXPERIMENTAL_FEATURES)
// Do NOT activate this feature for real compression. This is only experimental!
// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
// This colorspace is close to Rec.601's Y'CbCr model with the notable
// difference of allowing larger range for luma/chroma.
// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
// #define USE_YUVj
#endif

//------------------------------------------------------------------------------
// YUV -> RGB conversion

#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif

enum { YUV_FIX = 16,                // fixed-point precision
       YUV_RANGE_MIN = -227,        // min value of r/g/b output
       YUV_RANGE_MAX = 256 + 226    // max value of r/g/b output
};
extern int16_t VP8kVToR[256], VP8kUToB[256];
extern int32_t VP8kVToG[256], VP8kUToG[256];
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];

static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
                                    uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
  rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
                                       uint8_t* const rgb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
                      (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
  const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
                      (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
#ifdef WEBP_SWAP_16BIT_CSP
  rgb[0] = gb;
  rgb[1] = rg;
#else
  rgb[0] = rg;
  rgb[1] = gb;
#endif
}

static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const argb) {
  argb[0] = 0xff;
  VP8YuvToRgb(y, u, v, argb + 1);
}

static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
                                         uint8_t* const argb) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
                      VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
  const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
#ifdef WEBP_SWAP_16BIT_CSP
  argb[0] = ba;
  argb[1] = rg;
#else
  argb[0] = rg;
  argb[1] = ba;
#endif
}

static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
                                    uint8_t* const bgr) {
  const int r_off = VP8kVToR[v];
  const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
  const int b_off = VP8kUToB[u];
  bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
  bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
  bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
}

static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const bgra) {
  VP8YuvToBgr(y, u, v, bgra);
  bgra[3] = 0xff;
}

static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
                                     uint8_t* const rgba) {
  VP8YuvToRgb(y, u, v, rgba);
  rgba[3] = 0xff;
}

// Must be called before everything, to initialize the tables.
void VP8YUVInit(void);

//------------------------------------------------------------------------------
// RGB -> YUV conversion

static WEBP_INLINE int VP8ClipUV(int v) {
  v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
  return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
}

#ifndef USE_YUVj

static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
  const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
  const int luma = 16839 * r + 33059 * g + 6420 * b;
  return (luma + kRound) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
  const int u = -9719 * r - 19081 * g + 28800 * b;
  return VP8ClipUV(u);
}

static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
  const int v = +28800 * r - 24116 * g - 4684 * b;
  return VP8ClipUV(v);
}

#else

// This JPEG-YUV colorspace, only for comparison!
// These are also 16-bit precision coefficients from Rec.601, but with full
// [0..255] output range.
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
  const int kRound = (1 << (YUV_FIX - 1));
  const int luma = 19595 * r + 38470 * g + 7471 * b;
  return (luma + kRound) >> YUV_FIX;  // no need to clip
}

static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
  const int u = -11058 * r - 21710 * g + 32768 * b;
  return VP8ClipUV(u);
}

static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
  const int v = 32768 * r - 27439 * g - 5329 * b;
  return VP8ClipUV(v);
}

#endif    // USE_YUVj

#if defined(__cplusplus) || defined(c_plusplus)
}    // extern "C"
#endif

#endif  /* WEBP_DSP_YUV_H_ */