aboutsummaryrefslogtreecommitdiff
path: root/webrtc/common_audio/resampler/sinc_resampler.cc
diff options
context:
space:
mode:
authorandrew@webrtc.org <andrew@webrtc.org@4adac7df-926f-26a2-2b94-8c16560cd09d>2013-02-13 23:00:49 +0000
committerandrew@webrtc.org <andrew@webrtc.org@4adac7df-926f-26a2-2b94-8c16560cd09d>2013-02-13 23:00:49 +0000
commita8ef811fe52add24f90973d19a31347226456abc (patch)
tree33eda267ca8439db9586cd9cda13b65a871fe959 /webrtc/common_audio/resampler/sinc_resampler.cc
parent9c4e662ea866e4a108e30f8a31a746a4eb453005 (diff)
downloadwebrtc-a8ef811fe52add24f90973d19a31347226456abc.tar.gz
Import SincResampler from Chromium.
Committing the originals to make further reviews cleaner. TBR=bjornv BUG=webrtc:1395 Review URL: https://webrtc-codereview.appspot.com/1096010 git-svn-id: http://webrtc.googlecode.com/svn/trunk@3508 4adac7df-926f-26a2-2b94-8c16560cd09d
Diffstat (limited to 'webrtc/common_audio/resampler/sinc_resampler.cc')
-rw-r--r--webrtc/common_audio/resampler/sinc_resampler.cc347
1 files changed, 347 insertions, 0 deletions
diff --git a/webrtc/common_audio/resampler/sinc_resampler.cc b/webrtc/common_audio/resampler/sinc_resampler.cc
new file mode 100644
index 0000000000..d836fc7cbc
--- /dev/null
+++ b/webrtc/common_audio/resampler/sinc_resampler.cc
@@ -0,0 +1,347 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// Input buffer layout, dividing the total buffer into regions (r0_ - r5_):
+//
+// |----------------|-----------------------------------------|----------------|
+//
+// kBlockSize + kKernelSize / 2
+// <--------------------------------------------------------->
+// r0_
+//
+// kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
+// <---------------> <---------------> <---------------> <--------------->
+// r1_ r2_ r3_ r4_
+//
+// kBlockSize
+// <--------------------------------------->
+// r5_
+//
+// The algorithm:
+//
+// 1) Consume input frames into r0_ (r1_ is zero-initialized).
+// 2) Position kernel centered at start of r0_ (r2_) and generate output frames
+// until kernel is centered at start of r4_ or we've finished generating all
+// the output frames.
+// 3) Copy r3_ to r1_ and r4_ to r2_.
+// 4) Consume input frames into r5_ (zero-pad if we run out of input).
+// 5) Goto (2) until all of input is consumed.
+//
+// Note: we're glossing over how the sub-sample handling works with
+// |virtual_source_idx_|, etc.
+
+// MSVC++ requires this to be set before any other includes to get M_PI.
+#define _USE_MATH_DEFINES
+
+#include "media/base/sinc_resampler.h"
+
+#include <cmath>
+
+#include "base/cpu.h"
+#include "base/logging.h"
+#include "build/build_config.h"
+
+#if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__)
+#include <xmmintrin.h>
+#endif
+
+#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+#include <arm_neon.h>
+#endif
+
+namespace media {
+
+namespace {
+
+enum {
+ // The kernel size can be adjusted for quality (higher is better) at the
+ // expense of performance. Must be a multiple of 32.
+ // TODO(dalecurtis): Test performance to see if we can jack this up to 64+.
+ kKernelSize = 32,
+
+ // The number of destination frames generated per processing pass. Affects
+ // how often and for how much SincResampler calls back for input. Must be
+ // greater than kKernelSize.
+ kBlockSize = 512,
+
+ // The kernel offset count is used for interpolation and is the number of
+ // sub-sample kernel shifts. Can be adjusted for quality (higher is better)
+ // at the expense of allocating more memory.
+ kKernelOffsetCount = 32,
+ kKernelStorageSize = kKernelSize * (kKernelOffsetCount + 1),
+
+ // The size (in samples) of the internal buffer used by the resampler.
+ kBufferSize = kBlockSize + kKernelSize
+};
+
+} // namespace
+
+const int SincResampler::kMaximumLookAheadSize = kBufferSize;
+
+SincResampler::SincResampler(double io_sample_rate_ratio, const ReadCB& read_cb)
+ : io_sample_rate_ratio_(io_sample_rate_ratio),
+ virtual_source_idx_(0),
+ buffer_primed_(false),
+ read_cb_(read_cb),
+ // Create input buffers with a 16-byte alignment for SSE optimizations.
+ kernel_storage_(static_cast<float*>(
+ base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
+ input_buffer_(static_cast<float*>(
+ base::AlignedAlloc(sizeof(float) * kBufferSize, 16))),
+ // Setup various region pointers in the buffer (see diagram above).
+ r0_(input_buffer_.get() + kKernelSize / 2),
+ r1_(input_buffer_.get()),
+ r2_(r0_),
+ r3_(r0_ + kBlockSize - kKernelSize / 2),
+ r4_(r0_ + kBlockSize),
+ r5_(r0_ + kKernelSize / 2) {
+ // Ensure kKernelSize is a multiple of 32 for easy SSE optimizations; causes
+ // r0_ and r5_ (used for input) to always be 16-byte aligned by virtue of
+ // input_buffer_ being 16-byte aligned.
+ DCHECK_EQ(kKernelSize % 32, 0) << "kKernelSize must be a multiple of 32!";
+ DCHECK_GT(kBlockSize, kKernelSize)
+ << "kBlockSize must be greater than kKernelSize!";
+ // Basic sanity checks to ensure buffer regions are laid out correctly:
+ // r0_ and r2_ should always be the same position.
+ DCHECK_EQ(r0_, r2_);
+ // r1_ at the beginning of the buffer.
+ DCHECK_EQ(r1_, input_buffer_.get());
+ // r1_ left of r2_, r2_ left of r5_ and r1_, r2_ size correct.
+ DCHECK_EQ(r2_ - r1_, r5_ - r2_);
+ // r3_ left of r4_, r5_ left of r0_ and r3_ size correct.
+ DCHECK_EQ(r4_ - r3_, r5_ - r0_);
+ // r3_, r4_ size correct and r4_ at the end of the buffer.
+ DCHECK_EQ(r4_ + (r4_ - r3_), r1_ + kBufferSize);
+ // r5_ size correct and at the end of the buffer.
+ DCHECK_EQ(r5_ + kBlockSize, r1_ + kBufferSize);
+
+ memset(kernel_storage_.get(), 0,
+ sizeof(*kernel_storage_.get()) * kKernelStorageSize);
+ memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * kBufferSize);
+
+ InitializeKernel();
+}
+
+SincResampler::~SincResampler() {}
+
+void SincResampler::InitializeKernel() {
+ // Blackman window parameters.
+ static const double kAlpha = 0.16;
+ static const double kA0 = 0.5 * (1.0 - kAlpha);
+ static const double kA1 = 0.5;
+ static const double kA2 = 0.5 * kAlpha;
+
+ // |sinc_scale_factor| is basically the normalized cutoff frequency of the
+ // low-pass filter.
+ double sinc_scale_factor =
+ io_sample_rate_ratio_ > 1.0 ? 1.0 / io_sample_rate_ratio_ : 1.0;
+
+ // The sinc function is an idealized brick-wall filter, but since we're
+ // windowing it the transition from pass to stop does not happen right away.
+ // So we should adjust the low pass filter cutoff slightly downward to avoid
+ // some aliasing at the very high-end.
+ // TODO(crogers): this value is empirical and to be more exact should vary
+ // depending on kKernelSize.
+ sinc_scale_factor *= 0.9;
+
+ // Generates a set of windowed sinc() kernels.
+ // We generate a range of sub-sample offsets from 0.0 to 1.0.
+ for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
+ double subsample_offset =
+ static_cast<double>(offset_idx) / kKernelOffsetCount;
+
+ for (int i = 0; i < kKernelSize; ++i) {
+ // Compute the sinc with offset.
+ double s =
+ sinc_scale_factor * M_PI * (i - kKernelSize / 2 - subsample_offset);
+ double sinc = (!s ? 1.0 : sin(s) / s) * sinc_scale_factor;
+
+ // Compute Blackman window, matching the offset of the sinc().
+ double x = (i - subsample_offset) / kKernelSize;
+ double window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2
+ * cos(4.0 * M_PI * x);
+
+ // Window the sinc() function and store at the correct offset.
+ kernel_storage_.get()[i + offset_idx * kKernelSize] = sinc * window;
+ }
+ }
+}
+
+void SincResampler::Resample(float* destination, int frames) {
+ int remaining_frames = frames;
+
+ // Step (1) -- Prime the input buffer at the start of the input stream.
+ if (!buffer_primed_) {
+ read_cb_.Run(r0_, kBlockSize + kKernelSize / 2);
+ buffer_primed_ = true;
+ }
+
+ // Step (2) -- Resample!
+ while (remaining_frames) {
+ while (virtual_source_idx_ < kBlockSize) {
+ // |virtual_source_idx_| lies in between two kernel offsets so figure out
+ // what they are.
+ int source_idx = static_cast<int>(virtual_source_idx_);
+ double subsample_remainder = virtual_source_idx_ - source_idx;
+
+ double virtual_offset_idx = subsample_remainder * kKernelOffsetCount;
+ int offset_idx = static_cast<int>(virtual_offset_idx);
+
+ // We'll compute "convolutions" for the two kernels which straddle
+ // |virtual_source_idx_|.
+ float* k1 = kernel_storage_.get() + offset_idx * kKernelSize;
+ float* k2 = k1 + kKernelSize;
+
+ // Initialize input pointer based on quantized |virtual_source_idx_|.
+ float* input_ptr = r1_ + source_idx;
+
+ // Figure out how much to weight each kernel's "convolution".
+ double kernel_interpolation_factor = virtual_offset_idx - offset_idx;
+ *destination++ = Convolve(
+ input_ptr, k1, k2, kernel_interpolation_factor);
+
+ // Advance the virtual index.
+ virtual_source_idx_ += io_sample_rate_ratio_;
+
+ if (!--remaining_frames)
+ return;
+ }
+
+ // Wrap back around to the start.
+ virtual_source_idx_ -= kBlockSize;
+
+ // Step (3) Copy r3_ to r1_ and r4_ to r2_.
+ // This wraps the last input frames back to the start of the buffer.
+ memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * (kKernelSize / 2));
+ memcpy(r2_, r4_, sizeof(*input_buffer_.get()) * (kKernelSize / 2));
+
+ // Step (4)
+ // Refresh the buffer with more input.
+ read_cb_.Run(r5_, kBlockSize);
+ }
+}
+
+int SincResampler::ChunkSize() {
+ return kBlockSize / io_sample_rate_ratio_;
+}
+
+void SincResampler::Flush() {
+ virtual_source_idx_ = 0;
+ buffer_primed_ = false;
+ memset(input_buffer_.get(), 0, sizeof(*input_buffer_.get()) * kBufferSize);
+}
+
+float SincResampler::Convolve(const float* input_ptr, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor) {
+ // Rely on function level static initialization to keep ConvolveProc selection
+ // thread safe.
+ typedef float (*ConvolveProc)(const float* src, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor);
+#if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__)
+ static const ConvolveProc kConvolveProc =
+ base::CPU().has_sse() ? Convolve_SSE : Convolve_C;
+#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+ static const ConvolveProc kConvolveProc = Convolve_NEON;
+#else
+ static const ConvolveProc kConvolveProc = Convolve_C;
+#endif
+
+ return kConvolveProc(input_ptr, k1, k2, kernel_interpolation_factor);
+}
+
+float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor) {
+ float sum1 = 0;
+ float sum2 = 0;
+
+ // Generate a single output sample. Unrolling this loop hurt performance in
+ // local testing.
+ int n = kKernelSize;
+ while (n--) {
+ sum1 += *input_ptr * *k1++;
+ sum2 += *input_ptr++ * *k2++;
+ }
+
+ // Linearly interpolate the two "convolutions".
+ return (1.0 - kernel_interpolation_factor) * sum1
+ + kernel_interpolation_factor * sum2;
+}
+
+#if defined(ARCH_CPU_X86_FAMILY) && defined(__SSE__)
+float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor) {
+ // Ensure |k1|, |k2| are 16-byte aligned for SSE usage. Should always be true
+ // so long as kKernelSize is a multiple of 16.
+ DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F);
+ DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F);
+
+ __m128 m_input;
+ __m128 m_sums1 = _mm_setzero_ps();
+ __m128 m_sums2 = _mm_setzero_ps();
+
+ // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
+ // these loops hurt performance in local testing.
+ if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
+ for (int i = 0; i < kKernelSize; i += 4) {
+ m_input = _mm_loadu_ps(input_ptr + i);
+ m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
+ m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
+ }
+ } else {
+ for (int i = 0; i < kKernelSize; i += 4) {
+ m_input = _mm_load_ps(input_ptr + i);
+ m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
+ m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
+ }
+ }
+
+ // Linearly interpolate the two "convolutions".
+ m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(1.0 - kernel_interpolation_factor));
+ m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(kernel_interpolation_factor));
+ m_sums1 = _mm_add_ps(m_sums1, m_sums2);
+
+ // Sum components together.
+ float result;
+ m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
+ _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(
+ m_sums2, m_sums2, 1)));
+
+ return result;
+}
+#endif
+
+#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
+float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
+ const float* k2,
+ double kernel_interpolation_factor) {
+ float32x4_t m_input;
+ float32x4_t m_sums1 = vmovq_n_f32(0);
+ float32x4_t m_sums2 = vmovq_n_f32(0);
+
+ const float* upper = input_ptr + kKernelSize;
+ for (; input_ptr < upper; ) {
+ m_input = vld1q_f32(input_ptr);
+ input_ptr += 4;
+ m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
+ k1 += 4;
+ m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
+ k2 += 4;
+ }
+
+ // Linearly interpolate the two "convolutions".
+ m_sums1 = vmlaq_f32(
+ vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
+ m_sums2, vmovq_n_f32(kernel_interpolation_factor));
+
+ // Sum components together.
+ float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
+ return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
+}
+#endif
+
+} // namespace media