aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMagnus Jedvert <magjed@webrtc.org>2015-08-20 16:03:52 +0200
committerMagnus Jedvert <magjed@webrtc.org>2015-08-20 14:04:01 +0000
commitd3de9c548d1121e7c4787a4b81fd66be714abc04 (patch)
tree67e580a50ff6e8c901426ab03a1ec1df4ca6175e
parentefefda6062f8bf844cc7a01c80c26461c834c5e7 (diff)
downloadwebrtc-d3de9c548d1121e7c4787a4b81fd66be714abc04.tar.gz
rtc::Bind: Capture method objects as scoped_refptr if they are ref counted
R=tommi@webrtc.org Review URL: https://codereview.webrtc.org/1300523004 . Cr-Commit-Position: refs/heads/master@{#9744}
-rw-r--r--webrtc/base/bind.h213
-rw-r--r--webrtc/base/bind.h.pump101
-rw-r--r--webrtc/base/bind_unittest.cc102
3 files changed, 396 insertions, 20 deletions
diff --git a/webrtc/base/bind.h b/webrtc/base/bind.h
index ebd395979c..2d8114052d 100644
--- a/webrtc/base/bind.h
+++ b/webrtc/base/bind.h
@@ -16,12 +16,13 @@
// /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump
// Bind() is an overloaded function that converts method calls into function
-// objects (aka functors). It captures any arguments to the method by value
-// when Bind is called, producing a stateful, nullary function object. Care
-// should be taken about the lifetime of objects captured by Bind(); the
-// returned functor knows nothing about the lifetime of the method's object or
-// any arguments passed by pointer, and calling the functor with a destroyed
-// object will surely do bad things.
+// objects (aka functors). The method object is captured as a scoped_refptr<> if
+// possible, and as a raw pointer otherwise. Any arguments to the method are
+// captured by value. The return value of Bind is a stateful, nullary function
+// object. Care should be taken about the lifetime of objects captured by
+// Bind(); the returned functor knows nothing about the lifetime of a non
+// ref-counted method object or any arguments passed by pointer, and calling the
+// functor with a destroyed object will surely do bad things.
//
// Example usage:
// struct Foo {
@@ -38,10 +39,33 @@
// cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
// cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
// }
+//
+// Example usage of ref counted objects:
+// struct Bar {
+// int AddRef();
+// int Release();
+//
+// void Test() {}
+// void BindThis() {
+// // The functor passed to AsyncInvoke() will keep this object alive.
+// invoker.AsyncInvoke(rtc::Bind(&Bar::Test, this));
+// }
+// };
+//
+// int main() {
+// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
+// auto functor = rtc::Bind(&Bar::Test, bar);
+// bar = nullptr;
+// // The functor stores an internal scoped_refptr<Bar>, so this is safe.
+// functor();
+// }
+//
#ifndef WEBRTC_BASE_BIND_H_
#define WEBRTC_BASE_BIND_H_
+#include "webrtc/base/scoped_ref_ptr.h"
+
#define NONAME
namespace rtc {
@@ -53,6 +77,57 @@ namespace detail {
// references stripped. This trick allows the compiler to dictate the Bind
// parameter types rather than deduce them.
template <class T> struct identity { typedef T type; };
+
+// IsRefCounted<T>::value will be true for types that can be used in
+// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
+// and Release(), regardless of their return types. AddRef() and Release() can
+// be defined in T or any superclass of T.
+template <typename T>
+class IsRefCounted {
+ // This is a complex implementation detail done with SFINAE.
+
+ // Define types such that sizeof(Yes) != sizeof(No).
+ struct Yes { char dummy[1]; };
+ struct No { char dummy[2]; };
+ // Define two overloaded template functions with return types of different
+ // size. This way, we can use sizeof() on the return type to determine which
+ // function the compiler would have chosen. One function will be preferred
+ // over the other if it is possible to create it without compiler errors,
+ // otherwise the compiler will simply remove it, and default to the less
+ // preferred function.
+ template <typename R>
+ static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
+ template <typename C> static No test(...);
+
+public:
+ // Trick the compiler to tell if it's possible to call AddRef() and Release().
+ static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
+};
+
+// TernaryTypeOperator is a helper class to select a type based on a static bool
+// value.
+template <bool condition, typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator {};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
+ typedef IfTrueT type;
+};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
+ typedef IfFalseT type;
+};
+
+// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
+// otherwise.
+template <class T>
+struct PointerType {
+ typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
+ scoped_refptr<T>,
+ T*>::type type;
+};
+
} // namespace detail
template <class ObjectT, class MethodT, class R>
@@ -64,7 +139,7 @@ class MethodFunctor0 {
return (object_->*method_)(); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
};
template <class FunctorT, class R>
@@ -99,6 +174,16 @@ Bind(FP_T(method), const ObjectT* object) {
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)()
+
+template <class ObjectT, class R>
+MethodFunctor0<ObjectT, FP_T(NONAME), R>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object) {
+ return MethodFunctor0<ObjectT, FP_T(NONAME), R>(
+ method, object.get());
+}
+
+#undef FP_T
#define FP_T(x) R (*x)()
template <class R>
@@ -122,7 +207,7 @@ class MethodFunctor1 {
return (object_->*method_)(p1_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
};
@@ -165,6 +250,18 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1)
+
+template <class ObjectT, class R,
+ class P1>
+MethodFunctor1<ObjectT, FP_T(NONAME), R, P1>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1) {
+ return MethodFunctor1<ObjectT, FP_T(NONAME), R, P1>(
+ method, object.get(), p1);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1)
template <class R,
@@ -193,7 +290,7 @@ class MethodFunctor2 {
return (object_->*method_)(p1_, p2_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
P2 p2_;
};
@@ -244,6 +341,20 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1, P2)
+
+template <class ObjectT, class R,
+ class P1,
+ class P2>
+MethodFunctor2<ObjectT, FP_T(NONAME), R, P1, P2>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1,
+ typename detail::identity<P2>::type p2) {
+ return MethodFunctor2<ObjectT, FP_T(NONAME), R, P1, P2>(
+ method, object.get(), p1, p2);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1, P2)
template <class R,
@@ -277,7 +388,7 @@ class MethodFunctor3 {
return (object_->*method_)(p1_, p2_, p3_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
P2 p2_;
P3 p3_;
@@ -336,6 +447,22 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1, P2, P3)
+
+template <class ObjectT, class R,
+ class P1,
+ class P2,
+ class P3>
+MethodFunctor3<ObjectT, FP_T(NONAME), R, P1, P2, P3>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1,
+ typename detail::identity<P2>::type p2,
+ typename detail::identity<P3>::type p3) {
+ return MethodFunctor3<ObjectT, FP_T(NONAME), R, P1, P2, P3>(
+ method, object.get(), p1, p2, p3);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1, P2, P3)
template <class R,
@@ -374,7 +501,7 @@ class MethodFunctor4 {
return (object_->*method_)(p1_, p2_, p3_, p4_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
P2 p2_;
P3 p3_;
@@ -441,6 +568,24 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1, P2, P3, P4)
+
+template <class ObjectT, class R,
+ class P1,
+ class P2,
+ class P3,
+ class P4>
+MethodFunctor4<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1,
+ typename detail::identity<P2>::type p2,
+ typename detail::identity<P3>::type p3,
+ typename detail::identity<P4>::type p4) {
+ return MethodFunctor4<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4>(
+ method, object.get(), p1, p2, p3, p4);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1, P2, P3, P4)
template <class R,
@@ -484,7 +629,7 @@ class MethodFunctor5 {
return (object_->*method_)(p1_, p2_, p3_, p4_, p5_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
P2 p2_;
P3 p3_;
@@ -559,6 +704,26 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1, P2, P3, P4, P5)
+
+template <class ObjectT, class R,
+ class P1,
+ class P2,
+ class P3,
+ class P4,
+ class P5>
+MethodFunctor5<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4, P5>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1,
+ typename detail::identity<P2>::type p2,
+ typename detail::identity<P3>::type p3,
+ typename detail::identity<P4>::type p4,
+ typename detail::identity<P5>::type p5) {
+ return MethodFunctor5<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4, P5>(
+ method, object.get(), p1, p2, p3, p4, p5);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1, P2, P3, P4, P5)
template <class R,
@@ -607,7 +772,7 @@ class MethodFunctor6 {
return (object_->*method_)(p1_, p2_, p3_, p4_, p5_, p6_); }
private:
MethodT method_;
- ObjectT* object_;
+ typename detail::PointerType<ObjectT>::type object_;
P1 p1_;
P2 p2_;
P3 p3_;
@@ -690,6 +855,28 @@ Bind(FP_T(method), const ObjectT* object,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)(P1, P2, P3, P4, P5, P6)
+
+template <class ObjectT, class R,
+ class P1,
+ class P2,
+ class P3,
+ class P4,
+ class P5,
+ class P6>
+MethodFunctor6<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4, P5, P6>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object,
+ typename detail::identity<P1>::type p1,
+ typename detail::identity<P2>::type p2,
+ typename detail::identity<P3>::type p3,
+ typename detail::identity<P4>::type p4,
+ typename detail::identity<P5>::type p5,
+ typename detail::identity<P6>::type p6) {
+ return MethodFunctor6<ObjectT, FP_T(NONAME), R, P1, P2, P3, P4, P5, P6>(
+ method, object.get(), p1, p2, p3, p4, p5, p6);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)(P1, P2, P3, P4, P5, P6)
template <class R,
diff --git a/webrtc/base/bind.h.pump b/webrtc/base/bind.h.pump
index 11767abe50..9a4bc664c3 100644
--- a/webrtc/base/bind.h.pump
+++ b/webrtc/base/bind.h.pump
@@ -12,12 +12,13 @@
// /home/build/google3/third_party/gtest/scripts/pump.py bind.h.pump
// Bind() is an overloaded function that converts method calls into function
-// objects (aka functors). It captures any arguments to the method by value
-// when Bind is called, producing a stateful, nullary function object. Care
-// should be taken about the lifetime of objects captured by Bind(); the
-// returned functor knows nothing about the lifetime of the method's object or
-// any arguments passed by pointer, and calling the functor with a destroyed
-// object will surely do bad things.
+// objects (aka functors). The method object is captured as a scoped_refptr<> if
+// possible, and as a raw pointer otherwise. Any arguments to the method are
+// captured by value. The return value of Bind is a stateful, nullary function
+// object. Care should be taken about the lifetime of objects captured by
+// Bind(); the returned functor knows nothing about the lifetime of a non
+// ref-counted method object or any arguments passed by pointer, and calling the
+// functor with a destroyed object will surely do bad things.
//
// Example usage:
// struct Foo {
@@ -34,10 +35,33 @@
// cout << rtc::Bind(&Foo::Test3, &foo, 3)() << endl;
// cout << rtc::Bind(&Foo::Test4, &foo, 7, 8.5f)() << endl;
// }
+//
+// Example usage of ref counted objects:
+// struct Bar {
+// int AddRef();
+// int Release();
+//
+// void Test() {}
+// void BindThis() {
+// // The functor passed to AsyncInvoke() will keep this object alive.
+// invoker.AsyncInvoke(rtc::Bind(&Bar::Test, this));
+// }
+// };
+//
+// int main() {
+// rtc::scoped_refptr<Bar> bar = new rtc::RefCountedObject<Bar>();
+// auto functor = rtc::Bind(&Bar::Test, bar);
+// bar = nullptr;
+// // The functor stores an internal scoped_refptr<Bar>, so this is safe.
+// functor();
+// }
+//
#ifndef WEBRTC_BASE_BIND_H_
#define WEBRTC_BASE_BIND_H_
+#include "webrtc/base/scoped_ref_ptr.h"
+
#define NONAME
namespace rtc {
@@ -49,6 +73,57 @@ namespace detail {
// references stripped. This trick allows the compiler to dictate the Bind
// parameter types rather than deduce them.
template <class T> struct identity { typedef T type; };
+
+// IsRefCounted<T>::value will be true for types that can be used in
+// rtc::scoped_refptr<T>, i.e. types that implements nullary functions AddRef()
+// and Release(), regardless of their return types. AddRef() and Release() can
+// be defined in T or any superclass of T.
+template <typename T>
+class IsRefCounted {
+ // This is a complex implementation detail done with SFINAE.
+
+ // Define types such that sizeof(Yes) != sizeof(No).
+ struct Yes { char dummy[1]; };
+ struct No { char dummy[2]; };
+ // Define two overloaded template functions with return types of different
+ // size. This way, we can use sizeof() on the return type to determine which
+ // function the compiler would have chosen. One function will be preferred
+ // over the other if it is possible to create it without compiler errors,
+ // otherwise the compiler will simply remove it, and default to the less
+ // preferred function.
+ template <typename R>
+ static Yes test(R* r, decltype(r->AddRef(), r->Release(), 42));
+ template <typename C> static No test(...);
+
+public:
+ // Trick the compiler to tell if it's possible to call AddRef() and Release().
+ static const bool value = sizeof(test<T>((T*)nullptr, 42)) == sizeof(Yes);
+};
+
+// TernaryTypeOperator is a helper class to select a type based on a static bool
+// value.
+template <bool condition, typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator {};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<true, IfTrueT, IfFalseT> {
+ typedef IfTrueT type;
+};
+
+template <typename IfTrueT, typename IfFalseT>
+struct TernaryTypeOperator<false, IfTrueT, IfFalseT> {
+ typedef IfFalseT type;
+};
+
+// PointerType<T>::type will be scoped_refptr<T> for ref counted types, and T*
+// otherwise.
+template <class T>
+struct PointerType {
+ typedef typename TernaryTypeOperator<IsRefCounted<T>::value,
+ scoped_refptr<T>,
+ T*>::type type;
+};
+
} // namespace detail
$var n = 6
@@ -68,7 +143,7 @@ class MethodFunctor$i {
return (object_->*method_)($for j , [[p$(j)_]]); }
private:
MethodT method_;
- ObjectT* object_;$for j [[
+ typename detail::PointerType<ObjectT>::type object_;$for j [[
P$j p$(j)_;]]
@@ -116,6 +191,18 @@ Bind(FP_T(method), const ObjectT* object$for j [[,
}
#undef FP_T
+#define FP_T(x) R (ObjectT::*x)($for j , [[P$j]])
+
+template <class ObjectT, class R$for j [[,
+ class P$j]]>
+MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>
+Bind(FP_T(method), const scoped_refptr<ObjectT>& object$for j [[,
+ typename detail::identity<P$j>::type p$j]]) {
+ return MethodFunctor$i<ObjectT, FP_T(NONAME), R$for j [[, P$j]]>(
+ method, object.get()$for j [[, p$j]]);
+}
+
+#undef FP_T
#define FP_T(x) R (*x)($for j , [[P$j]])
template <class R$for j [[,
diff --git a/webrtc/base/bind_unittest.cc b/webrtc/base/bind_unittest.cc
index ed8dd5cf2d..7a621dce2c 100644
--- a/webrtc/base/bind_unittest.cc
+++ b/webrtc/base/bind_unittest.cc
@@ -11,6 +11,8 @@
#include "webrtc/base/bind.h"
#include "webrtc/base/gunit.h"
+#include "webrtc/base/refcount.h"
+
namespace rtc {
namespace {
@@ -26,12 +28,67 @@ struct MethodBindTester {
mutable int call_count;
};
+struct A { int dummy; };
+struct B: public RefCountInterface { int dummy; };
+struct C: public A, B {};
+struct D {
+ int AddRef();
+};
+struct E: public D {
+ int Release();
+};
+struct F {
+ void AddRef();
+ void Release();
+};
+
+class LifeTimeCheck : public RefCountInterface {
+ public:
+ LifeTimeCheck(bool* has_died) : has_died_(has_died), is_ok_to_die_(false) {}
+ ~LifeTimeCheck() {
+ EXPECT_TRUE(is_ok_to_die_);
+ *has_died_ = true;
+ }
+ void PrepareToDie() { is_ok_to_die_ = true; }
+ void NullaryVoid() {}
+
+ private:
+ bool* const has_died_;
+ bool is_ok_to_die_;
+};
+
int Return42() { return 42; }
int Negate(int a) { return -a; }
int Multiply(int a, int b) { return a * b; }
} // namespace
+// Try to catch any problem with scoped_refptr type deduction in rtc::Bind at
+// compile time.
+#define EXPECT_IS_CAPTURED_AS_PTR(T) \
+ static_assert(is_same<detail::PointerType<T>::type, T*>::value, \
+ "PointerType")
+#define EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(T) \
+ static_assert( \
+ is_same<detail::PointerType<T>::type, scoped_refptr<T>>::value, \
+ "PointerType")
+
+EXPECT_IS_CAPTURED_AS_PTR(void);
+EXPECT_IS_CAPTURED_AS_PTR(int);
+EXPECT_IS_CAPTURED_AS_PTR(double);
+EXPECT_IS_CAPTURED_AS_PTR(A);
+EXPECT_IS_CAPTURED_AS_PTR(D);
+EXPECT_IS_CAPTURED_AS_PTR(RefCountInterface*);
+
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(RefCountInterface);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(B);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(C);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(E);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(F);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(RefCountedObject<RefCountInterface>);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(RefCountedObject<B>);
+EXPECT_IS_CAPTURED_AS_SCOPED_REFPTR(RefCountedObject<C>);
+
TEST(BindTest, BindToMethod) {
MethodBindTester object = {0};
EXPECT_EQ(0, object.call_count);
@@ -64,4 +121,49 @@ TEST(BindTest, BindToFunction) {
EXPECT_EQ(56, Bind(&Multiply, 8, 7)());
}
+// Test Bind where method object implements RefCountInterface and is passed as a
+// pointer.
+TEST(BindTest, CapturePointerAsScopedRefPtr) {
+ bool object_has_died = false;
+ scoped_refptr<LifeTimeCheck> object =
+ new RefCountedObject<LifeTimeCheck>(&object_has_died);
+ {
+ auto functor = Bind(&LifeTimeCheck::PrepareToDie, object.get());
+ object = nullptr;
+ EXPECT_FALSE(object_has_died);
+ // Run prepare to die via functor.
+ functor();
+ }
+ EXPECT_TRUE(object_has_died);
+}
+
+// Test Bind where method object implements RefCountInterface and is passed as a
+// scoped_refptr<>.
+TEST(BindTest, CaptureScopedRefPtrAsScopedRefPtr) {
+ bool object_has_died = false;
+ scoped_refptr<LifeTimeCheck> object =
+ new RefCountedObject<LifeTimeCheck>(&object_has_died);
+ {
+ auto functor = Bind(&LifeTimeCheck::PrepareToDie, object);
+ object = nullptr;
+ EXPECT_FALSE(object_has_died);
+ // Run prepare to die via functor.
+ functor();
+ }
+ EXPECT_TRUE(object_has_died);
+}
+
+// Test Bind where method object is captured as scoped_refptr<> and the functor
+// dies while there are references left.
+TEST(BindTest, FunctorReleasesObjectOnDestruction) {
+ bool object_has_died = false;
+ scoped_refptr<LifeTimeCheck> object =
+ new RefCountedObject<LifeTimeCheck>(&object_has_died);
+ Bind(&LifeTimeCheck::NullaryVoid, object.get())();
+ EXPECT_FALSE(object_has_died);
+ object->PrepareToDie();
+ object = nullptr;
+ EXPECT_TRUE(object_has_died);
+}
+
} // namespace rtc